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KEY PO INT S

l The primary CCND1
rearrangement is
mediated by the same
mechanisms in cMCL
and nnMCL, but
they differ in the
(epi)genetic and driver
makeup.

l Genomic complexity
and DNA methylation
changes related to
proliferative cell
history stratify
patients with distinct
clinical outcomes.

Mantle cell lymphoma (MCL) is a mature B-cell neoplasm initially driven by CCND1
rearrangement with 2 molecular subtypes, conventional MCL (cMCL) and leukemic non-
nodal MCL (nnMCL), that differ in their clinicobiological behavior. To identify the
genetic and epigenetic alterations determining this diversity, we used whole-genome
(n 5 61) and exome (n 5 21) sequencing (74% cMCL, 26% nnMCL) combined with
transcriptome and DNA methylation profiles in the context of 5 MCL reference epi-
genomes. We identified that open and active chromatin at the major translocation
cluster locus might facilitate the t(11;14)(q13;32), which modifies the 3-dimensional
structure of the involved regions. This translocation is mainly acquired in precursor B cells
mediated by recombination-activating genes in both MCL subtypes, whereas in 8% of
cases the translocation occurs in mature B cells mediated by activation-induced cytidine
deaminase. We identified novel recurrent MCL drivers, including CDKN1B, SAMHD1,
BCOR, SYNE1, HNRNPH1, SMARCB1, and DAZAP1. Complex structural alterations
emerge as a relevant early oncogenic mechanism in MCL, targeting key driver genes.
Breakage-fusion-bridge cycles and translocations activated oncogenes (BMI1,MIR17HG,

TERT,MYC, andMYCN), generating gene amplifications and remodeling regulatory regions. cMCL carried significant
higher numbers of structural variants, copy number alterations, and driver changes than nnMCL, with exclusive
alterations of ATM in cMCL, whereas TP53 and TERT alterations were slightly enriched in nnMCL. Several drivers had
prognostic impact, but only TP53 and MYC aberrations added value independently of genomic complexity. An
increasing genomic complexity, together with the presence of breakage-fusion-bridge cycles and high DNA
methylation changes related to the proliferative cell history, defines patients with different clinical evolution.
(Blood. 2020;136(12):1419-1432)
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Introduction
Mantle cell lymphoma (MCL) is a mature B-cell neoplasm with very
heterogeneous behavior genetically characterized by the trans-
location t(11;14)(q13;q32), leading to CCND1 overexpression.1-4

The World Health Organization recognizes 2 molecular subtypes
that differ in their clinical and biological features.5-9 The most
common conventional MCL (cMCL) derives from naive-like mature
B cells, expresses the oncogenic transcription factor SOX11 and
accumulates high numbers of genomic alterations. Patients usually
have generalized lymphadenopathy and an adverse outcome. In
contrast, leukemic non-nodal MCL (nnMCL) originates from
memory-like B cells, is negative for SOX11, and is genetically stable.
The disease usually involves peripheral blood and spleen but not
lymph nodes in early stages, and follows an indolent behavior.10

Both MCL subtypes carry the t(11;14) translocation, but the
mechanisms leading to this rearrangement in both subtypes and
the subsequent molecular alterations that drive their different
evolution are not well defined.

Themutational profile of MCL has been previously studied in a small
series of cases using whole-exome, transcriptome, or targeted se-
quencing, revealing a heterogeneous set of mutated genes, most of
them at low frequencies.11-15 However, these strategies did not ex-
plore the genome-wide mutational and structural alterations of the
tumors, and have not properly addressed the differences between
the 2 molecular subtypes of MCL. Furthermore, although the whole

DNAmethylomeofMCLhasbeen recently described, its relationship
with genome-wide genetic events remains poorly characterized.16

To determine the influence of genome-wide (epi)genetic alter-
ations in the heterogeneous behavior of MCL, we performed a
combined analysis of whole-genome sequencing (WGS), tran-
scriptome, and DNA methylome of a large cohort of MCL in the
context of the reference epigenome of 5 representative cases
from both MCL subtypes.

