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Vitamin C serves as a cofactor for Fe(II) and 2-oxoglutarate–dependent dioxygenases including TET family enzymes,
which catalyze the oxidation of 5-methylcytosine into 5-hydroxymethylcytosine and further oxidize methylcytosines.
Loss-of-function mutations in epigenetic regulators such as TET genes are prevalent in hematopoietic malignancies.
Vitamin C deficiency is frequently observed in cancer patients. In this review, we discuss the role of vitamin C and TET
proteins in cancer, with a focus on hematopoietic malignancies, T regulatory cells, and other immune system cells.
(Blood. 2020;136(12):1394-1401)

Introduction
Vitamin C is an essential dietary supplement for humans.1-4 Al-
though plants and other organisms use several pathways for
synthesis of vitamin C from monosaccharides including man-
nose, fructose, and galactose, most vertebrates and mammals
synthesize vitamin C primarily from glucose, through a pathway
whose final step is catalyzed by the enzyme L-gulonolactone
oxidase (GULO; Figure 1). Humans and higher primates lack a
functional form of GULO, and hence vitamin C must be supplied
through the diet. Vitamin C deficiency results in scurvy (scor-
butus), a disease characterized by bleeding gums and poor
wound healing, which was once common in sailors at sea whose
diet was lacking in fresh fruits (especially citrus fruits) and veg-
etables. In the most recent National Health and Nutritional
Examination Survey,5 fully 7% of the US population was found to
be vitamin C deficient, with serum vitamin C concentrations
approaching scorbutic levels (,11.4 mM). In contrast, in healthy
adults ingesting adequate amounts of vitamin C a day, plasma
levels of vitamin C ranged between 50 and 80 mM.1-5 There was
no correlation of vitamin C deficiency with increasing age, be-
cause the highest serum vitamin C concentrations were found in
children (6-11 years), followed by older individuals (.60 years), a
metric that may correlate with taking supplemental vitamins.5

The implications of these estimates for clonal hematopoiesis and
cancer susceptibility are considered below.

Vitamin C can exist in both reduced and oxidized forms.1-4 The
reduced form of vitamin C is called ascorbic acid (ascorbate); this
name originated from Latin with the meaning of “without scurvy.”
Ascorbate enters the cells mainly through sodium-dependent vi-
tamin C transporters (SVCTs, encoded by Slc23a1 and Slc23a2;
Slc23a1 is not expressed in hematopoietic cells).4 The oxidized
form of ascorbate, dehydroascorbic acid (DHA), enters cells
through facilitated glucose transporters (Glut1, 3, and 4) that
primarily transport glucose and are not specific for transporting
DHA (Figure 1). Ascorbate is present in the plasma of healthy

humans atmuch higher concentrations thanDHA; it is taken up and
concentrated by cells, so that intracellular ascorbate concentra-
tions are in the millimolar range.1 In patients with hematologic
malignancies and other cancers, however, plasma ascorbate levels
tend to be exceedingly low,4,6-9 potentially because of decreased
gut absorption.

Among its other biochemical functions,2,3 vitamin C facilitates
the activity of Fe(II) (reduced iron, Fe21) and 2-oxoglutarate
(2OG)-dependent dioxygenases, whose catalytic activity re-
quires the presence of reduced iron at the active site.10,11 The
requirement of these enzymes for ascorbate is not strict,11 and
ascorbate is rarely needed in the first cycles of catalysis in vitro12;
rather, it appears to counter various side reactions that result in
irreversible oxidation of iron, thus promoting reductive re-
generation of Fe(II) at the enzymatic active site.3 The prototypical
member of the Fe(II)-2OG–dependent dioxygenase family is
collagen proly-4-hydroxylase10,11; decreased function of this
enzyme because of vitamin C deficiency leads to incomplete
hydroxylation of proline residues in collagen and the consequent
development of scurvy.1-4 Vitamin C also potentiates the ac-
tivities of several Fe(II)-2OG–dependent dioxygenases involved
in gene transcription and epigenetic regulation, including his-
tone demethylases that contain Jumonji C (JmjC) domains
(members of the JHDM1, 2, and 3 families) and members of the
TET family of 5-methylcytosine (5mC) oxidases.3,4,10,11 TET en-
zymes catalyze the sequential oxidation of 5mC in DNA to
5-hydroxymethylcytosine (5hmC)12-14 and the further oxidation
products 5-formylcytosine and 5-carboxylcytosine15,16; these
oxidized methylcytosines are well established as essential in-
termediates in DNA demethylation12-20 (Figure 2A).

