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KEY PO INT S

l Human pluripotent
stem cells provide a
novel platform to
produce engineered
off-the-shelf NK cells
with efficient
antitumor activity.

l Human iPSC-NK cells
with high-affinity
noncleavable CD16a
enable antibodies to
more efficiently target
NK cells to diverse
tumor types.

Antibody-dependent cellular cytotoxicity (ADCC) is a key effectormechanism of natural killer
(NK) cells that is mediated by therapeutic monoclonal antibodies (mAbs). This process is
facilitated by the Fc receptor CD16a on human NK cells. CD16a appears to be the only
activating receptor on NK cells that is cleaved by the metalloprotease a disintegrin and
metalloproteinase-17 upon stimulation.Wepreviously demonstrated that a pointmutation of
CD16a prevents this activation-induced surface cleavage. This noncleavable CD16a variant is
now furthermodified to include thehigh-affinity noncleavable variant of CD16a (hnCD16) and
was engineered into human induced pluripotent stem cells (iPSCs) to create a renewable
source for human induced pluripotent stem cell–derived NK (hnCD16-iNK) cells. Compared
with unmodified iNK cells and peripheral blood–derived NK (PB-NK) cells, hnCD16-iNK cells
proved to be highly resistant to activation-induced cleavage of CD16a. We found that
hnCD16-iNK cells were functionally mature and exhibited enhanced ADCC against multiple
tumor targets. In vivo xenograft studies using a human B-cell lymphoma demonstrated that
treatment with hnCD16-iNK cells and anti-CD20 mAb led to significantly improved re-
gression of B-cell lymphoma compared with treatment utilizing anti-CD20mAbwith PB-NK

cells or unmodified iNK cells. hnCD16-iNK cells, combined with anti-HER2 mAb, also mediated improved survival in an
ovarian cancer xenograft model. Together, these findings show that hnCD16-iNK cells combined with mAbs are highly
effective against hematologic malignancies and solid tumors that are typically resistant to NK cell–mediated killing,
demonstrating the feasibility of producing a standardized off-the-shelf engineered NK cell therapy with improved
ADCC properties to treat malignancies that are otherwise refractory. (Blood. 2020;135(6):399-410)

Introduction
Cell-based anticancer immunotherapies have experienced great
advances in the past few years.1 Although chimeric antigen
receptor (CAR)–expressing T cells have garnered the most at-
tention, clinical trials using natural killer (NK) cells have dem-
onstrated that they are safe and effective.2-5 In recent clinical
trials, NK cells have been shown to possess potent anti–acute
myeloid leukemia effects without eliciting serious adverse ef-
fects, such as graft-versus-host disease, neurotoxicity, and cy-
tokine release syndrome.4,6,7 However, the adoptive transfer of
NK cells to patients with B-cell lymphoma, ovarian carcinoma, or
renal cell carcinoma has demonstrated low efficacy and has
lacked specific tumor-targeting receptors8-10.

NK cell–based clinical trials have used a variety of cell sources,
including peripheral blood–derived NK (PB-NK) cells, umbilical
cord blood–isolated NK (UCB-NK) cells, umbilical cord blood
CD341 cell–derived NK cells, and the NK cell line NK-92.7,11-14

Although these trials have demonstrated clinical safety, each cell

source is confined by limitations.11,12,15 The NK cell yields and
subsets from PB-NK cells and UCB-NK cells are extremely donor
dependent and are not derived from a single renewable source,
making product standardization and multiple-dosing strategies
difficult.16,17 Additionally, genetic modification of primary NK
cells is challenging and highly variable, making it difficult to
develop consistent and reproducible engineered NK cell ther-
apies.18 Lastly, although NK-92 cells are from a single source,
they lack many conventional NK cell markers and, as a trans-
formed cell, must be mitotically inactivated before infusion to
prevent uncontrolled proliferation.13 This eliminates the ability of
NK-92 cell treatment to expand upon infusion, a critical factor
for NK cell antitumor activity.2,4,7,19 In contrast, human induced
pluripotent stem cell (iPSC)–derived NK (iNK) cells can be
produced in a homogenous and clinically scalable manner, are
capable of being genetically edited at the iPSC stage, and have
demonstrated in vivo proliferative capacity.20-23 Therefore, iNK
cells are an important source of standardized off-the-shelf
NK cell therapy to treat refractory malignancies.24
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NK cell–mediated antitumor activity is regulated through a
repertoire of activating and inhibitory cell surface receptors,
including natural cytotoxicity receptors, killer immunoglobulin
receptors, and immunoglobulin G (IgG) Fc receptor FcgRIIIa
(CD16a).4,5,25 CD16a binds the Fc portion of IgG when attached
to a target cell to mediate antibody-dependent cell-mediated
cytotoxicity (ADCC), a key effector and tumor antigen-targeting
mechanism of NK cells.26 The binding affinity of CD16a to IgG
varies between its allelic variants. Specifically, CD16a with valine
at position 158 (158V) has a higher affinity for IgG than does
CD16a with phenylalanine at the same position.27,28 In addition
to the clinical observation that NK cells enhance the efficacy
of therapeutic monoclonal antibodies (mAbs),29 CD16a has
been shown to play an important role in the clinical setting,
because patients with high-affinity CD16a with 158V have had
greater objective responses and progression-free survival when
treated with cetuximab, trastuzumab, or rituximab.30-32 Notably,
the CD16a molecule is cleaved from the surface of activated
NK cells by a disintegrin and metalloproteinase-17 (ADAM17),
which is constitutively expressed on the surface of NK cells,33-36