Methods
Patients and genomic studies
We performedWGS of paired tumor/normal samples from 61MCL
patients (44 cMCL, 17 nnMCL) (Table 1). We expanded the analysis
with the whole-exome sequencing (WES) of 21 nonoverlapping
cases previously reported (supplemental Table 1, available on the
BloodWeb site).11 Cases were classified as cMCL or nnMCL on the
basis of gene expression signatures detected by expression arrays,
NanoString platform or reverse transcription quantitative poly-
merase chain reaction (PCR), and/or SOX11 immunohistochemistry,
depending on the available material, as previously described
(supplemental Methods).6,17,18 Clinical status, morphological status,
immunoglobulin heavy chain gene (IGHV) mutational status,
genetic alterations, or epigenetic data were not used for the
classification. WGS was performed using the TruSeq DNA
PCR-free protocol and sequenced in a HiSeq X Ten (2 3 150
bp; Illumina) (supplemental Table 2). Raw reads were mapped
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Table 1. Clinicopathological features of the 61 MCL patients with WGS analysis

Variable Total (n) cMCL (n 5 44) nnMCL (n 5 17) P

Clinical data (at diagnosis)
Age, median (range), y 64 (38-85) 64 (38-85) 64 (51-80) .477
Male/female, no. 43/18 33/11 10/7 .229
Nodal presentation, % 22/55 (40) 22/40 (55) 0/15 (0) ,.001
Splenomegaly, % 26/55 (47) 24/40 (60) 2/15 (13) .002
LDH (.ULN), % 16/53 (30) 16/39 (41) 0/14 (0) .005
MIPI high risk, % 42/46 (91) 32/36 (89) 10/10 (100) .562
ECOG ($2), % 8/48 (17) 8/37 (22) 0/11 (0) .170

Pathological and molecular data
Cyclin D1 positive, % 60/61 (98) 43*/44 (98) 17/17 (100) 1
Mutated IGHV genes

Identity ,98%, % 24/61 (39) 8/44 (18) 16/17 (94) ,.001
Identity, median (range) 99 (91-100) 99 (93-100) 95 (91-99) ,.001

Nanostring L-MCL16 assay, %† ,.001
cMCL 15/29 (52) 15/16 (94) 0/13 (0)
nnMCL 11/29 (38) 0/16 (0) 11/13 (85)
Undetermined 3/29 (10) 1/16 (6) 2/13 (15)

Epigenetic COO, %‡ ,.001
C1 (GC inexperienced) 35/54 (65) 34/37 (92) 1/17 (6)
C2 (GC experienced) 17/54 (31) 2/37 (5) 15/17 (88)
Undetermined 2/54 (4) 1/37 (3) 1/17 (6)

Complex karyotype, % 17/37 (46) 12/21 (57) 5/16 (31) .185
Morphology, % ,.001

Small cell 15/57 (26) 5/41 (12) 10/16 (62)
Classic 30/57 (53) 24/41 (59) 6/16 (38)
Blastoid 12/57 (21) 12/41 (29) 0/16 (0)

Light chain restriction, % .259
k 35/61 (57) 23/44 (52) 12/17 (71)
l 26/61 (43) 21/44 (48) 5/17 (29)

Sequenced sample, % .023
Lymph node 12/61 (20) 12/44 (27) 0/17 (0)
Other tissue§ 2/61 (3) 2/44 (5) 0/17 (0)
Peripheral blood 46/61 (75) 29/44 (66) 17/17 (100)
Bone marrow 1/61 (2) 1/44 (2) 0/17 (0)

Pretreatment sample, % 56/60 (93) 40/43 (93) 16/17 (94) 1
Time from diagnosis to pretreatment sample,

median (range), mo
0.9 (0-101.6) 0.4 (0-14) 9.5 (0-101.6) ,.001

Treatment at diagnosis, %║ ,.001
High-dose therapy 17/58 (29) 17/41 (41) 0/17 (0)
Immunochemotherapy 12/58 (21) 12/41 (29) 0/17 (0)
Low-dose chemotherapy 6/58 (10) 6/41 (15) 0/17 (0)
Observation 23/58 (40) 6/41 (15) 17/17 (100)

Follow-up data
Treated at 2 y, % (95% CI) 67 (52-78) 91 (76-97) 7 (0-18) ,.001
n treated, n censored, n missing 38, 3, 4 37, 2, 3 1, 1, 1
2-y OS, % (95% CI) 81 (72-92) 73 (61-88) 100 (100-100) .006
n dead, n censored, n missing 11, 4, 1 11, 4, 1 0, 0, 0

CI, confidence interval; ECOG, Eastern Cooperative Oncology Group; LDH, lactate dehydrogenase; MIPI, MCL International Prognostic Index; ULN, upper level of normal.

