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The discovery of PIEZO proteins has enabled better under-
standing of how cells respond to mechanical force.1-3 PIEZOs
assemble to form ion channels that link force to cell behavior via
transmembrane cation flux.1,2,4 Shortly after the initial PIEZO
discoveries, associations of PIEZO1 mutations with xerocytosis/
dehydrated hereditary stomatocytosis (DHS)4-15 and links to
malarial resistance were suggested.16 PIEZO1 channels are now
an established feature of red blood cell (RBC) biology where they
regulate intracellular Ca21 and cell hydration in coordination with
other mechanisms such as the Gardos channel.17-20 However,
studies of PIEZO1 reconstituted in cell lines have suggested that
the channels activate within milliseconds and then inactivate
(desensitize) completely within a few hundredmilliseconds when
rapidly stimulated by increases in membrane tension caused by
pulling on the membrane or cell deformation via a probe.1,4,7,9,18

DHS mutations have been found to slow the fast inactivation
process, which represents gain of function.7-9,18 It is, however,
unclear how such rapid events are relevant to RBC physiology.
Moreover, although the available data are limited because of the
low prevalence of DHS, studies of RBCs from patients suggest
sustained channel activity unlike that reported for PIEZO1 in
cell lines.6,10,12,15 Therefore, we sought additional understand-
ing through electrophysiological analysis of murine RBCs. To
mechanically stimulate the channels, we applied shear stress,
a frictional force created physiologically by blood flow. To
understand the impact of DHS mutation, we generated the
murine equivalent of one of the first-identified DHS mutations,
M2225R.4,5,8,9

In mouse PIEZO1, the equivalent of M2225R is M2241R. Mo-
lecular modeling and pharmacological analysis of overexpressed
channels suggested suitability of mouse PIEZO1 as a model for
human PIEZO1 (supplemental Results; supplemental Figures 1
and 2, available on the Blood Web site). Furthermore, 8-week-
old mice homozygous for M2241R (PIEZO1M-R/M-R; supplemental
Results; supplemental Figures 3 and 4) displayed features
consistent with DHS that included stomatocytosis (supplemental
Figure 5); decreased osmotic fragility (supplemental Figure 6);
decreased hemoglobin, hematocrit, and RBC count (supple-
mental Table 1); and increased RBC and hemoglobin concen-
tration distribution widths and percentage of reticulocytes
(supplemental Table 1). There were no significant changes in
spleen weight (supplemental Figure 7) or liver function test
results (supplemental Table 2). There were potential changes
in plasma iron and total iron binding capacity that did not
reach statistical significance, but transferrin showed a small sig-
nificant increase (supplemental Table 2). PIEZO1M-R/M-R mice

were born at slightly lower frequency than wild-type (WT)
mice, suggesting a potential deleterious effect, but the adult
PIEZO1M-R/M-R mice appeared normal, and body weight gain
was not different from that in WT mice (supplemental Figure 8).
However, increased spleen weight in the PIEZO1M-R/M-R mice at
22 weeks of age suggests the potential for age-related changes
in phenotype (supplemental Figure 7). All remaining experi-
ments focused on mice at 8 weeks of age. Heterozygous mice
(PIEZO1WT/M-R) showed a decrease in osmotic fragility, but less
than for the PIEZO1M-R/M-R mice, which suggests an intermediate
phenotype (supplemental Figure 6). The PIEZO1WT/M-R mice
were born at the expected Mendelian ratio (supplemental
Figure 8).