Several studies have shown that vitamin C promotes DNA
demethylation by increasing TET-mediated oxidation of 5mC.21-24

The addition of vitamin C, but not other antioxidants, to cultures of
mouse embryonic stem (ES) cells resulted in a rapid and global
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increase in 5hmC, which was not observed in ES cells lacking Tet1
and Tet221,23; the increase in 5hmC was followed by DNA deme-
thylation at germline gene promoters.21 Addition of vitamin C to
mouse fibroblasts increased 5hmC generation in a dose- and time-

dependent manner.22 Similarly, addition of vitamin C to cultures of
differentiating mouse and human regulatory T cells (Treg cells)
maintained global 5hmC levels during differentiation without al-
tering TET mRNA levels and promoted DNA demethylation at
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Figure 1. Vitamin C biosynthesis pathway and transportation in animals. Vitamin C is synthesized from D-glucose in most mammals. Through multiple enzymatic reactions,
D-glucose is first oxidized to D-glucuronate, which is then reduced to L-gluconate and further into L-gulonolactone. In the final step, the enzyme GULO oxidizes L-gulonolactone
to 2-keto-L-gulonolactone, which is then spontaneously converted into vitamin C (ascorbic acid). Humans, higher primates, guinea pigs, and fruit bats lack a functional form of
GULO and therefore require dietary supplement. The reduced form of vitamin C, ascorbic acid, is transported into the cells through SVCT1/2 (sodium-dependent vitamin C
transporters, encoded by Slc23a1 and Slc23a2), whereas its oxidized form, DHA, is transported into the cells through GLUT1/3/4 (glucose transporters). Slc23a1 is not expressed
in hematopoietic cells; Slc23a2 is expressed at higher levels in HSPCs and multipotent progenitor cells compared with other, more committed hematopoietic progenitors and
differentiated cell types.
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critical regulatory regions of Treg-specific genes; demethylation
was not observed in mouse Treg cells lacking Tet2 and Tet3, in-
dicating that vitamin C acted through TET proteins to achieve
enhanced demethylation.24 Vitamin C interacted directly with the
catalytic domain of Tet2, as shown by the ability of vitamin C to
quench the intrinsic fluorescence of recombinant Tet2 catalytic
domain.23

In this article, we discuss the potential roles of vitamin C and TET
proteins in cancer, with a focus on hematopoietic malignancies.
For related reviews please see references 3, 4, 19, and 20. In the
context of immune responses to cancer, we also briefly discuss
the importance of TET enzymes and vitamin C in regulating
immune function.

TET enzymes and vitamin C in
leukemogenesis
Loss-of-function mutations in TET genes, especially TET2, are
prevalent in hematopoietic malignancies.25-28 Two studies have

illustrated the connections between vitamin C and TET function
in leukemia progression.29,30 The first study29 reported that ex-
pression of the vitamin C transporter gene Slc23a2, as well as the
levels of vitamin C itself, were high in hematopoietic stem/
precursor cells (HSPCs) and multipotent progenitor cells (MPPs)
compared with other more committed hematopoietic progen-
itors and differentiated cell types. Like Tet2-deficient mice,31

vitamin C-depleted Gulo2/2 mice had increased HSPC fre-
quencies, higher levels of lineage reconstitution capacity in
competitive transplantation assays, and reduced levels of
5hmC.29 In humans, TET2 mutations cooperate with FLT3ITD