*One case was negative for cyclin D1 expression and CCND1 rearrangement but had MCL morphologic and phenotypic criteria (including SOX11 positivity) according to the WHO
classification.30

†Clot et al.17

‡Queirós et al.16

§Corresponding to 1 skin and 1 tonsil.

║The treatment information in 3 patients could not be obtained. High-dose therapy includes Cytarabine-based immunochemotherapy and/or autologous stem-cell transplantation;
Immunochemotherapy includes R-CHOP-like regimens; and Low-dose therapy includes alkylating agents alone or in combination.
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to the human reference genome (GRCh37) using the BWA-
mem algorithm,19 and somatic single-nucleotide variants were
called using Sidrón,20 short insertions/deletions combining
Sidrón and Pindel, and germline variants using HaplotypeCaller.21

Copy number alterations (CNA) were extracted using Battenberg22

and fromAffymetrixGenome-wideHuman SNPArray 6.0/Cytoscan
using Nexus Biodiscovery.20 Structural variants (SV) were analyzed
using SMuFin and LUMPY.23,24 Sanger sequencing, conventional
cytogenetics, and fluorescence in situ hybridization (FISH) were
used to verify selected mutations and rearrangements (supple-
mental Tables 3-6). Telomere length was determined using
qMotif. Analysis of mutational signatures was performed as pre-
viously described.25-27 Driver genes were identified as previously
described,20 whereas GISTIC was used to select driver CNA.28 SV
were integrated in driver discovery analyses. Timing of driver
alterations was inferred from the clonality of each alteration as
described elsewhere.29

Immunoglobulin gene rearrangements
Immunoglobulin gene rearrangements and identity were ana-
lyzed fromWGS data using IgCaller31 (supplemental Table 7). The
primary IG/CCND1 translocation was characterized from WGS
data using a bespoke algorithm that mapped the breakpoints at
base pair resolution and searched for evidences of aberrant V(D)J
recombination (ie, recombination-activating gene [RAG] activity),
class switch recombination (CSR), and somatic hypermutation
(SHM) (supplemental Table 8).

Epigenetic and gene expression analyses
Infinium Methylation EPIC BeadChip was used to generate
DNA methylation profiles (n 5 70). The reference epigenome
including the analysis of 6 histone marks (H3K4me3, H3K4me1,
H3K27ac, H3K36me3, H3K9me3, and H3K27me3), chromatin
accessibility (ATAC-seq), and RNA-seq of 15 normal B cells and
5 MCL (2 cMCL, 3 nnMCL) were generated within the Blueprint
Consortium.32 In situ Hi-C data for the 5 MCL as well as naı̈ve
and memory B cell subpopulations were obtained from our
recent study.33 Gene expression profiling was performed using
Affymetrix U219 microarrays (n 5 44). cMCL and nnMCL gene
expression signatures were studied by the L-MCL16 assay
(NanoString Technologies).17

Statistical analyses
The log-rank test (categorical) and Cox regression (continuous)
were used to measure the association of the overall survival (OS)
with clinicobiological variables. P values were adjusted using the
Benjamini-Hochberg method.

Results
Whole-genome overview and active mutational
processes
We detected a median of 3593 (range, 1691-6597) somatic muta-
tions per case (1.2 mutations per megabase), including 33 (range,
13-56) coding mutations per tumor. MCL tumors carried a median
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of 9 (range, 1-56) SV and 9 (range, 0-37) CNA (supplemental Figures
1-3; supplemental Tables 9-11). Themutational burdenwas similar in
bothMCL subtypes, but cMCL carriedhigher number of SV (median,
13 vs 3; P, .001) and CNA (median, 12 vs 1; P, .001) than nnMCL
(supplemental Figures 1-3). A complex genomic landscape, defined
by the presence of$15 SV and/or$15CNA (mean values in cMCL),
was observed in 20 (45%) cMCL and 2 (12%) nnMCL (P 5 .018).

We identified 6 predominant signatures of mutational processes
operative in MCL: clock-like signatures 1 (SBS1) and 5 (SBS5)
present in all MCL; the noncanonical (SBS9) and canonical (SBS84)
activation-induced cytidine deaminase (AID) enriched in nnMCL,
with SBS84 predominantly associated with IG genes and active
promoters/enhancers; and 2APOBEC-related signatures (SBS2 and
SBS13) occurring in regions of kataegis, particularly those associ-
ated with SV and chromothripsis, and enriched in cMCL, which is in
line with their higher number of SV (supplemental Figures 4-7).

