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KEY PO INT S

l Conventional
Sca-1–based analysis
can potentially cause
misinterpretation of
stress-mediated
hematopoiesis.

l CD86 serves as an
alternative marker to
Sca-1 for assessing
bonafide hematopoietic
responses under
stress conditions.

Hematopoiesis is a system that provides red blood cells (RBCs), leukocytes, and
platelets, which are essential for oxygen transport, biodefense, and hemostasis; its
balance thus affects the outcome of various disorders. Here, we report that stem cell
antigen-1 (Sca-1), a cell surface marker commonly used for the identification of multi-
potent hematopoietic progenitors (Lin2Sca-11c-Kit1 cells; LSKs), is not suitable for the
analysis of hematopoietic responses under biological stresses with interferon pro-
duction. Lin2Sca-1-c-Kit1 cells (LKs), downstream progenitors of LSKs, acquire Sca-1
expression upon inflammation, which makes it impossible to distinguish between LSKs
and LKs. As an alternative and stable marker even under such stresses, we identi-
fied CD86 by screening 180 surface markers. The analysis of infection/inflammation-
triggered hematopoiesis on the basis of CD86 expression newly revealed urgent
erythropoiesis producing stress-resistant RBCs and intact reconstitution capacity of
LSKs, which could not be detected by conventional Sca-1–based analysis. (Blood. 2020;
136(10):1144-1154)

Introduction
Hematopoiesis is largely involved in the pathogenesis of mul-
tiple diseases such as infection, inflammation, autoimmunity,
and cancer.1-5 On the other hand, biological stresses, such as
infection, inflammation, and anticancer drug treatment, strongly
affect hematopoiesis.6,7 For example, systemic bacterial or
fungal infections induce myeloid-biased hematopoiesis (ie,
emergency myelopoiesis), which inversely decreases lympho-
poiesis and erythropoiesis,8-11 resulting in lymphopenia and
anemia.12,13 Thus, accurate analysis of hematopoiesis is crucial to
our understanding of the pathogenesis of various diseases.
Studies at steady state have identified various hematopoietic
progenitors based on their surface marker expression patterns
and differentiation capacities. Stem cell antigen-1 (Sca-1) has
been widely used as an essential marker to distinguish Lin2Sca-
11c-Kit1 cells (LSKs), which include hematopoietic stem cells
(HSCs) and multipotent progenitors (MPPs), from downstream
Lin2Sca-1-c-Kit1 cells (LKs), such as common myeloid progeni-
tors (CMPs), granulocyte-macrophage progenitors (GMPs), and
megakaryocyte-erythrocyte progenitors (MEPs). The expression
level of Sca-1, an interferon (IFN)–stimulated gene (ISG), how-
ever, is considerably upregulated upon IFN signaling of pre-
viously Sca-12 cells, including LKs.14-16 For example, Sca-11

GMPs appeared inmice overexpressing TLR7 in an IFN-dependent
manner.17 Thus, under biological stresses with IFN production, the

reliability of hematopoietic analysis based on Sca-1 expression
varies, which can lead to misinterpretations.

A previous report suggested that LKs expressing lysozyme M or
Fc g receptor (FcgR) occupied only 25 to 30% of LSKs after li-
popolysaccharide (LPS) injection.18 Lysozyme M expression is
confined to a fraction of CMPs and GMPs, however, and con-
taminating MEPs were not examined, thus underestimating the
contaminationmagnitude of Sca-11 LKs in the LSK pool after LPS
injection. Recent single-cell RNA-sequencing analysis or mass
cytometry with metal-labeled antibodies have identified he-
matopoietic progenitors.19-21 However, there are some difficul-
ties in applying those techniques to hematopoietic analysis
under stress. First, the differentiation capacity of the identified
progenitors cannot be evaluated, because the cells are lysed or
ionized during their identification steps. Second, the gene ex-
pression profile and surface phenotypes of these hematopoietic
stem and progenitor cells (HSPCs) differ between steady-state
and stress environments. Finally, the instruments for these
analyses are expensive and are thus not fully distributed com-
pared with conventional flow cytometry (FCM), which makes
time-course analysis after disease onset difficult. FCM analysis
with reliable markers, which can be linked to functional analysis,
is beneficial to analyze hematopoietic responses during infection
and inflammation.
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Here,weprecisely examined thevalidity of conventional Sca-1–based
analysis for infection/inflammation-triggered hematopoietic
responses and reveal that the analysis mistakenly and largely
skews the outcomes. As an alternative strategy, we propose
CD86-based analysis to accurately observe infection/inflammation-
induced hematopoietic responses. Using CD86-based analysis,
we successfully identify the intact stemness of LSKs and the
transient activation of erythropoiesis after infection, which are
not detected by Sca-1–based analysis. Thus, CD86-based
analysis is a promising approach to understand hematopoi-
etic responses under stress conditions.

