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KEY PO INT S

l IV arginine therapy
increases
mitochondrial activity
and decreases
oxidative stress in
children with SCD and
vaso-occlusive pain.

l A dose-dependent
impact of arginine
therapy on
mitochondrial function
is a novel mechanism
of action not
previously described
in SCD.

Altered mitochondrial function occurs in sickle cell disease (SCD), due in part to low nitric
oxide (NO) bioavailability. Arginine, the substrate for NO production, becomes acutely
deficient in SCD patients with vaso-occlusive pain episodes (VOE). To determine if arginine
improves mitochondrial function, 12 children with SCD-VOE (13.6 6 3 years; 67% male;
75% hemoglobin-SS) were randomized to 1 of 3 arginine doses: (1) 100 mg/kg IV 3 times/
day (TID); (2) loading dose (200 mg/kg) then 100 mg/kg TID; or (3) loading dose
(200 mg/kg) followed by continuous infusion (300 mg/kg per day) until discharge. Platelet-
rich plasma mitochondrial activity, protein expression, and protein-carbonyls were mea-
sured from emergency department (ED) presentation vs discharge. All VOE subjects at
ED presentation had significantly decreased complex-V activity compared to a steady-
state cohort. Notably, complex-V activity was increased at discharge in subjects from all
3 arginine-dosing schemes; greatest increase occurred with a loading dose (P < .001).
Although complex-IV and citrate synthase activities were similar in VOE platelets vs steady
state, enzyme activities were significantly increased in VOE subjects after arginine-loading
dose treatment. Arginine also decreased protein-carbonyl levels across all treatment doses

(P < .01), suggesting a decrease in oxidative stress. Arginine therapy increases mitochondrial activity and reduces
oxidative stress in childrenwith SCD/VOE. This trial was registered atwww.clinicaltrials.gov as #NCT02536170. (Blood.
2020;136(12):1402-1406)

Introduction
Pain is the hallmark of sickle cell disease (SCD), with vaso-
occlusive pain episodes (VOE) being the leading cause of
emergency department (ED) visits and hospitalizations.1,2 There
are currently no standard-of-care therapies that specifically
target underlying mechanisms of acute VOE in the ED or during
hospitalization, with symptomatic interventions limited to
analgesia and hydration.3-5 Nitric oxide (NO), enzymatically
produced from its obligate substrate L-arginine, is a potent
vasodilator and exerts multiple effects on vascular and circu-
lating blood cells, including the inhibition of platelet aggrega-
tion, downregulation of adhesion molecules, and modulation of
ischemia-reperfusion injury, which are all pathways adversely
affected during VOE.6

SCD is an “arginine deficiency syndrome”6-10 associated with
early mortality11,12 in addition to pain.13,14 Increased arginase
activity from both inflammatory triggers and more significantly
from erythrocyte-arginase release during hemolysis,11 leads to
low arginine bioavailability. Although mechanisms of arginine
dysregulation are complex and multifactorial,6,7,9 they can be

overcome through arginine supplementation, a phenomenon
known as the “arginine paradox.”15 In transgenic mouse models
of SCD, arginine supplementation inhibits the red cell Gardos
channels, reduces red cell density,16 improves perfusion, and re-
duces lung injury, microvascular vaso-occlusion, and mortality.17-20

We and others have found that SCD patients admitted with
VOE have acutely depleted L-arginine and NO levels13,14 that
correlate to pain severity.13,14 We have also demonstrated that
L-arginine therapy increases NO metabolites in children with
SCD hospitalized with VOE in a dose-dependent manner.21

Additionally, arginine therapy (100 mg/kg per dose) given
3 times a day (TID) for 5 days reduced opioid use by.54% and
was associated with lower pain scores at discharge compared
with placebo in a randomized, double-blinded, placebo-controlled
trial (RCT) in children with SCD/VOE requiring hospitalization.22

Mechanisms remain unclear, but may be due in part to stimulation
of NO production.

Shiva and colleagues have reported altered mitochondrial
function in platelets of SCD patients compared with healthy
controls.23 Platelets from SCD patients show decreased
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mitochondrial complex-V activity, which potentiates mitochon-
drial membrane potential, leading to increased oxidant pro-
duction from the electron transport chain. This dysfunction is
propagated by hemolysis and causes platelet activation as
demonstrated by in vitro studies. Consistent with this, platelet
mitochondrial dysfunction correlates with platelet activation
and hemolysis in vivo.23

Both arginine and NO have a mechanistic impact on mito-
chondrial function. Promising reports of IV and oral arginine use
for complications of mitochondrial encephalomyopathy, lactic
acidosis and stroke-like episodes have been described.24,25

Physiological levels of NO can inhibit mitochondrial respiration
at complex IV; however, this is fully reversible once NO bio-
availability diminishes.26,27 NO-derived species can also re-
versibly modify complex-I by S-nitrosation, which has been
shown to attenuate mitochondrial oxidant production.28,29

Additionally, NO can also increase mitochondrial function
through the stimulation of biogenesis.30 Enhancement of
biogenesis and attenuation of oxidant production may be
beneficial in platelets of SCD patients. We therefore hypothe-
sized that arginine therapy may improve mitochondrial function
during SCD/VOE.