To understand the effect of M2241R on channel properties,
patch-clamp electrophysiology was applied to RBCs freshly
isolated frommice. For physiological relevance, we first used the
perforated-patch whole-cell configuration to achieve membrane
potential measurements. Resting membrane potential data are
provided in the supplemental Information. For most experi-
ments, constant current was injected to hyperpolarize RBCs to
280 mV and thereby maximize visibility of PIEZO1-related re-
sponses to fluid flow of 20 mL×s21, a rate that occurs in mice.21

There was a small depolarization in response to the fluid flow in
WT RBCs, consistent with the opening of PIEZO1 channels
(Figure 1A; mean data in Figure 1D). The depolarization was
sustained for at least 20 seconds. After flow ceased, the
membrane potential returned to its initial value (Figure 1A,D).
Depolarization tended to be larger in PIEZO1WT/M-R and was
larger (P , .05) in PIEZO1M-R/M-R RBCs, but the most striking
difference was failure to recover after flow ceased (Figure 1B-C;
mean data in Figure 1D). To further investigate, we switched
to voltage-clamp mode. In WT RBCs, fluid flow caused inward
current as expected, which then decayed slowly after about
10 seconds (Figure 1F; mean data in Figure 1I). In PIEZO1WT/M-R

and PIEZO1M-R/M-R RBCs, the initial response was similar to that
in WT, except the slow inactivation was mostly absent
(Figure 1G,H). Most striking, there was failure of current to
recover after cessation of fluid flow (Figure 1G-H; mean data in
Figure 1I). GsMTx4, an inhibitor of PIEZO1 channel activity,22