Methods
Mice
We obtained C57BL/6J (B6), BALB/c, and CAG-EGFP mice from
Japan Slc (Hamamatsu, Japan); B6.SJL-ptprca (B6.SJL) mice
congenic at the CD45 locus (CD45.11CD45.22) from Taconic
(Germantown, NY); and Rosa26-LSL-tdTomato,22 Cx3cr1-
CreERT,23 Stat12/224, and Cx3cr1gfp/1 mice25 from Jackson. All
mice were maintained in our specific pathogen–free animal
facility, and all experiments using mice were approved by the
Institutional Animal Care Committee of the Tokyo Medical and
Dental University.

Statistical analysis
Statistical analysis was evaluated using Microsoft Excel (Red-
mond, WA) or Prism software version 7 (GraphPad, La Jolla, CA).
The 2-tailed Student t test was used for statistical analyses of 2-
group comparisons. Multigroup comparisons were performed
by a 1-way analysis of variance (ANOVA) followed by the Tukey-
Kramer multiple comparisons test. The x2 test was used to
determine if there was a significant relationship between 2
categorical variables. x2 statistics were derived using the
CHIDIST function of Microsoft Excel. The criterion of significance
was set at P, .05. All results are expressed as means6 standard
error of themean (SEM). Blinding or randomization to the groups
was not performed, and no data were excluded. No statistical
methods were used to estimate sample size.

Additional methods are available in supplemental Methods
(available on the Blood Web site).

Results
Sca-1 does not work as a marker to analyze
hematopoiesis during infection
Based on the background above, we initially evaluated the
usability of Sca-1 as a marker to distinguish LSKs from down-
stream LKs during infection and inflammation. To mimic sys-
temic bacterial infection, LPS was intraperitoneally administered
into wild-type (WT) mice. FCM plots for lineage-negative bone
marrow (BM) cells suggested the time-dependent intrusion of
LKs into the LSK gate (Figure 1A), resulting in a dramatic increase
in the frequency and number of “apparent” LSKs (Figure 1B).
Similar results were obtained from WT mice after systemic in-
fection using a cecal ligation puncture (CLP) model (supple-
mental Figure 1A). To evaluate the contamination scale, we
cocultured sort-purified naive LSKs and LKs or MEPs with total
BM cells in the presence or absence of LPS (Figure 1C; sup-
plemental Figure 1B). In the absence of LPS, only 10% of LKs

were detected in the LSK gate. However, $70% of LKs were
contaminated in the same gate upon LPS stimulation (Figure 1C).
Similar results were obtained from cultures of LSKs and MEPs
(supplemental Figure 1B). Consistently, intra-BM injection of LKs
followed by LPS injection induced Sca-1 expression of ~60% of
the donor LKs, contaminating the LSK gate (Figure 1D). In ad-
dition to Sca-1, we noticed a slight reduction of c-kit expression
by LKs and LSKs cultured in the presence of LPS (Figure 1C).
However, as the reduction is limited, it did not affect the gating
for c-kit–expressing cells. As CX3CR1 is expressed on LKs, but
not LSKs (supplemental Figure 1C-D), we traced LKs using
Cx3cr1-CreER/Rosa26-LSL-tdTomato reporter mice (hereafter,
Cx3cr1-CreER/tdTom mice). Two days after tamoxifen injection,
LPS or phosphate-buffered saline (PBS) was further injected into
Cx3cr1-CreER/tdTommice, and Sca-1 expression on tdTomato1

LKs was examined (supplemental Figure 1E). Compared with
control PBS-injected mice, in which no tdTomato1 cells were
detected in the LSK gate, approximately 60% of tdTomato-
labeled cells became Sca-11, suggesting the presence of LKs
within the LSK gate (Figure 1E-F). As a control, tamoxifen in-
jection did not label original LSKs after LPS treatment (supple-
mental Figure 1F-G). Collectively, both ex vivo and in vivo results
suggested that most LKs become Sca-11 upon LPS injection and
CLP induction, invading the LSK fraction.

We next examined the differentiation potential of LKs and LSKs.
When these cells from naive mice were cultured in methylcel-
lulose medium for 10 days, LK populations, including CMPs,
GMPs, and MEPs, showed lower expansion capacity compared
with LSKs, and CMPs and MEPs generated TER1191 cells
(supplemental Figure 2A). In this context, 10 days were in-
sufficient, and 13 days were required for LSKs to differentiate
into TER1191 cells (supplemental Figure 2B). Under this 10-day
culture setting, LSKs from LPS-injected mice and CLP model
mice exhibited much reduced expansion and generated
TER1191 cells, likely due to the contamination of downstream
LKs (Figure 1G-H; supplemental Figure 2C). Supporting this
notion, ex vivo LPS stimulation of isolated LSKs did not show
erythrogenesis during a 10-day culture (Figure 1I-J). Sca-1 is
known to be an ISG.14-16 To exclude the impact of Sca-1 ele-
vation on LKs upon LPS stimulation, we analyzed mice lacking
signal transducers and activators of transcription 1 (STAT1), an
essential transcription factor for IFN signaling.26 In LPS-treated
Stat12/2 mice, IFN-mediated Sca-1 upregulation was strongly
inhibited (Figure 1K; supplemental Figure 2D-E), and the
number of LSKs increased only approximately twofold, which
was much lower than that in LPS-treated WT mice (Figure 1L).
Again, LSKs from LPS-injected WT mice showed much reduced
expansion and generated TER1191 cells during a 10-day culture
due to the contamination of LKs (Figure 1M-N). In contrast,
Stat12/2 mice did not show such abnormalities as a result of
preventing the contamination of Sca-1–upregulated LKs into
LSKs (Figure 1M-N). Our phenotypical and functional analysis
strongly suggested that Sca-1 is not a suitable marker for ex-
amining hematopoietic responses under stress conditions such
as infection and inflammation.