Genomic/epigenomic characterization of CCND1
rearrangement
CCND1 was rearranged with immunoglobulin (IG) genes (IG/
CCND1) in the 60 cases overexpressing cyclin D1, 59 cases with
IG heavy locus (IGH) and 1 with IG kappa locus (IGK) (Figure 1A;
supplemental Table 12). One cMCL was a cyclin D1-negative
MCL that overexpressed cyclin E1/E2.30 This unusual case had
MCL morphology and phenotype (CD201, CD51) with strong
expression of SOX11, and that were maintained in different
relapses. In 55 cases, the IG breaks had evidence of being
mediated by RAG enzymes during V(D)J recombination. As
expected,34 this pattern was seen in 40 of 43 (93%) cMCL derived
from naı̈ve-like B cells, but also in 15 of 17 (88%) memory-like
nnMCL. Intriguingly, the IG breaks in the remaining 5 cases (3
cMCL, 2 nnMCL) appeared to involve CSR in 3 cases and SHM in
2 cases (Figure 1A; supplemental Table 13).

In 44 of the 55 cases with RAG-mediated IG rearrangements,
the IG breaks occurred in IGHD and IGHJ genes, likely during
the initial IGHD–IGHJ recombination. We identified the RAG
recombination signal sequence (RSS) at the IGHD and IGHJ
breakpoints with the addition of 1 to 59 nontemplated nu-
cleotides (N-nucleotides) at both derivative junctions (Figure
1A-B). These N-nucleotide segments were longer than in
physiological V(D)J recombination of B cells, likely because of
the absence of selection to retain a limited length of the IGH
third complementarity-determining region required for a
functional B-cell receptor in these IGH/CCND1 rearrange-
ments. The IGHJ and IGHD genes involved in these translo-
cations were similar in cMCL and nnMCL and mainly related to
those used in physiological recombination of normal B cells
(supplemental Figure 8). The remaining 11 of 55 cases with
RAG rearrangements (RSS and N-nucleotides) included 3 cases
with breaks at canonical RSS of an IGHD and IGHV, suggesting
that the translocation occurred during the second step of the
V(D)J recombination; 3 cases with 1 of the breaks at an atypical
cryptic RSS distant from the near IGHD or IGHJ segments, or
missing a RSS potentially caused by exonucleolytic removal; 3
cases with complex rearrangements including small fragments
of chromosomes other than chromosome (chr)11/14; and 2
cases with unbalanced translocations in which the IGK locus or
virtually all 14q (TRAJ19-IGHD21 segment) were inserted
upstream or at the 39 untranslated region (UTR) of CCND1,
respectively (Figure 1A-C; supplemental Figure 9).

FiveMCLhad a t(11;14) with breakpoints in the IGHgene consistent
with the involvement of AID in CSR and SHM mechanisms and,
therefore, generated in a mature B cell probably during a follicular
germinal center reaction (Figure 1D-E; supplemental Figures 10 and
11). In 2 cases, the breakpoints were in the IGHM- and IGHG1-
defined CSR regions, respectively. In 1 case, the breakpoint was
between IGHG1 and IGHG3, but in the absence of N-nucleotides
and RSS sites and the presence of point mutations, CSR was the
most probable mechanism. In the last 2 cases, the mechanism
seems to have involved the SHM machinery, with breakpoints at
unusual sites of the IGHV/D/J genes. These translocations occurred
in already V(D)J-rearranged alleles, reinforcing the idea of being
acquired at a mature B-cell stage. The comparison of the per-
centage of cells carrying the translocation by FISH and the tumor
cell content detected by flow cytometry available in 4 cases was
relatively similar, suggesting that these translocations were clonal.
These 5 translocations seem to trigger a similar overexpression of
CCND1 as in conventional RAG rearrangements and do not confer
different clinical or biological features to the tumors (supplemental
Figure 12; supplemental Table 13).