leading to NK cell dysfunction and reduced ADCC capacity.35

Our group previously identified the ADAM17 cleavage site of
CD16 and created a high-affinity noncleavable version of CD16a
(hnCD16) by mutating the cleavage site in the 158V variant.33

We hypothesized that engineering iNK cells with hnCD16 would
overcome the challenges faced with NK cell therapies. Specifi-
cally, we demonstrate that iNK cells uniformly expressing hnCD16
(hnCD16-iNK cells) exhibit potent ADCC against hematological
malignancies and solid tumors. Notably, a multidose regimen of
hnCD16-iNK cells derived from an engineered clonal human iPSC
line administeredwith anti-CD20mAb treatmentmediatedpotent
activity and improved long-term survival in a mouse xenograft
lymphoma model. Therefore, standardized off-the-shelf hnCD16-
iNK cells with enhanced ADCC effector function, in combination
with readily available anti-tumor mAbs, provide a novel clinical
strategy to treat cancer.

Methods
Derivation and expansion of NK cells from hiPSCs
The derivation of NK cells from human iPSCs has been described
previously.20,37 iNK cells were expanded using irradiated K562–
IL21–4-1BBL cells (details can be found in supplemental Methods,
available on the Blood Web site).

Cytotoxicity assays
A CellEvent Caspase-3/7 Green Flow Cytometry Assay Kit
(Thermo Fisher Scientific; C10427) was used to quantify NK cell
cytotoxicity after 4 hours of incubation with target cells. Real-time
long-term cytotoxicity was monitored and quantified using an
IncuCyte Caspase-3/7 Green Apoptosis Assay (Essen Bioscience;
4440). Details can be found in supplemental Methods.

CD107a expression and IFN-g staining
CD107a expression was assessed and interferon-g (IFN-g) staining
was performed as previously described.23 NK cells were cocultured
with tumor targets at a 1:1 effector-to-target ratio. Details
about the staining procedure are available in supplemental
Methods.

Mouse models
NOD/SCID/gc2/2 (NSG)mice (The Jackson Laboratory; n5 5 per
group) were used for in vivo experiments. Mice were sublethally
irradiated (225 cGy) 1 day prior to tumor engraftment. Mice were
given 1 3 105 to 2.5 3 105 Luc-expressing tumor cells IV or via
intraperitoneal injection. For the intraperitoneal injection tumor
models, NK cells (107 cells per mouse) were injected intra-
peritoneally 4 days after tumor transplant. One day prior to NK
cell injection, mice were assayed for tumor burden using
bioluminescent imaging (BLI) and then placed into equivalent
BLI-expressing groups. For the IV models, NK cells (107 cells
per mouse) were injected IV 1 day after tumor cell infusion. NK
cells were supported by the injection of interleukin-2 (IL-2) and/
or IL-15, as reported previously.22 Tumor burden was determined
by BLI using a Xenogen IVIS Imaging system. Mice were eutha-
nizedwhen they lost the ability to ambulate. Allmicewere housed,
treated, and handled in accordance with the guidelines set forth
by the University of California, San Diego Institutional Animal Care
and Use Committee and the National Institutes of Health’s Guide
for the Care and Use of Laboratory Animals.

Flow cytometry
All antibodies used are listed in supplemental Methods. Flow
cytometry was performed on a BD FACSCalibur, a BD LSR II, or
a NovoCyte 3000, and data were analyzed using FlowJo or
NovoExpress software.