CD86 as an alternative marker for Sca-1
To avoid misinterpretations caused by the upregulation of Sca-1
in LKs, an alternative and reliable marker is required. To this end,
we screened 180 surface molecules and identified CD86, also
known as B7.2, a member of the B7 family. Screening details are
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Figure 1. Sca-1 upregulation skews the apparent numbers and functions of hematopoietic progenitors. (A) Time-course analysis for FCM of Lin2 BM cells after LPS
treatment. (B) Number and frequencies of LSKs after LPS treatment; n5 3 per time-point. hpi, hours postinjection. (C) Ex vivo cultures of LKs and LSKs under LPS stimulation. LKs
and LSKs were sorted from naive CD45.11 and CD45.11/CD45.21 mice, respectively. These cells were mixed and cultured with c-kit2 BM cells (CD45.21) in the absence or
presence of LPS (100 ng/mL) for 12 hours, and Sca-1 upregulation was assessed by FCM. (D) Evaluation of Sca-1 upregulation on LKs in vivo. LKs obtained from naive CD45.11

mice were directly injected into the BM of CD45.21 mice, and then LPS (5 mg/kg) was injected into the mice. Twelve hours after LPS injection, Sca-1 expression on CD45.11

donor cells was examined in nontreated (n5 5) and LPS-injected (n5 3) mice. IBI, intra-BM injection. (E-F) Tracing of CX3CR11 LKs in vivo. Two days after tamoxifen treatment
(2 mg/mouse) in Cx3cr1-CreER/tdTom mice, LPS (5 mg/ kg) or PBS was injected as shown in supplemental Figure 1E. Twelve hours after LPS treatment, the frequencies of
tdTomato1 cells in LKs and LSKs were examined. Representative FCM plots and statistical analysis are shown in panels E and F, respectively; n5 3 per group. (G-H) MEPs and
LSKs obtained from mice before or 24 hours after the injection of LPS (5 mg/kg) were cultured in methylcellulose medium for 10 days, and cell expansion and TER1191 cell
generation were evaluated by FCM. Representative FCM plots and statistical analysis are shown in panels G and H, respectively; n5 3 per group. i.p., intraperitoneal. (I-J) MEPs
and LSKs isolated from the BM of naı̈ve CD45.11 mice were stimulated with LPS (100 ng/mL) as shown in panel I. Cultured CD45.11 cells were sorted and cultured in
methylcellulose medium for 10 days, and cell expansion and TER1191 cell generation were assessed by FCM; n5 3 per group. (K-L) Increase in population sizes for LSKs in WT
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described in supplemental Methods and shown in supplemental
Figure 3. At steady state, Lin2CD861c-kit1 cells (L86Ks) and Lin2

CD862c-kit1 (CD862 LKs) were almost overlapped with LSKs and
conventional Sca-12 LKs, respectively (Figure 2A; supplemental
Figure 4A-B), indicating that CD86 can be an alternative marker
of Sca-1. Other B7-family molecules, such as programmed cell
death-ligand 2 (PD-L2), inducible costimulatory molecule-ligand
(ICOS-L), and B7-H4 were not expressed on LKs and LSKs. In
addition, CD80, also known as B7.1, PD-L1, and MHC II were
expressed on both LKs and LSKs (supplemental Table 1). All LSK
subpopulations, that is, long-term (LT) HSCs, short-term HSCs,
MPP2, and MPP3/MMP4, express CD86 (Figure 2B; supple-
mental Figure 4C). After LPS injection or CLP induction, Sca-12

LKs gained Sca-1 expression and invaded the LSK fraction
(Figure 2C; supplemental Figures 4D and 5A-B), resulting in a
marked increase in the number of “apparent” LSKs and a
converse decrease in LKs (Figure 2D). In contrast, the increase in
L86Ks and decrease in CD86- LKs were observed to be slight
(Figure 2D), implying that the contamination of CD86- LKs in the
L86K fraction was minimal because of the unchanged or neg-
ligible CD86 expression level of LKs. Without contradicting the
results showing that the increase in L86K in WT mice and LSK in
Stat12/2 mice were similar (Figures 1L and 2D), most CD862 LKs
and L86Ks were Sca-12 and Sca-11, respectively, in Stat12/2

mice even after LPS injection (Figure 2E; supplemental
Figure 4E). We also found that the expression levels of Sca-1 and
CD86 on L86Ks tended to increase in a STAT1-dependent
manner after LPS injection (Figure 2C,E). To examine whether
CD86 expression by LKs is altered after LPS stimulation,
CD45.11 LKs were cultured with CD45.21 total BM cells in the
presence of LPS (Figure 2F). It is of note that LPS-stimulated LKs
had dramatically enhanced Sca-1 expression whereas their
upregulation of CD86 expression was much milder at both the
protein and the mRNA levels (Figure 2F; supplemental
Figure 5C-F). We also performed intra-BM injection of CD45.21