abolished all depolarizing and inward current activities
(Figure 1E,J; supplemental Figures 9 and 10). An intriguing
finding was that washout of GsMTx4 from mutant RBCs
revealed recovery to activity that was more like the activity of
WT RBCs than that of mutant RBCs in the absence of toxin,
suggesting the potential to correct mutant channel behavior
(supplemental Figures 9 and 10).
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Figure 1. Slow kinetics of RBC PIEZO1 mice and slow recovery in PIEZO1WT/M-R and PIEZO1M-R/M-R mice. (A-C) Membrane potential (Vm) recordings obtained using the
perforated-patch, whole-cell mode applied to freshly isolated RBCs fromWT (A), PIEZO1WT/M-R (B), and PIEZO1M-R/M-R (C) mice. RBCs were exposed to 20 mL×s21 fluid flow for 20
seconds, as indicated by the shaded areas. (D) Summary data for experiments of the type shown in panels A-C. Presented is the peak (maximum [max]) change in Vm of WT,
PIEZO1WT/M-R, and PIEZO1M-R/M-R RBC counts after exposure to flow and Vm at 1 to 5 minutes after flow. Averaged data are displayed as means 6 standard deviation, and each
data point is shown.WT: n5 20 (max, 1minute), 16 (2 minutes), 13 (3 minutes), and 9 (4 and 5minutes); PIEZO1WT/M-R: n5 13 (max), 12 (1minute), 11 (2 minutes), 10 (3 minutes), and
9 (4 and 5 minutes); and PIEZO1M-R/M-R: n5 14 (max, 1 minute), 13 (2 minutes), 11 (3 minutes), 9 (4 minutes), and 8 (5 minutes). (E) As in panel D, except with 2.5 mMGsMTx4 in the
extracellular solution. WT: n5 5 (max, 1 minute, 2 minutes, 3 minutes), 4 (4 minutes), and 3 (5 minutes); PIEZO1WT/M-R: n5 7 (max, 1 minute), 6 (2 minutes), 4 (3 and 4 minutes), 3 (5
minutes); and PIEZO1M-R/M-R: n 5 8 (max), 6 (1 minute), 5 (2 minutes), 4 (3 minutes), and 3 (4 and 5 minutes). (F-H) Ionic current recordings obtained using the perforated-patch
technique in whole-cell, voltage-clamp mode applied to freshly isolated RBCs from WT (F), PIEZO1WT/M-R (G), and PIEZO1M-R/M-R mice (H). RBCs were exposed to 20 mL×s21 fluid
flow for 20 seconds, as indicated by the shaded areas. Holding voltage was 280 mV. (I) Summary data for experiments of the type shown in panels F-H. Presented is the peak
(max) change in current (DI) of WT, PIEZO1WT/M-R RBCs after exposure to flow and then the DI at 1 and 2 minutes after flow. Averaged data are means6 standard deviation, and
individual data points are shown. WT: n 5 23 (max, 1 minute) and 15 (2 minutes); PIEZO1WT/M-R: n 5 12 (max, 1 minute) and 10 (2 minutes); and PIEZO1M-R/M-R: n 5 18 (max),
15 (1 minute), and 11 (2 minutes). (J) As in panel I, except with 2.5 mM GsMTx4 in the extracellular solution. WT: n 5 5 (max, 1 minute, 2 minutes); PIEZO1WT/M-R: n 5 4 (max,
1 minute), 3 (2 minutes); and PIEZO1M-R/M-R: n 5 4 (max, 1 minute, 2 minutes). Statistical analysis by one-way ANOVA with Bonferroni’s post hoc test indicated: (D,I) significant
decay of the WT (**P , .01; *** P , .001) but not mutant RBC responses; (D) significant increase in the peak response in PIEZO1M-R/M-R RBCs compared with WT (P , .05);
(E) no significant effects of flow in WT or PIEZO1WT/M-R, but significant hyperpolarization at 1 minute compared with the peak in PIEZO1M-R/M-R (P , .01); and (J) no significant
effects of flow in WT or PIEZO1WT/M-R but significant outward current at 1 and 2 minutes compared with peak in PIEZO1M-R/M-R (P , .001).
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Figure 2. Failure of deactivation in PIEZO1WT/M-R and PIEZO1M-R/M-R single channels. Data are for single-channel activity measured by the cell-attached patch technique
applied to freshly isolated RBCs of WT (A-B), PIEZO1WT/M-R (C-D), and PIEZO1M-R/M-R (E-H) mice. A fast pressure-clamp system applied brief (200 ms) negative pressure pulses to
the patches, as indicated below the original exemplar current traces (A,C,E,G,H). Dashed horizontal lines indicate current levels for closed channels (c) and open channels (o, or
o1-4 for multiple channel openings in panels C andG). Constant voltage of180mVwas applied to the patch pipette. (A,E) Data are considered to be for patches each containing
only 1 PIEZO1 channel; (C,G) patches contain multiple PIEZO1 channels. (B,D,F) Amplitude histogram analysis for the exemplar traces, showing plots of the frequency of
detection of events (N) at the current amplitudes indicated on the x-axis, where zero current indicates no current flowing in the circuit. The closed channel state appears as a small
negative current peaking at 20.5 (B), 20.7 (D), and 20.4 pA (F). (Bi) The small amount of open channel activity at 22.5 pA is shown in an expansion. Raw data are shown with
superimposed Gaussian fits in green (WT), blue (PIEZO1WT/M-R), and red (PIEZO1M-R/M-R). Representative of n5 6, 5, and 4 for WT, PIEZO1WT/M-R, and PIEZO1M-R/M-R, respectively.
(H) An exemplar recording from a PIEZO1M-R/M-R RBC patch with 2.5 mM GsMTx4 in the extracellular solution (n 5 5).
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To investigate more closely, we sought single channel data by
recording from cell-attached membrane patches under voltage-
clamp and applying short pressure pulses to the patch pipette
to increase membrane tension. Occasionally, there was only 1
unitary current level, suggesting only 1 channel in the patch
(Figure 2A,E), but in most cases, there were multiple channels
(eg, Figure 2C,G). PIEZO1 channels were identified by the
signature unitary current amplitude1 (Figure 2B,D,F; supple-
mental Figure 11). In the WT exemplar shown, activity was
evoked by the 280 and 290 mm Hg pressure pulses, but af-
terward, there were only infrequent openings, suggesting that
this channel mostly deactivated (Figure 2A). The rarity of channel
opening was seen particularly in the amplitude histogram, which
indicated low frequency at 22.5 pA (channel open) relative to
that at 20.5 pA (channel closed; Figure 2B). In contrast, in
PIEZO1WT/M-R and PIEZO1M-R/M-R RBCs, there was identical uni-
tary current amplitude but remarkably higher activity after ter-
mination of pressure pulses (Figure 2C-F). Histogram analysis
highlighted the difference between WT and PIEZO1WT/M-R/
PIEZO1M-R/M-R, because the frequency of open-state activity
(eg, at 22.5, 22.7, and 22.4 pA) was high relative to the
closed-state frequency (ie, at 20.5, 20.7, and 20.4 pA;
Figure 2D,F, compare with Figure 2B). Patches containing
multiple PIEZO1M-R/M-R channels in the same patch also showed
persistent high activity (Figure 2G). Summary analysis of mul-
tichannel activity also supported the conclusion that persistent
activity was greater in PIEZO1WT/M-R/PIEZO1M-R/M-R (supple-
mental Figure 12). Unitary current events were abolished by
GsMTx4 (Figure 2H).