mutations to induce acute myeloid leukemia (AML). Strikingly,
vitamin C depletion accelerated the development of AML from
Flt3ITD Tet21/2 and Flt3ITD Tet22/2 cells, and this phenomenon
was reversed by dietary repletion of vitamin C.29 The second
study30 used a short hairpin RNA transgenic mouse to reversibly
knock down and restore endogenous Tet2 expression. Loss of
Tet2 resulted in an aberrant increase in self-renewal of hema-
topoietic stem/precursor cells (HSPCs), associated with in-
creased DNA methylation, aberrant differentiation toward the
myeloid lineage, and increased cell death. Restoration of Tet2
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Figure 2. Vitamin C functions as a cofactor for TET
family dioxygenases. (A) TET family dioxygenases use
2-oxoglutarate, reduced iron (Fe21), and oxygen to
oxidize 5mC into 5hmC, with CO2 and succinate as
byproducts. Vitamin C functions as a cofactor for TET
enzymes by facilitating the reduction of Fe31 back
to Fe21. (B) Summary of the effects of TET deficiency
in tumor-infiltrating immune cells, including tumor-
associated macrophages, CD81 T cells, and Treg
cells. (C) iTregs differentiated in the presence of
transforming growth factor b (TGFb), retinoic acid (RA),
and vitamin C have enhanced TET activity, which results
in DNA demethylation at Foxp3 CNS2 region and in-
creased iTreg stability.
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reversed these phenomena, and treatment with vitamin C
pharmacologically mimicked the effects of Tet2 restoration in
HSPCs and blocked the progression of myeloid disease. The
effects of vitamin C were TET dependent because they dis-
appeared when both Tet2 and Tet3 were absent. In human AML
cells, vitamin C increased TET activity and induced DNA
demethylation; gene set enrichment analysis showed that vita-
min C-induced genes were enriched in genes upregulated on
Tet2 restoration. Furthermore, vitamin C treatment increased the
sensitivity to polyADP ribose polymerase (PARP) inhibition in a
panel of human myeloid leukemia cells, leading the authors to
conclude that vitamin C treatment, alone or combined with
PARP inhibitors, could be novel therapeutic strategies for pa-
tients with hematologic cancers.30

In light of these findings, it would be interesting to examine the
role of vitamin C deficiency in the development of clonal he-
matopoiesis (CH).32-35 The predominant mutations in CH involve
loss-of-function mutations in DNMT3A, TET2, and ASXL1, the
regulatory component of the ASXL1-BAP1 histone H2A deub-
quitinase complex.36 Vitamin C deficiency inGulo-deficient mice
is associated with increased numbers of HSPCs,29 but whether
vitamin C deficiency contributes to CH in humans by decreasing
TET activity in HSPCs has not been formally tested. Recent
findings indicate an unexpected link between CH and cardio-
vascular disease,37 and experiments in mouse models of
hypercholesteremia suggest that expanded myeloid cells in
Tet2-deficient mice are the source of high levels of inflammatory
mediators (interleukin-1b, interleukin-6), which are almost in-
variably observed in the blood of persons with CH.38,39 It would
be useful to investigate whether certain cases of CH, especially
those without the 2 major CH-associated mutations (DNMT3A
and TET2), are linked to low plasma levels of vitamin C. Indeed,
in the European Prospective Investigation into Cancer (EPIC)-
Norfolk study involving almost 20 000 individuals, low plasma
vitamin C levels were associated with an overall increased risk of
mortality from all causes, including cardiovascular disease, is-
chemic heart disease, and cancer.40 This finding may stimulate
future clinical trials of high-dose vitamin C supplementation,
whether oral or intravenous (see below), in individuals with CH,
with the hope of diminishing the risks of malignant progression
and cardiovascular disease.

Vitamin C deficiency in cancer and the
debate over supplementation with
vitamin C
Cancer patients are significantly depleted of plasma vitamin C
compared with healthy individuals,4,6-9 but the jury is still out on
whether vitamin C deficiency is directly responsible for, or
merely correlates with, an increased risk of malignancy. Because
TET deficiencies, TET loss-of-function mutations, and TET loss-
of-function caused by hypoxia and various regulatory and
metabolic derangements are associated with many types of
cancers,4,25-27,31,41-45 dietary supplementation with vitamin C
might in fact be beneficial in preventing cancers with TET in-
volvement in the long term. However, the field was mired in
controversy until quite recently.2,46-51 In an early nonrandomized
trial, Cameron and Pauling46 treated 100 terminal cancer pa-
tients with intravenously administered high-dose vitamin C at
10 g/day for about 10 days, with treatment continued orally