LKs into CD45.11 mice, followed by LPS injection. Again, the
expression level of Sca-1, but not CD86, was enhanced on the
injected LKs (Figure 2G). Based on these findings, we concluded
that, in contrast to the Sca-1 acquisition of LKs, LKs remained
CD86- even after LPS stimulation. These results strongly sug-
gested the CD86 is a promising marker under stress conditions.

To further confirm the reliability of CD86 for identifying LSKs
under steady state and stress conditions, we performed
t-distribute stochastic neighbor embedding (t-SNE) analysis.
Based on the expression patterns of Flt3, FcgR, CD34, CD115,
and CD62L, surface markers uniquely expressed on each
progenitor,27-29 we divided LSKs and L86Ks into 3 subpopula-
tions, ie, blue, red, and green fractions. In naive conditions, most
LSKs and L86Ks were located within the red fraction (left panel,
Figure 2Hi). However, after LPS injection, a substantial increase
of cells in the blue and green fractions was observed in LSKs
(right upper panel, Figure 2Hi), whereas that was strongly pre-
vented in L86Ks (right lower panel, Figure 2Hi). The expression
patterns of CD34 and FcgR showed that cells in the green and

blue fractions are GMPs (CD341FcgR1) and MEPs (CD342FcgR2),
respectively (Figure 2Hii), and the contamination of GMPs and
MEPs was limited in L86Ks compared with LSKs (Figure 2Hii,iii). In
this context, Sca-1 expression in the blue and green fractions was
low in LPS-treated mice (Figure 2Hiii). Consistently, MPP2 and 3,
which weakly express Sca-1 in naı̈ve conditions, became a Sca-
1high population upon LPS-treatment (supplemental Figure 5G-H),
excluding the possibility that cells in the green and blue fractions
are MPP2 and 3 and implying that the blue and green cells
originated from LKs. In the steady state, Flt3 was preferentially
expressed by LSKs rather than LKs (Figure 2I). After LPS treatment,
the frequency of CD341Flt31 cells in LSKs decreased, suggesting
the substantial contamination of Flt3- LKs in the LSK pool
(Figure 2J). In contrast, the decrease in the frequency of the
Flt31CD342 cells was much milder in L86Ks (Figure 2J), sug-
gesting the minimal contamination of Flt3- LKs in the L86K frac-
tion. These results confirmed that CD86 serves to distinguish LKs
and LSKs, even under stress conditions.

CD86-based analysis enables LKs and LSKs to be
distinguished even during infection
As LKs are originally Sca-12CD862 and become Sca-11CD862

upon LPS stimulation (Figure 2F-G), CD862 LSKs are considered
to be contaminated LKs. The ratio of CD86- LSKs and CD861

LSKs suggested that the contaminated LKs occupied ;65% of
the total LSKs after LPS treatment (Figure 3A). To further confirm
the contaminated LKs by functional evaluation, total LSKs,
CD862 LSKs, and CD861 LSKs were obtained from LPS-treated
or CLP-inducedWTmice (Figure 3B-C; supplemental Figure 6A-
B). These CD861 LSKs showed comparable expansion levels to
LSKs from naı̈ve mice (Figure 3B; supplemental Figure 6A). In
addition, neither LSKs from naive mice nor CD861 LSKs from
LPS-treated or CLP-induced mice generated TER1191 cells in a
10-day culture setting (Figure 3B-C; supplemental Figure 6A-B).
This was consistent with their low level expression of Gata1, a
transcription factor critical for erythropoiesis30 and preferentially
expressed in MEPs and CMPs31 (Figure 3D), suggesting that
CD861 LSKs do not contain LKs, even under stress conditions. In
contrast, both total LSKs and CD862 LSKs from LPS-treated or
CLP-induced mice showed reduced expansion capacity and
generated TER1191 cells (Figure 3B-C; supplemental Figure 6A-
B). It is of note that, in LPS-treated or CLP-induced mice, the
TER1191 cell generation capacity of CD862 LSKs was signifi-
cantly higher than that of total LSKs (Figure 3B-C), suggesting
that erythrocyte progenitors, namely, MEPs and CMPs, were
enriched in CD862 LSKs. Indeed, the expression level of Gata1
was significantly enhanced in CD86- LSKs compared with total
LSKs after LPS treatment (Figure 3D). To further demonstrate to
what extent LKs contaminated LSKs and L86Ks, we also per-
formed LK tracing using Cx3cr1-CreER/tdTom mice (Figure 3E;
supplemental Figure 6C). After LPS injection, up to 70% of la-
beled LKs became Sca-11 whereas the frequency of CD86-
expressing cells in labeled LKs was ,10%. The contaminating
cells in L86Ks were GMPs, while those in LSKs contained both
GMPs andMEPs (supplemental Figure 6D-E). Collectively, CD86