The data suggest that RBCs provide a special environment for
PIEZO1 that disables or greatly slows the rapid inactivation
mechanism and confers the importance of deactivation, which is
a different mechanism from that of inactivation. In future studies,
it will be interesting to determine how the rapid inactivation gate
is disabled or slowed in RBCs. Our work on endothelial PIEZO1
has suggested that sphingomyelinase can cause such an effect.23

Sphingomyelinase is known to regulate RBC membrane struc-
ture24 and adhesion of eryptotic RBCs to endothelial cells.25 It
will also be interesting to determine themolecular mechanism of
deactivation in PIEZO1, its sensitivity to other DHS mutations
in the RBC context, and the potential for correction by small
molecules. Such studies could have multiple benefits for better
understanding RBC homeostasis and DHS, and could enable
better appreciation of the mechanical biology of other blood-
borne cells that normally live in an environment of dynamic shear
stress.
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Impact of anticoagulation prior to COVID-19 infection:
a propensity score–matched cohort study
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Caroline Cromwell,1 Andrew Dunn,4 William K. Oh,1 and Leonard Naymagon1
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Coronavirus disease 2019 (COVID-19) has emerged as a global
pandemic associated with a strikingly high rate of morbidity and
mortality.1,2 There is growing evidence that a pathophysiologic
component of severe COVID-19 disease may be related to a
provoked procoagulant state.3-6 High rates of thromboembolic
complications of COVID-19 infection have been reported,7-11

and autopsy studies have identified evidence of macro- and
microembolism in COVID-19–infected patients.12,13 Further,
perturbations of coagulation markers, most notably dramatic
elevations in D-dimer levels, have been noted among
COVID-19 patients and have been associated with increased
mortality.3,14

Empiric therapeutic anticoagulation (AC) is now being used in
clinical practice at many centers and will be evaluated in ran-
domized clinical trials; however, despite the rationale for ther-
apeutic AC, the efficacy of such an approach remains largely
untested. We sought to provide evidence for or against the use
of therapeutic AC among these patients. To this end, we per-
formed a retrospective analysis of patients with confirmed
COVID-19, comparing outcomes among those who were and
were not receiving AC for unrelated indications at the time of
COVID-19 diagnosis. Our hypothesis was that AC prior to (and

during the earliest stages of) COVID-19 infection would be
protective for COVID-19–related outcomes.

We retrospectively reviewed all patients with laboratory-
confirmed COVID-19 diagnosed across a large New York City
health system between 1 March 2020 and 1 April 2020. Con-
firmed COVID-19 was defined by a positive result on a reverse
transcriptase polymerase chain reaction severe acute respiratory
syndrome coronavirus 2 assay. Hospitalized and ambulatory
patients were included in the analysis. The primary outcome
was all-cause mortality. Relevant secondary outcomes included
hospitalization, need for invasive mechanical ventilation, new
initiation of renal replacement therapy, imaging-confirmed
thrombosis, and major (World Health Organization grade $3)
bleeding.15 This study was approved by the Program for the
Protection of Human Subjects of the Icahn School of Medicine at
Mount Sinai and conducted in accordance with the Declaration
of Helsinki.

To adjusted for bias due to nonrandom allocation of potential
covariates among COVID-19 patients, we applied propensity
score-matching methods.16 Propensity scores were calculated
using a logistic regression model, adjusting for the following
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