We next analyzed the breakpoints on chr11. Nineteen translo-
cations (14 cMCL, 5 nnMCL) occurred at a small region of 89 bp
previously recognized as a major translocation cluster (MTC).
The remaining breakpoints were similarly scattered at both sides
of the MTC in cMCL and nnMCL, and their distribution was not
associated with IG k/l expression. As previously suggested,
most 59 and MTC breaks occurred near CpG sites and AID
motifs, whereas 39 breaks were only found near AID motifs
(Figure 2A; supplemental Figures 13 and 14).35,36

Next, we exploited the analysis of the reference epigenomes to
define the local chromatin features associated with the t(11;14)
(Figure 2B).33 The chr11 breakpoint was at the MTC locus in
2 cases, and 59 or 39 regions distant from the MTC in the other
3 cases. We observed that the MTC locus corresponds to an
open chromatin region (defined by ATAC-seq) with histone
marks of active regulatory elements (H3K4me1/H3K4me3/
H3K27ac) in the 5 MCL and also in normal naı̈ve and memory
B cells, but not in germinal center or plasma cells. As the t(11;14)
is mostly associated with the V(D)J rearrangement occurring at
precursor B-cell stage, we analyzed the chromatin of B-cell acute
lymphoblastic leukemias available through the Blueprint Con-
sortium as a surrogate of precursor B cells.32 We observed that
the MTC locus also corresponds to an enhancer region
(H3K4me1) in these cells (Figure 2B). Interestingly, breakpoints
occurring at the MTC lead to an extension of the existing en-
hancer/promoter marks of this locus, whereas 2 breakpoints
distant from the MTC seemed to generate novel active en-
hancer/promoters. This gain of regulatory marks in chr11
breakpoints is most likely caused by the fusion of these regions
with the active enhancer/promoter region of the IG (Figure 2C).
HiC-seq performed in tumor cells from these 5 MCL and normal
naı̈ve and memory B cells showed a reconfiguration of the 3-
dimensional (3D) chromatin structure of this region in all MCL as
compared with their normal counterparts. The chr11 breakpoints
overlapped with novel tumor-specific topologically associating
domain (TAD) borders. Of note, CCND1was always found at the
distal border of the TAD, confirming that these IG-novel chr11
promoter/enhancer regions contribute to dysregulate CCND1
by creating specific build blocks (Figure 2D; supplemental
Figure 15).
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Landscape of structural alterations in MCL subtypes
The WGS analysis allowed the precise characterization of the
multiple structural alterations in MCL. Complex alterations were
significantly more frequent in cMCL (52%) than nnMCL (18%;
P5 .02; Figure 3A). Chromothripsis events were clonal in all but
1 case, mainly involving chromosomes 1, 5, 10, 12, and 13 and
recurrently targeting RB1 in 4 (9%) cases and TERT in 2 (12%)

nnMCL (Figure 3B). Chromoplexia affected 14 different chro-
mosomes (chromosomes 2, 6, 12, and 19 in 2 cases each), with
TERT the only cancer gene affected in 1 case (Figure 3Ci).
Chromothripsis and chromoplexia occurred in both MCL sub-
types, but breakage-fusion-bridge (BFB) cycles, a novel and
frequent finding in MCL, was only observed in cMCL (20%).
BFB cycles generated recurrent high-level amplification of
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BMI1 (4 cases) and MIR17HG (2 cases), and were associated
with worse clinical outcome (Figure 3D). One cMCL presented
features of a replication-based mechanism of templated insertions
(Figure 3Cii).

Although chromosomal translocations and inversions were
relatively frequent in MCL, they were not recurrent and very
few were associated with known cancer genes. Two cMCL had
SV that truncated PAX5. One cMCL had a balanced 2p
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inversion that fused MYCN with IGK enhancer, leading to high
overexpression of the gene, and the patient had central nervous
system involvement.37 One cMCL carried an activatingMYC non-
IG rearrangement that remodeled the adjacent MYC regulatory
regions associated with PVT138 and hijacked distant enhancers in
chr8 (supplemental Figures 16-18).

We analyzed the presence of SV signatures and identified
3 patterns mainly related to the presence of clustered structural
alterations, high SV/CNA complexity, and small alterations with
low genomic complexity (supplemental Figure 19). Remarkably,
SV breaks were enriched in active promoters and enhancers and
in transcription elongation–associated chromatin regions, sug-
gesting that open/active chromatinmight facilitate SV formation,
and they may impact gene expression (Figure 3E).

The CNA detected by WGS confirmed the specific MCL profile
previously characterized by frequent losses of 1p22-p13, 6q,
9p21/CDKN2A, 9q22-q31, 11q22-q23/ATM, 13q14/RB1, 13q33-
q34, and 17p/TP53, and gains of 3q25-q29 and 7p. We also
identified novel recurrent losses at 10q21.1 and 15q14-q21.1 and
significant differences in the distribution of specific alterations in
cMCL (losses of 1p22-p13, 6q, 9q22-q31, 11q22-q23/ATM,
13q33-q34, and gains of 3q25-q29 and 7p) and nnMCL (loss of
17p/TP53) (Figure 3F; supplemental Figures 20 and 21).