Figure 1 (continued) and Stat12/2 mice before and 18 hours after the LPS injection (5 mg/kg); n5 3 per time-point. Representative FCM plots are shown in (K). (M-N) Evaluation
of capacities in LSKs from Stat12/2 mice. MEPs and/or LSKs were isolated from the BM of WT or in Stat12/2 mice before and/or after the injection of LPS (5 mg/kg). Cells were
cultured in methylcellulose medium for 10 days and the capacities to expand and generate TER1191 cells were examined by FCM; n5 3 per group. The numbers on FCM plots
indicate frequencies of gated populations. *P, .05, N.S., not significant; Student t test (D) or 1-way ANOVA (F, H, J, andN). Data are representative of 2 (C-F and J-N) or 3 (A, B, G,
and H) independent experiments (error bars in panels B, D, F, H, J, L, and M represent SEM).
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is a reasonable marker to analyze accurate hematopoietic re-
sponses under stress conditions.

In contrast to strains expressing the Ly6.2 haplotype (eg, B6
mice), mice having the Ly6.1 haplotype (eg, BALB/c mice),
poorly express Sca-1 in steady state.32 Consistently, L86Ks, but
not LSKs, were successfully detected in the BM of naive BALB/c
mice (supplemental Figure 6F). After LPS treatment, the number
of LSKs was dramatically increased, due to the contaminating
LKs, whereas the number of L86Ks was not increased (supple-
mental Figure 6F-G). Compared with CD862 LSKs, CD861 LSKs
showed significantly higher expansion levels and a lower ca-
pacity to generate TER1191 cells (supplemental Figure 6H).
These results suggested that CD86 serves to distinguish HSPCs
in LPS-treated mice regardless of the Ly6 haplotype. We also
examined if CD86 serves to distinguish HSPCs in C57BL/6 mice
treated with polyinosinic-polycytidylic acid sodium salt (poly
(I:C)). Although poly(I:C) treatment strongly decreased the Lin2

population (supplemental Figure 6I), the number of L86Ks was
significantly lower than that of LSKs (supplemental Figure 6I-J).
Importantly, the CD861 LSKs from poly(I:C)-treated mice
showed expansion levels comparable to LSKs from naive mice
(supplemental Figure 6K). In contrast, the expansion capacity of
total LSKs and CD862 LSKs from poly(I:C)-treated mice was
significantly impaired (supplemental Figure 6K), suggesting LK
contamination in the LSK fraction. Thus, CD86 serves as an al-
ternative marker for Sca-1 also in poly(I:C)-treated mice.

CD86-based analysis reveals bona fide
hematopoietic responses against infection and
inflammation
It is important to understand exactly how biological stress affects
the hematopoietic responses. We compared the kinetics of LSKs
and L86Ks after LPS injection. The number of LSKs quickly
reached the peak and increased to sixfold within 18 hours,
followed by a decrease, but the number remained higher than
the basal level, even 72 hours after LPS treatment (Figure 4A). In
contrast, the L86K fraction showed much reduced expansion
compared with LSKs, and the number of L86Ks returned to the
basal level within 36 hours (Figure 4A). Thus, quantitative ab-
normalities of LSKs detected by the Sca-1–based analysis might
be canceled in the CD86-based analysis. A recent Sca-1–based
analysis indicated that a single injection of LPS strongly di-
minished the reconstitution capacity of LSKs.18 Because the
expansion capacity of L86Ks, but not LSKs, obtained from LPS-
treated mice was not impaired compared with naive LSKs
(Figure 3B), we hypothesized that the contaminating down-
stream progenitors into the LSK fraction reduced the reconsti-
tution capacity of LSKs. Indeed, CD342 LT-HSCs in LPS-treated
mice contained CD862 cells with a lower expansion capacity
compared with CD861 cells (supplemental Figure 7A-B), im-
plying that they are downstream progenitors. To examine this
possibility, we generated chimeric mice by transplanting an
equivalent mixture of LSKs from naive mice and LSKs or CD861