thereafter; the authors concluded that high-dose vitamin C had
beneficial effects on the survival time of the cancer patients.
Shortly afterward, 2 randomized double-blinded clinical trials
were conducted at the Mayo Clinic, in which patients with ad-
vanced cancer were given placebo or high-dose vitamin C at
10 g/day orally; these studies showed no beneficial effects with
high-dose vitamin C therapy.47,48 The discrepancies were later
explained by pharmacokinetic studies in healthy volunteers,
showing that plasma vitamin C concentrations differed markedly
depending on whether the route of administration was oral or
intravenous.2,49 When vitamin C was orally administered, plasma
concentrations were tightly controlled: the maximum oral dose
tested, 3 g every 4 hours, yielded plasma levels in the sub-
millimolar range (;200 mM), whereas intravenous administration
of 3 g of vitamin C yielded plasma concentrations that were
30- to 70-fold higher, in the millimolar to tens of millimolar
range.2,49-51 In all cases, the high doses were well tolerated,
without any safety issues. These findings suggested that the
high plasma concentrations attained in the Cameron and Pauling
study46 might indeed have had antitumor effects that were not
observed in the follow-up trials in which only oral dosing was
used.47,48 In fact, several groups have nowadvocated reopening the
possibility of supplementation with high-dose vitamin C for the
clinical treatment of cancer.1,2,4,49-51

It is still unclear how vitamin C exerts its effects on cancer cells. At
physiologic levels, vitamin C is an antioxidant, but at high
pharmacologic concentrations, it may promote oxidative stress
and subsequent cell death. In cell culture studies, vitamin C
selectively killed cancer cells but not normal cells by promoting
hydrogen peroxide formation.52 Moreover, human colorectal
cancer cells carrying KRAS or BRAF mutations were selectively
killed when cultured with high dose vitamin C, because of
accumulation of reactive oxygen species that inactivated
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by
glutathionylation of the active site cysteine and depletion of its
substrate NAD1(the oxidized form of NAD, nicotinamide ad-
enine dinucleotide), leading to metabolic crisis with decreased
glycolysis and adenosine triphosphate and death of cancer
cells, which rely more on glycolytic metabolism than their active
counterparts.53 This study also proposed that the active agent
for vitamin C toxicity was actually DHA, which entered cancer
cells as a result of their high expression of GLUT1.53 A later
study on non–small-cell lung cancer (NSCLC) and glioblastoma
multiforme (GBM) cell lines suggested that the selective toxicity
of high-dose ascorbate in these cell lines over normal cells was
caused by vitamin C itself, because it was not reduced by
competitive inhibition of GLUT1 and other glucose transporters
with 2-OG.54 Rather, the toxicity was attributed to increases in
intracellular redox-active labile iron pools, mediated by per-
turbations in cancer cell oxidative metabolism and increased
steady-state levels of reactive oxygen metabolites including
superoxide and hydrogen peroxide; pool sizes could be de-
creased and survival could be improved by knockdown of the
transferrin receptor, which showed increased expression in
cancer compared with normal cell lines. High-dose ascorbate
combined with standard radio-chemotherapy led to the longest
survival in mouse models of NSCLC and GBM, which was
further demonstrated in phase 1 and phase 2 clinical trials of
patients with GBM and advanced NSCLC.54 It is as likely,
however, that vitamin C suppresses oncogenesis by potenti-
ating the activity of Fe(II)-2OG–dependent dioxygenases,
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including TET DNAmethylcytosine oxidases and JmjC domain-
containing histone demethylases, as described above.21-24

Therapies that target epigenetic regulators, particularly the DNA
methyltransferase inhibitors 5-azacytidine and decitabine (also
known as hypomethylating agents [HMAs]), have been used
successfully to treat patients with myelodysplastic syndrome (MDS),
a condition that often progresses to myeloid malignancy.9,55 This
clinical success story has prompted the question of whether vitamin
C supplementation could also be used to improve antitumor re-
sponses in patients with frank hematopoietic and other malig-
nancies. Vitamin C at physiologic levels clearly synergized with
5-azacytidine to decrease proliferation and increase apoptosis of
several cancer cell lines in culture. The cells showed a striking in-
crease in TET activity as judged by increased levels of 5hmC and
upregulated the expression of endogenous retroviruses and con-
comitantly the expression of interferon-stimulated genes.9 As-
suming that these features are maintained in vivo, increased TET
activity and enhanced immune responses after treatment with
combined 5-azacytidine and vitamin C might yield improved out-
comes in MDS and other neoplastic diseases.

