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Follicular T-cell lymphoma (FTCL) is a rare nodal mature T-cell
neoplasm included in a broader category of angioimmuno-
blastic T-cell lymphoma (AITL) and other nodal lymphomas of
T follicular helper (TFH) cell origin by the 2017 World Health
Organization classification of tumors of hematopoietic and lym-
phoid tissues.1 The atypical, clear, medium-size neoplastic cells
display a commonTFHphenotypewith expression of CD4, CD10,
BCL6, PD-1, CXCL13, and ICOS.2 In contrast to AITL, FTCL is

characterized by a follicular growth pattern and lacks the pro-
liferation of high endothelial venules and the extrafollicular
expansion of follicular dendritic cells. The molecular pathology
of FTCL remains incompletely understood. Up to 40% of FTCLs
harbor t(5;9)(q33.3;q22.2) fusing the N-terminal part of the
interleukin-2 (IL-2)–inducible T-cell kinase (ITK) to the tyrosine kinase
domain of SYK (the spleen tyrosine kinase).2-4 The ITK-SYK fusion
protein acts as a constitutively active SYK tyrosine kinasewith in vitro
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and in vivo oncogenic properties.5,6 Notably, mutations in TET2,
DNMT3A, and RHOA recurrently occurring in AITL and other TFH-
derived lymphomas4,7 were recently identified in a few patients
with FTCL whose samples were analyzed,4 underpinning the
view that TFH-derived lymphomas represent variants of the same
disease.

To obtain additional insight into the molecular pathogenesis of
FTCL, we performed cytogenetic andmolecular studies of 6 new
patients from the University Hospital of Leuven and Université
Catholique de Louvain Mont-Godinne, Namur, Belgium. Pa-
thology and clinical records were reviewed. The institutional review
board (Commissie Medische Ethiek) of the University Hospital
approved this retrospective study and renounced the need
for written informed consent (study no. S56035, ML10127: 31/
01/2014). The methods used in the study can be found in
supplemental Methods (available on the Blood Web site).

All tumors were negative for ITK-SYK, as demonstrated by an
initial fluorescence in situ hybridization (FISH) assay (data not
shown). Gene expression profiling by RNA sequencing (RNA-seq)
showed that results from FTCL patients clustered together, over-
lapped with peripheral T-cell lymphoma not otherwise specified,
and were different compared with normal lymph nodes and
anaplastic large cell lymphoma (Figure 1A). Relevant clinical,
pathologic, and genetic data from the patients we reported on
are shown in Table 1. Notably, all of them were female, although
FTCL shows a slight male predominance.2 Their ages ranged
from 58 to 83 years (mean, 70 years). Representative mor-
phologic and immunophenotypic features of the lymphomas
are illustrated in supplemental Figure 1.

The karyotype of patient 1 showed a sole t(1;5)(p34;q21.3).
FISH identified involvement of the FER gene (5q21.3) (Figure 1B)
and revealed that t(1;5)(p34;q21.3) in fact masked a cryptic
inv(5)(q21.3q33.3). RNA-seq identified an in-frame fusion of
exon 8 of ITK (5q33.3) to exon 12 of FER. The fusion was con-
firmed by reverse transcription polymerase chain reaction and
Sanger sequencing (Figure 1C). Patient 2 harbored complex
numerical and structural rearrangements, as demonstrated by
multicolor FISH analysis (Figure 1D). FISH analysis with break-
apart probes for 14 candidate protein tyrosine kinase (PTK)
genes (supplemental Table 1) neighboring chromosomal re-
arrangements identified abreakpoint in FES at 15q26.1 (Figure 1E).
RNA-seq identified an in-frame fusion of exon 24 of RLTPR (RGD,
leucine-rich repeat, tropomodulin and proline-rich containing
protein) at 16q22.1 to exon 11 of FES. The t(15;16)(q26.1;q22.1)/
RLTPR-FES rearrangement was confirmed by reverse transcription
polymerase chain reaction and Sanger sequencing (Figure 1F).
Molecular cytogenetics and RNA-seq of the remaining 4 patients
have not identified any PTK fusion genes. By using RNA-seq data,
we analyzed the mutation status of genes that are recurrently
mutated in TFH-derived lymphomas (TET2, DNMT3A, RHOA,
IDH2, CD28, FYN, and VAV14,7). None of them were mutated in
patient 1 with ITK-FER, whereas patient 2 with RLTPR-FES harbored
TET2 mutations. The 4 PTK fusion-negative patients carried the
RHOAG17V and IDH2R172mutations aswell asTET2mutations (Table1).