LSKs from LPS-treated mice into lethally irradiated recipient
mice (supplemental Figure 8). LSKs from LPS-treated mice
showed significantly lower chimerism compared with LSKs from
naı̈ve mice. In contrast, the chimerism of CD861 LSKs from LPS-
treated mice was almost the same as that of LSKs from naive
mice (Figure 4B-C), suggesting that the impaired BM re-
constitution by LSKs from mice treated only once with LPS is
likely due to the contamination of Sca-11 LKs into the LSK

fraction rather than LSK exhaustion. Indeed, the LK contami-
nation significantly decreased the frequency of CD342 LT-HSCs
in LSKs of LPS-treated mice compared with that in LSKs from
naivemice, although there was no difference between LSKs from
naive mice and CD861 LSKs from LPS-treated mice (Figure 4D).
Compared with Sca-1–based analysis, CD86-based analysis
showed that the numbers of MPP2s and MMP3s were much
lower, whereas those of CMPs and GMPs were conversely in-
creased after LPS-treatment, due to the prevention of the LK
contamination (supplemental Figure 9A-C). In LPS-treated mice,
CD86-based analysis confirmed the myeloid reprograming of
MPP4 (supplemental Figure 9D)33,34 and revealed that the ca-
pacity of GMPs to generate CD11b1myeloid cells was enhanced
(supplemental Figure 9E).

We also focused on the development of erythrocytes early after
LPS injection. CD86-based analysis revealed that the number of
MEPs increased during the first 18 hours after LPS treatment and
then decreased (Figure 5A-B). In contrast, Sca-1–based analysis
could not detect the early increasing phase, and the number of
MEPs began to decrease soon after the LPS injection (Figure 5B).
Consistent with the increased MEPs, erythropoiesis was acti-
vated during the first 18 to 24 hours after LPS injection, as in-
dicated by the increase in proerythroblast production,
(Figure 5C), hemoglobin in the BM hemolysate (Figure 5D), and
erythrocyte number (TER1191CD452) in the BM, blood, and
spleen (Figure 5E). Similar results were obtained in a CLP in-
duction model (supplemental Figure 10A-D). The activated
erythropoiesis was also supported by the enhanced expression
of Gata1 in CMPs after LPS injection in vivo (Figure 5F), which
was consistent with the elevated production of TER1191

erythrocytes (Figure 5G).Gata1 expression was also increased by
ex vivo LPS stimulation of CMPs or LKs (Figure 5H; supplemental
Figure 10E-F). Upon LPS injection, the number of erythrocytes
reached the peak at 18 hours in the BM and then decreased to
the basal level by 72 hours (Figure 5D, E), which might reflect the
egress of erythrocytes from the BM to the periphery, such as the
blood and spleen. Indeed, the number of erythrocytes began to
increase in the blood and spleen 24 hours after LPS injection
(Figure 5E). Infection and inflammation often cause hemolysis
and/or hemolytic anemia.35,36 Therefore, we next focused on the
stress resistance of red blood cells (RBCs). As CD86-based
analysis newly identified an early activation phase of erythro-
poiesis in the BM, we collected CD712TER1191CD452FSClow

cells from the BMofmice at 18 hours after LPS injection, the peak
of erythropoiesis. The CD712TER1191CD452FSClow cells had
the morphological characteristics of mature RBCs (mRBCs) (ie,
smaller cell size and losing the nucleus even after LPS treatment;
supplemental Figure 10G), confirming that the cells were not
RBC precursors. After LPS treatment, the frequency of mRBCs in
total TER1191CD452 erythrocytes was elevated (Figure 5I).
Compared with mRBCs from naive mice, the mRBCs generated
under LPS-mediated inflammation showed significantly higher
amounts of hemoglobin (Figure 5J), significantly lower apoptosis
induction after 48 hours of culture (Figure 5K-L), and stronger
resistance against hypo-osmolality (Figure 5M-N). In this con-
text, LPS-induced early erythropoiesis with MEP increase
was also observed in Stat12/2 mice, but not WT mice, using
Sca-1–based analysis (Figure 5O-Q), indicating that these
events can occur independently of IFN signaling and conven-
tional Sca-1–based analysis is available when the IFN signal is
limited. This experimental example is a thioglycolate-induced

CD86 REVEALS HEMATOPOIESIS UNDER STRESS CONDITIONS blood® 3 SEPTEMBER 2020 | VOLUME 136, NUMBER 10 1149

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/136/10/1144/1756655/bloodbld2020004923.pdf by guest on 07 M

ay 2024



*

%
 o

n 
td

To
m

at
o+

c-k
it+

Lin
-  ce

lls

60

80

40

20

0

PBS
LP

S

Sca-1+ cell

CD86+ cell

105

104

103

0

-103

-103 0 103 104 105

4.9

105

104

103

0

-103

-103 0 103 104 105

0

105

104

103

0

-103

-103 0 103 104 105

4.2

105

104

103

0

-103

-103 0 103 104 105

0.7

105

104

103

0

-103

-103 0 103 104 105

PBS

c-k
it

c-k
it

tdTomato

Sca-1

CD86

105

104

103

0

-103

-103 0 103 104 105

74

105

104

103

0

-103

-103 0 103 104 105

69

105

104

103

0

-103

-103 0 103 104 105

16

105

104

103

0

-103

-103 0 103 104 105

9

105

104

103

0

-103

-103 0 103 104 105

LPS

tdTomato

CD86

Sca-1

E

N.S.