MCL driver alterations
To discover genomic alterations involved in MCL lymphoma-
genesis we integrated mutations, CNA and SV combining the
results of the 61 WGS with the WES of 21 nonoverlapping cases
(supplemental Tables 14 and 15).11 The 82 cases encompassed
74% cMCL and 26% nnMCL. We identified 26 genes significantly
altered in the whole cohort, and 4 genes mutated at lower fre-
quency, but carrying knowndriver alterations (NOTCH1,NOTCH2,
TLR2, and PAX5). In addition, we identified 13 chromosomal re-
gions without a defined target gene significantly affected by CNA,
resulting in deletions in most cases (Figure 4A; supplemental
Figure 22; supplemental Tables 16-18). Overall, 81 of 82 (99%)
MCL cases had at least 1 driver alteration in addition to the t(11;14)
(median, 6; range, 0-14). Themost frequently altered genes have
been previously described in MCL and were ATM (48%),
CCND1 (44%) with exon1/intron1 somatic mutations (26%)
and/or 39 UTR activating alterations (21%), TP53 (26%), KMT2D
(23%), RB1 (23%), BIRC3 (22%), CDKN2A (21%), SP140 (13%),
NSD2 (12%), BMI1 (11%), MIR17HG (10%), and UBR5 (6%).
Furthermore, we identified 7 novel MCL driver genes altered
by missense or truncating mutations and deletions, including
CDKN1B (12%), SAMHD1 (10%), BCOR (9%), SYNE1 (6%),
HNRNPH1 (6%), SMARCB1 (4%), andDAZAP1 (4%) (Figure 4A).
The integration of WGS, gene expression and FISH analysis
identified the relevance of TERT in MCL (15%) affected by
promoter mutations (3 cases), gain/amplification (6 cases), and
translocations (3 cases) with high TERT overexpression without
an apparent impact on telomere length (supplemental Fig-
ure 23). However, cases with ATM alterations had significant
shorter telomeres (supplemental Figure 24). No other recurrent
mutations in expressed or regulatory noncoding regions were
found. We identified a significant co-occurrence of several
alterations such as ATM with 110p12/BMI1 or 18q24/MYC
with 213q14/RB1, and recognized early driver events including
ATM/11q alterations and217p, or late events including18q24/
MYC and BIRC3 mutations, among others (supplemental

Figure 25; supplemental Table 19). Collectively, 8 main path-
ways were frequently altered in MCL including proliferation, cell
survival, DNA damage response (DDR), telomere maintenance,
chromatin remodeling, B-cell receptor/Toll-like receptor/NF-kB
signaling, NOTCH signaling, and RNA regulation (Figure 4A).

We also searched whether the MCL drivers described in this
study and additional known cancer predisposing genes39,40 were
recurrently mutated in the germline of the patients; we found 7
cases with ATM and 2 with CHEK2 mutations (supplemental
Table 20). In 2 cases with germline ATMmutation, the wild-type
allele was lost in the tumor. The 2 CHEK2 mutations had been
previously recognized as pathogenic in cancer.41-43

Finally, most MCL drivers were found to be preferentially altered
in cMCL cases, with the unique exception of SHM in CCND1
mainly found in nnMCL (Figure 4B). Of note, ATM alterations
(64%); deletions of 1p, 10p, and 19p; and gain of 7p were ex-
clusively seen in cMCL, whereas TP53 and TERT alterations were
the only drivers slightly enriched in nnMCL, with all 5 cases with
TERT alterations carrying concomitant TP53 aberrations (Figure
4A-B). Altogether, cMCL cases had a significant higher number of
driver alterations than nnMCL (median, 7 vs 2; P , .001).