Study design
This is a single-center, prospective, randomized, open-label
intervention study of children with SCD on hydroxyurea, hos-
pitalized for VOE and requiring parenteral opioids, designed to
explore the impact of arginine therapy on mitochondrial func-
tion. Children with a diagnosis of SCD (homozygous hemoglobin
S [HbSS] or Sb0-thalassemia) age 3 to 21 years with VOE re-
quiring parenteral opioids and hospital admission were recruited
from the ED and inpatient wards as a convenience sample during
times when the principal investigator/coinvestigators and a
study coordinator were on-site and available to consent, a legal
guardian was present, and the research pharmacist was available
to perform the randomization. Patients were consented within
24 hours of receiving their first dose of parenteral opioids in the ED.

Subjects were randomized to treatment using 1 of 3 dosing
schemes of IV L-arginine therapy: (1) 100 mg/kg TID (n 5 4); (2)
loading dose (200 mg/kg) then 100 mg/kg TID (n 5 4); or (3)
loading dose (200 mg/kg) followed by continuous infusion
(300 mg/kg per day, n 5 4). Arginine therapy was administered
until hospital discharge or for a maximum of 7 days for subjects
with prolonged hospital stays, whichever came first. Block ran-
domization was performed by the research pharmacist. Ex-
clusion criteria included hepatic/renal insufficiency, acidosis,
hemoglobin ,5 g/dL or immediate need for emergent erythro-
cyte transfusion, previous randomization into this study, pregnancy,
mental status changes/concern for stroke, or known arginine
allergy. A Children’s Healthcare of Atlanta clinical practice
guideline for VOE based on the 2014 National Heart, Lung,
and Blood Institute guidelines5 was followed in the ED and
during hospitalization.

Platelet-rich plasma was isolated and stored from blood samples
obtained at VOE-baseline (day of ED presentation for pain) and
on the day of hospital discharge for each subject. Mitochondrial
activity (complex IV: site of oxygen consumption; complex V: site
of ATP production; citrate synthase: matrix protein) and protein

carbonyls and malondialdehyde (biomarkers of protein and lipid
oxidation, respectively) were measured spectrophotometrically
as previously described23; mitochondrial DNA was measured
as previously described31 and compared across the 3 arginine
dosing schemes. The study protocol was approved by the Emory
University institutional review board and University of Pittsburgh
Institutional Review Board for steady-state subjects; written in-
formed consent was obtained for all patients enrolled, and as-
sent was obtained from all children age$7 years. The study was
under an active Investigational New Drug #66943 issued by the
US Food and Drug Administration, held by the sponsor: Claudia
R. Morris. Significance was tested by 1- or 2-way analysis of variance
as appropriate and significance was noted when P , .05.

Results and discussion
Twelve children with SCD, mean age of 13.6 6 3 years, 67%
male, 75% HbSS, were randomized into this study. There were
no unexpected adverse events or serious adverse events related
to study drug.

Comparedwith a cohort of SCDpatients in steady state23 (23.116
3 years, 56% male, 100% HbSS; 80% on hydroxyurea), all VOE
subjects’ platelets had significantly decreased complex V activity
(Figure 1A), but no change in complex IV (Figure 1B) and citrate
synthase activity (data not shown). Notably, complex V activity
was increased at discharge in subjects with VOE treated with
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Figure 1. Differences in mitochondrial activity in patients with sickle cell disease
at steady state compared to patients experiencing acute pain. (A) Complex V and
(B) complex IV activity in patients with sickle cell disease at steady-state (SS, no pain)
comparedwith patients experiencing amoderate-to-severe VOE on the day of an ED
visit. Compared with a cohort of SCD patients in SS, all VOE subjects had significantly
decreased complex V activity; however, complex IV activities were similar in SS
platelets vs VOE.
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arginine in all 3 dosing schemes (Figure 2A; P , .001). The
activities of complex IV and citrate synthase were also sig-
nificantly increased in VOE subjects after arginine treatment
when using a loading dose (Figure 2A-C; P , .01). A signifi-
cantly greater increase in complex IV and complex V activities,
but not citrate synthase, was noted with the use of a loading