There have been several efforts to determine whether specific
mutations in MDS could be predictive markers for responses to
5-azacytidine and decitabine. An early study with only a few
patients showed no significant association of TET2 mutational
status with response to 5-azacytidine: 46% (5 of 11) TET2-
mutated patients but only 24% (5 of 21) TET2 wildtype pa-
tients responded to epigenetic treatment, but because of the
relatively small sample size, this difference did not reach sta-
tistical significance (P 5 .2).56 In a parallel study published in the
same volume, the authors sequenced TET2 in 86 MDS and AML
patients treated with 5-azacytidine and found a significantly
higher response rate in patients with TET2 mutations (82%)
compared with patients without TET2mutations (45%); however,
this failed to translate into a beneficial response duration or
overall survival.57 A later study of 213 MDS patients screened for
mutations in 40 candidate MDS-associated genes and sug-
gested that patients with TET2 mutations showed the highest
responses to 5-azacytidine and decitabine, particularly if they
lackedmutations in ASXL1.55 Two years later, yet another paper58

examined the mutational status of 26 candidate MDS genes in
107 patients with MDS and found that no single mutation or
combination of mutations was significantly associated with re-
sponses to HMAs. In short, there is still no widely accepted con-
sensus on whether individual mutations might be used as
biomarkers to predict responses toHMA treatment inMDS or AML.

Hypomethylating agents cause reactivation of endogenous
retroviruses and enhanced interferon responses,59,60 which in
turn lead to increased production of proinflammatory cytokines
and enhanced immune responses that are thought to be pro-
tective inMDS and AML. However, there are 2 caveats to keep in
mind. Reactivation of endogenous retroviruses has been asso-
ciated with increased mutational burden in cancer and auto-
immune disease.61,62 Second, microbial signals elicit increased
production of some of the same proinflammatory cytokines,
which promote preleukemic expansion and eventually the ma-
lignant transformation of TET2-mutant myeloid-lineage cells in
mice.63 The detailed underlying mechanisms are clearly different
in the 2 scenarios (response to microbial signals vs responses to
hypomethylating agents) and the preleukemic myeloproliferation

observed in TET2-mutant mice reflects initiation of myeloid ma-
lignancies rather than slower disease progression in response to
HMAs. Further research is needed to establish whether HMA
treatment might have long-term deleterious effects.

TET enzymes and vitamin C in immune
function
The recent heightened interest in cancer immunotherapy has
brought up the question of whether vitamin C supplementation
could be used to enhance antitumor activity by potentiating
immune responses in cancer patients. Although TET deficiency
promotes oncogenesis in cancer cells, TET deficiency in nu-
merous tumor-infiltrating immune cells has the opposite effect of
directly or indirectly opposing tumor growth (Figure 2B). In CD81

T cells, TET deficiency has cell-intrinsic effects: after transfer into
recipient mice, Tet2-deficient CD81 T cells,64 and CD81 T cells
treated briefly with the enantiomer S-2-HG (aka L-2HG), a potent
inhibitor of Fe(II)- and 2OG-dependent dioxygenases,65 showed
increased proliferation and an enhanced ability to combat in-
fection64 and slow tumor growth65 compared with wild-type
CD81 T cells. This feature was even more striking in a patient
with B cell chronic lymphocytic leukemia, who achieved com-
plete remission after treatment with CD81 T cells bearing a
chimeric antigen receptor (CAR) against CD19.66 This patient
bore a hypomorphic mutation in 1 TET2 allele; serendipitously,
in the most highly expanded CAR T-cell clone, the CAR lentivirus
had become integrated into the other TET2 allele. Presumably,
the resulting profound decrease in TET function in this clone led
to its massive expansion and superior antitumor efficacy.66 In
contrast, the effects of TET deficiency in tumor-associated mac-
rophages andmyeloid-derived suppressor cells are not cell intrinsic:
these myeloid cell types normally exert potent immunosuppressive
effects on tumor-infiltrating T cells,67,68 but in Tet2fl/fl LysM-Cre
mice, in which Tet2 deficiency is confined to myeloid cells, the
intratumoral Tet2-deficient tumor-associated macrophages were
considerably less immunosuppressive, thus promoting CD81