DNA methylome of MCL subtypes and interplay
with genomic alterations
We next studied the DNA methylome of MCL and its relationship
with driver genetic alterations. We previously classified MCL cases
into 2 clusters (C1 and C2) on the basis of DNAmethylation imprints
of their postulated cell of origin, ie, pregerminal and postgerminal
centerB cells, respectively.16We found that cMCLandnnMCLwidely
overlapped with C1 and C2 epigenetic subgroups, respectively (P,
.001; Figure 5A). A principal component analysis showed that the
main source of DNAmethylation variability is related to theMCL cell
of origin, and consequently is associated with its clinicobiological
features, such as IGHV identity, total number of driver alterations, and
ATM or CCND1 mutations in cMCL and nnMCL, respectively
(Figure 5B; supplemental Figure 26). We have previously observed
that an additional source of DNAmethylation variability amongMCL
was the accumulation of DNA methylation changes in the tumors,
which, in addition, was related to clinical outcome.16 The majority of
these changes were located at transcriptionally silenced regions,
particularly at low signal heterochromatin and H3K27me3 for
hypomethylation and hypermethylation, respectively.16 Mounting
lines of evidence indicate that theseDNAmethylation changes do
not play a regulatory role, but instead seem to gradually accu-
mulate during rounds of cell divisions.44-50 Based on this principle,
we have recently built a DNA methylation-based mitotic clock
called epiCMIT (epigenetically determined cumulative mitoses),
which reflects the proliferative history of B-cell tumor samples
(supplemental Methods).51 Interestingly, in the present MCL
cohort, the second main source of DNA methylation variability
after the cell of origin was related to this epiCMIT score
(Figure 5B). As expected, the epiCMIT correlated with muta-
tional signatures related to cell division (SBS1, SBS5, and SBS9)
and Ki67-index (Figure 5C; supplemental Figure 26).

We next explored whether the proliferative history (epiCMIT) was
related to genetic changes. Indeed, we observed a significant
association between the epiCMIT and the number of driver al-
terations and CNA burden (Figure 5D; supplemental Figure 26). At
a single driver level, 9 genetic alterations were associated with
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higher proliferation histories of MCL samples, which were related
to pathways linked to proliferation, survival, and DDR such
as 18q24/MYC, 29p21/CDKN2A, and TP53 alterations. In-
terestingly, MCL carrying mutations in HNRNPH1 and MEF2B
were associated with significantly higher and lower proliferation his-
tories of MCL cells, respectively (Figure 5E; supplemental Figure 27).

Clinical implications
Finally, we analyzed the clinical relevance of the previous
findings in 57 cases, excluding patients managed with palliative
measures or studied at relapse. The main parameters associated
with shorter OS were high lactate dehydrogenase and MCL
International Prognostic Index (both with P 5 .002) and cMCL
molecular subtype (P 5 .02). In addition, TP53 alterations,

29p21/CDKN2A,213q14/RB1, and29q222q31 impaired theOS
of the patients. Interestingly, 5 novel drivers were also associated
with significant shorter OS (215q142q21, 18q24/MYC, SP140,
118q21-q22, and 213q33-q34); Q , 0.1; Figure 6A).

Next, we assessed the potential clinical relevance of the genomic
complexity and epigenetic changes. The total number of CNA,
number of SV, presence of BFB, chromothripsis, and the epiCMIT,

but not the number of driver mutations, were associated with
shorter OS (Q , 0.05; Figure 6B). TP53 and MYC alterations had
prognostic value for OS independently of the total number of
CNA (Q , 0.05; Figure 6A). Of note, the number of CNA,

presence of BFB, and epiCMIT retained independent prognostic
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value for OS in a multivariate analysis (P , .05), and stratified
patients with distinct clinical outcomes (Figure 6C).

Discussion
In this study we have provided a comprehensive characterization
of the molecular development and progression of MCL. The
primary CCND1 rearrangement is mediated by the same mech-
anisms in cMCL and nnMCL, but these subtypes differ in their
epigeneticmakeup, subsequent driver composition, andgenomic
complexity that influence their different clinical behavior.

The t(11;14) in both cMCLandnnMCLoriginates in precursor B cells
mediated by RAG activity, even though the tumor cell expansion
will arise in a pregerminal or postgerminal center cell, respectively,
as supported by the different DNA methylation signatures related
to naı̈ve and memory-like B cells. The mechanism of diversification
of these MCL subtypes may be determined in part by SOX11
overexpression in cMCL, as previously described.5 In this com-
prehensive study, we have not identified any genetic alteration
leading to SOX11 overexpression, emphasizing the relevance of its
epigenetic dysregulation.16 Intriguingly, the origin of the t(11;14) in
8% of the cases, including both cMCL and nnMCL, seems to occur
in a mature B cell mediated by SHM/CSR mechanisms without
apparent clinical or biological differences. This situationparallels the
inverse findings in most cases of multiple myeloma, in which the
t(11;14) occurs in a mature B cell mediated by AID/CSR, but it may
also arise in a precursor B cell in a minority of tumors.52 These
findings suggest that the development of these different lymphoid
and plasma cell neoplasms is independent of the B-cell differen-
tiation stage in which the initial oncogenic event occurs. Our in-
tegrative (epi)genomic analysis also suggests that the open and
active chromatin structure of the MTC region may allow the access
of AID tomediate theDNAbreaks and subsequent translocation,53-56

and shows that a 3D chromatin reconfiguration of the CCND1 locus
upon the translocation favors CCND1 overexpression.