Statistical analysis
Data are presented as the mean 6 standard error of the mean
(SEM). In vitro data are from 3 independent experiments. Dif-
ferences between groups were evaluated using 1-way analysis of
variance. For the quantification of in vivo image, data are pre-
sented as the mean 6 SEM, and differences between groups
were analyzed using a 2-tailed Student t test. The survival curve
was analyzed using the log-rank (Mantel-Cox) test. Statistical
analyses were performed using GraphPad Prism. All tests were
considered significant at P , .05.

Results
hnCD16-iPSC–derived NK cells are phenotypically
mature with stable expression of CD16a
To maintain high levels of stable CD16a expression on mature
NK cells, we engineered human iPSCs with a non-ADAM17
cleavable version of the high-affinity CD16a 158V variant
(supplemental Figure 1A-B).33 From the transduced hnCD16
pool, clonal iPSC lines were generated and screened to ensure
a homogenous population of starting material (supplemental
Figure 1C).38 The selected hnCD16-engineered iPSC clonal
cell line stably expressed homogenous levels of hnCD16
(.99% CD161; supplemental Figure 1D). Overexpression of
hnCD16 had no significant effect on the morphology or growth
rate of hnCD16-engineered iPSCs, which maintained homoge-
nous expression of pluripotency master regulators NANOG and
OCT4, as determined by flow cytometry (supplemental Figure 1E),
as well as hiPSC surface markers (SSEA4, TRA-1-81, and CD30;
supplemental Figure 1F). Moreover, integration site analysis
showed that the hnCD16-iPSC clonal line that we selected has
3 copies of hnCD16 inserted. The hnCD16 transgenewas inserted
into intron regions or an intergenic region that would not lead to
any changes in NK cell growth or activity (supplemental Table 1).
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We then generated NK cells from hnCD16-engineered iPSCs
using an in vitro differentiation method previously reported by
our group (supplemental Figure 1B).20,39 Similar to PB-NK cells,
unmodified iNK cells and hnCD16-iNK cells consist of a ho-
mogeneous population of CD561 NK cells that also coexpress
typical NK cell surface antigens: NKp44, NKp46, NKG2D, TRAIL,

and Fas ligand (Figure 1A). They also expressed NK cell mat-
uration markers (eg, CD94, CD2, NKG2C, and CD57) and
homing receptors (eg, CXCR4 andCCR6) (Figure 1A). Expression
of CD62L, another receptor that can be cleaved by ADAM17,40,41

was very low in iNK cells compared with PB-NK cells (sup-
plemental Figure 2A). Additional characterization studies
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Figure 1. hnCD16-iPSC–derivedNK cells are functionallymature and do not downregulate CD16 expression upon activation. (A) Unmodified iNK cells, hnCD16-iNK cells,
and adult PB-NK cells were stained and analyzed by flow cytometry for CD56 and CD16 and the indicated NK cell surface receptors. In each panel, red line: isotype control; blue
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Figure 2. hnCD16-iNK cells demonstrate improved in vitro ADCC againstmultiple tumor types. (A) hnCD16-iNK cells and unmodified iNK cells produce CD107a and IFN-g
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demonstrate that iNK cells have a longer telomere length than do
PB-NK cells (supplemental Figure 1F).

hnCD16-iNK cells were expanded using artificial antigen pre-
senting cells (aAPCs), as previously reported.22,42 Under these
culture and expansion conditions, nearly all hnCD16-iNK cells
expressed CD16 (99% CD161; Figure 1A), whereas the endog-
enous expression of CD16 on unmodified iNK cells and PB-NK
cells under the same culture conditions is typically between 20%
and 60% (Figure 1A). These results are consistent with previous
studies demonstrating that endogenous CD16 is cleaved from
the surface of NK cells by ADAM17 upon activation by stimuli,
such as cytokines and target cells.33,36 To assess the stability of
CD16 expression by hnCD16-iNK cells, we activated unmodified
iNK cells, hnCD16-iNK cells, and PB-NK cells with different
stimuli, including PMA/ionomycin, K562 cells, the CD201 Burkitt
lymphoma cell line Raji, and Raji cells in the presence of the anti-
CD20 mAb rituximab (Figure 1B-C). For example, after stimu-
lation with K562 target cells or PMA/ionomycin, PB-NK cells and
unmodified iNK cells lost the majority of their CD16 expression,
whereas the majority of hnCD16-iNK cells maintained high
levels of CD16 expression (Figure 1C). It is also important to note
that unmodified iNK cells are homozygous for low-affinity CD16
(158F), whereas PB-NK cells are heterozygous (supplemental
Figure 1G), indicating that low-affinity and high-affinity CD16
can be downregulated on activated NK cells. Importantly, sta-
ble CD16 surface expression on hnCD16-iNK cells led to en-
hanced cytokine production when CD16 was activated directly
(Figure 1D). In support of this, the production of tumor necrosis
factor-a (TNF-a) and IFN-g in response to CD16a stimulation
was directly correlated with the level of surface CD16 expression
(Figure 1A,C-D).