T-effector function and inhibiting tumor growth.69

Several recent studies in mouse models have shown that high-
dose vitamin C is a promising agent to potentiate the antitumor
effects of immune checkpoint therapy. High-dose vitamin C
increased infiltration of CD41 and CD81 T cells and macro-
phages into the tumor microenvironment; increased production
of granzyme B by CD81 T cells and natural killer cells and
production of interleukin-12 by macrophages; decreased tumor
growth in a T cell–dependent manner; and synergized with
immune checkpoint therapy (anti-PD1 with or without anti-
CTLA4) in several cancer types.70,71 Vitamin C acted on immune
cells in these models, because its administration did not affect
tumor growth (including growth of the B16 melanoma) in im-
munocompromised mice.70 However, vitamin C was also shown
to enhance Tet2 catalytic activity in B16-OVA melanoma cells,
markedly improving chemokine and PD-L1 expression in re-
sponse to interferon-g in a mechanism involving Tet2 re-
cruitment to promoters through interaction with nuclear STAT1.
This increase in chemokine and PD-L1 expression was associated
with increased numbers of tumor-infiltrating lymphocytes and
improved antitumor immunity, as well as enhanced efficacy of
anti-PD-L1 immune therapy.72
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Treg cells are a distinct lineage of CD41 T cells needed to
maintain immune homeostasis and prevent autoimmune dis-
eases; they also counter the functions of several immune cell
types in the tumor microenvironment.73 The effects of TET
proteins and vitamin C on Treg cells have been extensively
studied at the molecular level (Figure 2C). Profound TET de-
ficiency caused by double deletion of either Tet1 and Tet2 or Tet2
and Tet3 genes with CD4Cre resulted in increased DNA meth-
ylation at 2 intronic enhancers, CNS1 and CNS2 (conserved
noncoding sequences 1 and 2)24,74; in both humans and mice, the
methylation status of CNS2 controls the stability of Foxp3
expression.75,76Micewith Tet2 and Tet3 deficiency in T cells (using
CD4Cre) displayed normal frequencies of Foxp31 cells in the
thymus but considerably reduced frequencies in the periphery,
with a concomitant decrease in Treg stability and function.24

Deletion of Tet2 and Tet3 genes at a later developmental stage
using Foxp3-Cre resulted in the appearance of “ex-Treg” cells
that acquired effector function.77,78 By augmenting TET activity,
vitamin C promoted the optimal differentiation and function of
induced regulatory T cells (iTregs) generated by stimulation of
naı̈ve CD41 T cells with antigen, transforming growth factor b and
retinoic acid in vitro, resulting in DNA demethylation at the Foxp3
CNS2 enhancer and increased Foxp3 stability.24,79 Thus, from a
therapeutic perspective, enhancement of TET activity using vi-
tamin C could be used to stabilize iTreg cells generated in vitro
and endogenous Treg cells expanded in vitro with interleukin-280

to counter autoimmunity,81 allograft rejection,82 and graft-versus-
host disease.83

Conclusions
TET proteins and vitamin C exert a major influence in vivo on
cancer cell themselves and anticancer immune responses. The

finding that low plasma vitamin C levels are associated with an
increased risk of mortality from both hematopoietic malignan-
cies and cardiovascular disease should prompt an increased
investigation into the role of vitamin C deficiency in clonal he-
matopoiesis, a premalignant condition whose links to both these
conditions have become increasingly clear. It would also be
worthwhile to revisit the potential beneficial effects of high-dose
vitamin C therapy in the clinical management of cancer, adoptive
cell therapies for cancer, and autoimmune disease.
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