Previous studies showed that ITK-SYK and ITK-FER fusions act as
constitutive tyrosine kinases. ITK-SYK mimics T-cell receptor
(TCR) signaling6 and both ITK-SYK and ITK-FER phosphorylate
STAT3.8 To determine the oncogenic properties of the novel

RLTPR-FES fusion protein, we expressed RLTPR-FES in the
murine hematopoietic IL-3–dependent Ba/F3 cell line. Upon IL-3
withdrawal, RLTPR-FES conferred growth factor–independent
growth, revealing that this fusion protein is constitutively active
and supports the proliferation and survival of Ba/F3 cells
(Figure 1G). Next, we investigated the ability of NVP-TAE684
(small molecule ATP-competitive ALK/FES inhibitor9,10) to inhibit
the activity of the RLTPR-FES kinase. Ba/F3 cells transformed by
RLTPR-FES responded in a dose-dependent manner to NVP-
TAE684 treatment and were slightly less sensitive to the inhibitor
than SEC31A-ALK–expressing Ba/F3 cells11 (Figure 1H). A direct
inhibitory effect of NVP-TAE684 on RLTPR-FES kinase activity
was confirmed by western blot analysis using phospho-specific
antibodies. Furthermore, phosphorylation of STAT3 was re-
duced upon treatment with NVP-TAE684. There was no effect
on phosphorylation of AKT, ERK1/2, and STAT5 (Figure 1I).
Immunohistochemistry confirmed high levels of STAT3 phos-
phorylation in the presence of RLTPR-FES and ITK-FER in the
biopsies (supplemental Figure 2). The heterogeneous tumor
composition (supplemental Figure 3A), did not allow the iden-
tification of a STAT3 signature in bulk RNA (supplemental
Figure 3B; supplemental Table 4). We used CIBERSORTx to
impute the expression of STAT3 target genes in CD41 T cells
from bulk RNA (Figure 1J). We confirmed high expression levels
of STAT3 target genes in patient 2 (RLTPR-FES). This was less
evident in patient 1 (ITK-FER), but this patient had the lowest
ratio of TFH cells over total CD41 T cells.

FER and FES are the only members of a subfamily of non-
receptor PTKs. FER is targeted by at least 3 tumor-related fusions:
SSBP2-FER identified in a patient with T-cell acute lympho-
blastic leukemia,12 MAN2A1-FER found in hepatocellular carci-
noma and other cancers,13 and ITK-FER detected in 1 patient with
peripheral T-cell lymphoma not otherwise specified.14 All fusions
resulted in aberrant constitutive tyrosine kinase activity of FER, and
their oncogenic potential was demonstrated in vitro. In contrast,
FES seems to play a dual role in tumorigenesis, acting as an on-
cogeneor a tumor suppressor, dependingon the cellular context.15,16

RLTPR, partner of FES, codes for proteins involved in cytoskeletal
organization and cell migration and is required for CD28 cos-
timulation in T cells.17 The RLTPR-FES fusion contains the RLTPR
homodimerization domain,18 which is presumably important for the
enhanced kinase activity of chimera, because FES oligomerization
enhances FES kinase activity.19

The occurrence of multiple mutations in patients with FTCL is in
line with the proposed model of multistage development of
TFH-derived lymphomas.7 These tumors seem to be driven by
2 types of cooperating mutations: (1) early premalignant (non-
lineage impact) mutations affecting genes involved in the reg-
ulation of DNAmethylation (TET2,DNMT3A, IDH2), which occur
in hematopoietic stem cells and confer proliferative advantage,
and (2) tumor-specific (lineage impact) mutations targeting
genes critical to T-cell biology. TFH differentiation requires
sustained TCR signaling, costimulation through ICOS and the
IL-21-STAT3 axis.20 RHOA mutations enhance ICOS signaling,21

and ITK-SYK mimics a TCR signal.6 RLTPR-FES and ITK-FER
represent genetic hits that hijack STAT3 signaling to drive TFH-
derived lymphoma.

Our study supports the critical role of PTK fusion genes in the
pathogenesis of FTCL and provides additional evidence that
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Figure 1. Genetic and functional analysis of the identified fusion genes. (A) Principal component (PC) analysis of gene counts for normal lymph nodes (n5 5), anaplastic large
cell lymphoma (n5 5), FTCL (n5 6), and peripheral T-cell lymphoma not otherwise specified (n5 14) using our data and publically available data.23,24 (B) Partial karyotype
illustrating inv(5)(q21q33) masked by t(1;5)(p34;q21) (breakpoints indicated by arrows) identified in patient 1 (upper panel) and metaphase FISH with a dual-color break-
apart probe for FER (lower panel). (C) Schematic depiction and DNA sequence trace of the ITK-FER fusion. (D) Complex karyotype, including cryptic t(15;16)(q26;q22),
identified by multicolor FISH in patient 2. (E) Metaphase FISH with a dual-color break-apart probe for FES performed in patient 2. (F) Schematic depiction and DNA
sequence trace of the RLTPR-FES fusion. (G) Growth curve for Ba/F3 cells transduced with either empty vector or RLTPR-FES. (H) Relative proliferation of Ba/F3 cells
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with empty vector or RLTPR-FES exposed to increasing concentrations of NVP-TA684. (J) Heat map representing the expression of STAT3 target genes in CD41 T cells.
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these can drive FTCL in the absence of RHOA mutations. Im-
portantly, we showed that TFH-derived lymphoma can be driven
by oncogenic activation of the STAT3 axis. Given that PTKs are
amenable for targeted therapy and that murine RHOA-driven
lymphomas are responsive to the PI3K inhibitor duvelisib21 and
the mTOR inhibitor everolimus,22 the use of new therapeutic
agents in FTCL should be considered.
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