* *

**

Ex
pa

nd
ed

 ce
ll 

nu
m

be
r

fro
m

 si
ng

le
 ce

ll 
(x

10
4 )

4 N.S.

*
* *

*

TE
R1

19
+

 ce
lls

 (%
)

60

40

20

0

LSK

3

2

1

0

M
EP

To
ta

l
To

ta
l

CD86
-

CD86
+

M
EP

To
ta

l
To

ta
l

CD86
-

CD86
+

M
EP

To
ta

l
To

ta
l

CD86
-

CD86
+

LSK LSK

N.S.

*
*

*

Ga
ta
1 

ex
pr

es
sio

n

2

1

0

Naive

LPS i.p.

B D

120 *

0

Naïv
e

LP
S 

i.p
.

A

Ce
lls

 in
 LS

Ks
 (%

) 100

80

60

40

20

CD86- cell

CD86+ cell LSK

105

104

103

102

101

9

78

101 102 103 104 105

CD86- LSK

105

104

103

102

101

21

55

101 102 103 104 105

CD86+ LSK

105

104

103

102

101

101 102 103 104 105

0

98

105

104

103

102

101

101 102 103 104 105

MEP

32

22

105

104

103

102

101

101 102 103 104 105

HSC

98

0 105

104

103

102

101

101 102 103 104 105

LSK

95

0

Na
ive

TE
R1

19
LP

S 
i.p
.

CD11b

C

Figure 3. CD861LSKs do not show a LK signature. (A) Ratio betweenCD862 and CD861 cells in LSKs before and 24 hours after LPS treatment; n5 3 per group. (B-C) MEPs and
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peritonitis model, in which neither IFN expression nor Sca-1
upregulation on LKs was induced (supplemental Figure 10H-L).
Nevertheless, Sca-1–based analysis confirmed the increased
levels and numbers of hemoglobin, erythrocytes, and MEPs
in the BM (supplemental Figure 10M-N). Taken together,
CD86-based analysis enables us to assess bona fide hemato-
poietic responses under stress conditions with IFN production,
whereas Sca-1–based analysis can be used for IFN-free stress
conditions.

Discussion
In this study, using conventional Sca-1–based analysis, we
demonstrated that nonnegligible levels of LKs are considered
to be LSKs under inflammation and infection. To overcome
these problems, we propose a CD86-based analysis, which can
minimize these risks and allow us to accurately analyze in-
flammation- and infection-triggered hematopoietic responses.
Indeed, the CD86-based analysis revealed the intact re-
constitution capacity of LSKs and the transient activation of
erythropoiesis early after infection, which was not detected
by Sca-1–based analysis. Biological stresses induce extra-
medullary erythropoiesis.37 In our results, the number of
erythrocytes in the blood and spleen increased between 18 and
24 hours and then dramatically decreased in the BM, but not
the spleen, suggesting the contribution of early-phase BM
erythropoiesis to the increase in circulating RBCs.We also found

that LPS treatment generated unique erythrocytes with more
hemoglobin and higher resistance against apoptosis and
hemolysis (Figure 5K-N). Since RBCs are often broken by
pathogen-derived hemolytic toxins38-40 or hemophagocytosis
by activated macrophages and/or dendritic cells,41,42 the BM
erythropoiesis driven by infection may contribute to the re-
plenishment of the lost RBCs with stronger RBCs during the
latter phase of infection.

Interestingly, LT-HSCs in the BM of naive mice consist of major
CD861 and minor CD862 populations.43 Compared with CD861

LT-HSCs, CD862 LT-HSCs show a nearly 10 times lower BM
reconstitution capacity and lack lymphocyte differentiation
potential,43 implying that they are downstream progenitors.
\In line with this finding, the colony-formation capacity of
CD862CD342 LT-HSCs was significantly lower than that of
CD861CD342 LT-HSCs in LPS-treated mice (supplemental
Figure 7). Thus, CD86-based analysis may serve to exclude
those CD862 progenitors from the LT-HSC fraction. Previously,
Takizawa and colleagues reported that LPS stimulation induces
HSC exhaustion.43 The discrepancy between our results (Figure
4B-C) and theirs could be explained by differences in the ex-
perimental settings. In Takizawa et al’s study, mice were re-
peatedly treated with LPS (ie, prolonged infection or chronic
inflammation) and analyzed 1 to 4 weeks after the last LPS
treatment. We performed a single injection of LPS and ex-
amined hematopoietic responses 6 to 24 hours later. At least in
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was examined for 8 months (n5 8, LPS total LSKs vs naive
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tative FCM plots for circulating leukocytes 2 months after
cell transfer are shown in panel B. (D) Frequencies of
CD342 LT-HSCs in LSKs and CD861 LSKs were examined
before and 24 hours after LPS treatment. The numbers on
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Figure 3 (continued)mRNA expression in LKs, LSKs, CD862 LSKs, and CD861 LSKs before and after LPS treatment. Cells were isolated from the BM of WT mice before and/or
24 hours after LPS treatment, and gene expression was evaluated by real-time polymerase chain reaction (PCR); n 5 4 per group. (E) Tracing Cx3cr1-expressing cells after LPS
treatment. Two days after tamoxifen treatment (2mg/mouse) inCx3cr1-CreER/tdTommice, LPS (5mg/ kg) or PBSwas injected as shown in supplemental Figure 1E. Twelve hours
after LPS treatment, frequencies of Sca-11 or CD861 cells in tdTomato1 cells were examined. Representative FCMplots of Lin2c-kit1 BM cells and statistical analysis are shown in
the left and right panels, respectively; n5 3 per group. The numbers on FCMplots indicate the frequencies of the gated populations. N.S., not significant. P. .05; *P, .05, x2 test (A)
or 1-way ANOVA (C-E). Data are representative of 2 independent experiments (A-C) or 3 independent experiments (D and E) (error bars in panels A, C, and E represent SEM).
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our setting, a single injection of LPS does not seem to induce
HSC exhaustion.