We have identified novel driver genes involved in different
mechanisms relevant for MCL pathogenesis such as cell cycle
(CDKN1B), DNA replication andDDR (SAMHD1),57 RNAprocessing
(HNRNPH1),58 or chromatin modification (SMARCB1).59 The more
aggressive behavior of cMCL is associated with higher number of
drivers, particularly CNA, compared with nnMCL. Interestingly,
ATM alteration seems a specific and early event driving cMCL (64%
of cases) that may even occur in the germline of some patients. The
inactivation of this element may promote the shortening of telo-
meres, facilitating the development of the frequent structural ge-
nomic complexity of these tumors.37 On the contrary, nnMCL have
very few driver alterations, with only TERT and TP53 slightly more
enriched in this subgroup. The high genomic complexity in a small
subset of nnMCL carrying these 2 alterations suggests that theymay
be an alternative mechanism facilitating tumor progression.

The WGS of this cohort shows the complex genomic landscape
of MCL at unprecedented high resolution and uncovers novel
mechanisms of oncogenic activation including BFB cycles am-
plifying BMI1 andMIR17HG,60,61 or inversions and translocations
reorganizing regulatory regions (NMYC, MYC, TERT).62 Indeed,
this genomic complexity emerges as one of the most relevant
parameters determining the patient outcome, and is associated
with increasing DNA methylation changes previously related to
cell division.44-50 Our epiCMIT score captures these changes and

correlates with higher proliferation, and specific genetic alterations
such as 29p21 (CDKN2A), TP53, MYC, or the newly identified
HNRNPH1, which collectively suggests that these alterations
may provide to MCL cells a higher proliferative capacity.

Several individual drivers have prognostic value. However, their
impact is mainly because of their association with the global
genomic complexity captured by the number of CNA.Only TP53
and MYC alterations add prognostic information to CNA, rein-
forcing the prognostic relevance of these individual alterations
observed in previous studies.17,63-66 Interestingly, the epiCMIT
score also has independent prognostic value, indicating that the
complex evolution of MCL may be better recognized by the
integration of genomic and epigenomic parameters.

In conclusion, the integration of whole-genome and epigenomic
analyses of MCL reveals the complexity and relationship of these
alterations that determine the different evolution of the 2 MCL sub-
types and define subsets of patients with marked distinct outcomes.
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decreased protein expression and infrequent
genetic alterations mainly occur in aggressive
types of non-Hodgkin lymphomas. Blood.
2002;100(13):4602-4608.

42. Nones K, Johnson J, Newell F, et al; Brisbane
Breast Bank (BBB). Whole-genome sequenc-
ing reveals clinically relevant insights into the
aetiology of familial breast cancers. Ann
Oncol. 2019;30(7):1071-1079.

43. Petridis C, Arora I, Shah V, et al. Frequency of
pathogenic germline variants in BRCA1,
BRCA2, PALB2, CHEK2 and TP53 in ductal
carcinoma in situ diagnosed in women under the
ageof 50 years.BreastCancer Res. 2019;21(1):58.

44. Aran D, Toperoff G, Rosenberg M, Hellman
A. Replication timing-related and gene
body-specific methylation of active human
genes. Hum Mol Genet. 2011;20(4):670-680.

45. Beerman I, Bock C, Garrison BS, et al.
Proliferation-dependent alterations of the
DNA methylation landscape underlie hema-
topoietic stem cell aging. Cell Stem Cell.
2013;12(4):413-425.

46. Landan G, Cohen NM, Mukamel Z, et al.
Epigenetic polymorphism and the stochastic
formation of differentially methylated regions
in normal and cancerous tissues. Nat Genet.
2012;44(11):1207-1214.

47. Siegmund KD, Marjoram P, Woo Y-J, Tavaré
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