dose (supplemental Figure 1, available on the Blood Web
site). These changes are likely not due to increased mito-
chondrial number because quantification of mitochondrial DNA
before and after arginine treatment was not different (Figure
2D). Arginine therapy also significantly decreased levels of
protein carbonyls (Figure 2E; P , .01) and malondialdehyde
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Figure 2. Impact of parenteral arginine therapy on mitochondrial activity and biomarkers of oxidative stress in children with sickle cell disease during acute vaso-
occlusive pain episodes at admission compared to discharge. (A) Enzymatic activities of complex V, (B) complex IV, and (C) citrate synthase in platelet-rich plasma on the day
of ED presentation for pain (VOE-baseline) compared with the day of hospital discharge (discharge) across 3 IV arginine dosing schemes: 100 mg/kg per dose TID vs a loading
dose (200 mg/kg) followed by 10 0mg/kg per dose TID (loading1 TID) vs a loading dose followed by a continuous infusion (300 mg/kg per day) (loading1CI). (D) Mitochondrial
DNA, (E) protein carbonyl levels, and (F) malondialdehyde (MDA) levels across 3 arginine dosing schemes at VOE-Baseline compared with Discharge. Notably, complex-V
activity, low at VOE-baseline compared with steady-state, was increased at discharge in subjects with VOE treated with arginine across all 3 dosing schemes, with greatest
increase notedwhen using a loading dose (P, .001). Although complex IV and citrate synthase activities were not changed in VOE platelets vs steady state, the activities of these
enzymes were significantly increased in VOE subjects after arginine treatment when using a loading dose (P , .01). These changes are not due to increased mitochondrial
number because quantification of mitochondrial DNA before and after IV arginine was not different. Arginine therapy also significantly decrease levels of protein carbonyls and
malondialdehyde in platelet-rich plasma across all treatment doses (P , .01), suggesting a decrease in oxidative stress. All panels show n 5 4 subjects for each treatment arm.
(A) There is substantial overlap between 2 subjects in both the TID and load 1 TID arms.
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(Figure 2F; P, .01) in platelet-rich plasma across all treatment
arms, suggesting a decrease in oxidative stress.

Limitations
Although this study is limited by a small sample size per study
arm, improvements in all indices of mitochondrial function are
dramatic and statistically significant. Lack of a control arm is
another limitation; it is possible that abnormal mitochondrial
function and oxidative stress during VOE may improve as the
pain event resolves. However, the substantial differences noted
in the 2 arginine arms that received a loading dose compared
with those treated with the standard dose suggests a dose-
dependent response of arginine on mitochondrial function
beyond simply VOE resolution. Future studies will also monitor
platelet activation to determine whether arginine-dependent
modulation of platelet number or thrombotic activation con-
tributes to the mitochondrial alterations observed here.

Conclusions
These data demonstrate for the first time that arginine therapy
increases mitochondrial activity and decreases oxidative stress
in children with SCD/VOE. Our prior study demonstrated that
in SCD patients, inhibited complex V activity leads to increased
oxidant production.23 Thus, enhanced complex V activity may
decrease mitochondrial oxidant production, attenuating platelet
activation and generalized oxidative damage. Oxidative stress,
which propagates inflammation and neuronal excitability, has
been closely associated with pain in SCD.32,33 Hence, this novel
mechanism of action may contribute to the opioid-sparing effect
and decreased pain reported after IV arginine therapy during
VOE in our phase 2 RCT that used the standard dose22; a loading
dose may enhance benefits. In addition to decreased oxidants,
increases in both complex-IV and complex-V activity could be
indicative of enhanced capacity for oxidative phosphorylation,
yielding more ATP for cellular regenerative processes. However,
more in-depth study is required to test these speculations.
Notably, the results presented here may have implications for
mitochondrial function in cell types beyond platelets, includ-
ing erythrocytes, which aberrantly retain mitochondria in SCD
patients.34 Erythrocytic mitochondria contribute to hemolysis
in SCD through their significant rate of oxidant production,
whereas mitophagic drugs decrease erythrocytic mitochondria
and attenuate hemolysis and organ damage in SCD murine
models.34 Although the effect of arginine on mitophagy is
currently unclear, it is plausible that arginine is used to generate
NO within the erythrocytes, which contain endothelial nitric
oxide synthase,35 to decrease mitochondrial oxidants. Future
study will focus more specifically on the NO-dependent and
independent mechanisms by which arginine regulates mito-
chondrial function/number.

Platelet mitochondrial function is determined by a simple blood
test and may serve as an objective biological outcome measure
for future clinical trials. A Pediatric Emergency Care Applied
Research Network-endorsed, phase 3, placebo-controlled
multicenter RCT of arginine therapy is being planned and
will use a loading dose of IV arginine based on these results.
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