IFN can be upregulated not only in bacterial and viral infections
but also in autoimmune and autoinflammatory disorders.44,45

Various therapeutic treatments may skew IFN production or IFN-
mediated signaling.46,47 Aging or particular gene modifica-
tions may also alter the basal IFN production level.48-50 Given
that Sca-1 is a representative ISG and its expression is upre-
gulated in all LK subpopulations, Sca-1–based analysis of
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Figure 5. Analysis based on CD86 expression identifies the activation of erythropoiesis early after infection. (A) Population sizes of MEPs (CD1501FcgR2 LKs) and GMPs
(CD1502FcgRhigh LKs) before and 18 hours after LPS treatment (5mg/kg). Representative FCMplots of the Lin2c-kit1CD862 fraction are shown. (B) Kinetic analysis of CD1501 cells
(MEPs) in the Lin2c-kit1Sca-12 (left panel) and Lin2c-kit1CD862 fractions (middle panel) during the 72 hours after LPS treatment. Data during the first 18 hours (shown in left and
middle panels) were merged in the right panel (numbers of MEPs in the Lin2c-kit1Sca-12 and Lin2c-kit1CD862 fractions are shown as black and red lines, respectively); n5 3 per
time point. (C) Kinetic analysis of the number of proerythroblasts (CD711TER119int) during the 72 hours after LPS treatment; n 5 3 per time point. (D) Representative image of
hemolysates of the BM before and after LPS treatment. (E) Kinetic analysis of TER1191CD452 erythrocytes in the BM (left panel), blood (middle panel), and spleen (right panel)
after LPS treatment; n 5 3 per time-point. (F) Gata1 mRNA expression in CMPs obtained before and 5 hours after LPS treatment. Gene expression was examined by real-time
PCR; n5 3 per group. (G) CMPs, isolated as in panel F, were cultured in methylcellulosemedium for 10 days, and the number of TER1191 cells generated was examined by FCM;
n 5 3 per group. (H) Gata1 mRNA expression in CMPs stimulated with LPS. CMPs were isolated from naive CD45.11 mice and cocultured with CD45.21 total BM cells in the
absence or presence of LPS (100 ng/mL) for 12 hours. CD45.11CMPs were sorted again, and gene expression was examined by real-time PCR; n5 3 per group. (I) Kinetics for the
frequency of mRBCs (CD452TER1191CD712FSClow) in TER1191 cells after LPS treatment; n5 3 per time-point. (J) Relative amount of hemoglobin in mRBCs obtained before and
18 hours after LPS treatment. The amount of hemoglobin was evaluated bymeasuring the optical density (OD)560 of the hemolysates; n5 5 per group. (K-L) mRBCs were isolated
from the BM ofWTmice before and 18 hours after LPS treatment and were cultured in 20% FBS-containing RPMI medium for 48 hours. The cells were harvested, and the ratio of
Annexin V1 apoptotic cells was examined by FCM. Representative FCM plots are shown in panel L; n5 3 per group. (M-N) TER1191CD452 erythrocytes were isolated from the
BM before and 18 hours after LPS treatment and incubated with the indicated concentration of PBS for 30 minutes. Hemolysis was evaluated by measuring the OD560 of the
supernatants. Data are statistically analyzed in panel N. DW, distilled water. (O-Q) Activation of erythropoiesis in Stat12/2 mice after LPS treatment. Representative image of
hemolysates (O) and the numbers of erythrocytes (P) and MEPs (Q) in WT and/or Stat12/2 mice before and 18 hours after LPS treatment. The numbers on FCM plots indicate the
frequencies of the gated populations. *P , .05, Student t test (F-H, J, L, N, P, and Q) or 1-way ANOVA (D and E). Data are representative of 2 (F-H and K-Q) or 3 (A-E and I)
independent experiments or from 2 independent experiments (J). Error bars in panels B, C, E-H, and J-N represent SEM.
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hematopoietic responses under stress conditions could vary and
lead to misinterpretations. Instead, we propose that CD86-
based analysis is applicable to understanding the true hema-
topoietic response under stress conditions with IFN production,
which will be useful not only to review previous knowledge but
also to obtain new knowledge.
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