hnCD16-iNK cells have superior in vitro ADCC
against multiple tumor types
Because CD16 is a key activating receptor on NK cells that
mediates ADCC, we examined the ability of hnCD16-iNK cells to
mediate ADCC against multiple cancer cell lines, including Raji
cells, A549 (lung adenocarcinoma) cells, SKOV-3 (ovarian ade-
nocarcinoma) cells, andCal27 (squamous cell carcinoma) cells. The
antibodies that recognize antigens on these tumor cell lines (CD20
on Raji; EGFR on A549, SKOV-3, and Cal27; HER2 on SKOV-3) are
all routinely used clinically with proven efficacy.43-45

We first used degranulation (indicated by the cell surface ex-
pression of CD107a) and IFN-g/TNF-a expression as parameters
for NK cell activity to evaluate antibody-dependent effector
function against different cancer cell populations.21,23 When Raji,
SKOV-3, and Cal27 cells were cocultured with unmodified iNK
cells or with hnCD16-iNK cells alone, minimal expression of
CD107a, IFN-g (Figure 2A), and TNF-a (supplemental Figure 2B)
was detected. However, when target cells were pretreated with
their respective antibodies (anti-CD20: rituximab; anti-HER2:
trastuzumab; and anti-EGFR: cetuximab), CD107a1 hnCD16-iNK

cells were increased 3.9-, 8-, and 4.5-fold for Raji cells 1 ritux-
imab, SKOV-3 cells1 trastuzumab, and Cal27 cells1 cetuximab,
respectively (Figure 2A-B), and IFNg1 hnCD16-iNK cells were
increased 5.1-, 12-, and 6.5-fold (Figure 2A,C) for Raji cells 1
rituximab, SKOV-3 cells 1 trastuzumab, and Cal27 cells 1
cetuximab, respectively. Production of IFN-g correlates closely
with production of TNF-a in NK cells (supplemental Figure 2). In
contrast, stimulation of unmodified iNK cells with target cells and
antibodies did not mediate increased CD107a, IFN-g, (Figure
2A-B) or TNF-a (supplemental Figure 2) expression, suggesting
that hnCD16 improved the antibody-dependent cytokine re-
sponse against these tumor cells. In addition, we systemically
evaluated cytokine production by comparing TNF-a and IFN-g
production and CD107a surface expression of unmodified iNK
cells, hnCD16-iNK cells, UCB-NK cells, and PB-NK cells upon
stimulation with P815 cells (mouse lymphoblast-like mastocy-
toma cell line),46 P815 cells1 anti-CD16 mAb, Raji cells, and Raji
cells1 anti-CD20 mAb. Similarly, hnCD16-iNK cells showed the
greatest TNF-a and IFN-g production and CD107a surface ex-
pression with P815 1 anti-CD16 mAb or Raji 1 anti-CD20 mAb
stimulation, suggesting the strongest antibody-mediated re-
sponse against these tumor targets (Figure 2C).

We then assessed these different NK cell populations for ADCC.
Similar to the results for NK cell degranulation and IFN-g ex-
pression, unmodified iNK cells demonstrated relatively limited
killing of Raji cells, even with the addition of an anti-CD20 mAb
(Figure 2D). In contrast, the addition of an anti-CD20 mAb to
hnCD16-iNK cells cocultured with Raji cells led to a marked
increase in cell killing (Figure 2D). A prolonged time course
analysis using various doses of anti-CD20 mAb further demon-
strated the potent ADCC activity of hnCD16-iNK cells, even at
antibody concentrations as low as 0.1 mg/mL, which may improve
the efficacy of mAb treatment41 (Figure 2E). Studies comparing
hnCD16-iNK cells with PB-NK cells using this longer (.60 hours)
cytotoxicity assay against SKOV-3 cells (with or without trastuzu-
mab; Figure 2F) and A549 cells (with or without cetuximab;
Figure 2G) also demonstrated that hnCD16-iNK cells mediated
improved ADCC compared with PB-NK cells. To further investi-
gate the contribution of the noncleavable CD16 variant to the
improved ADCC, we compared hnCD16-iNK cells and iNK cells
engineered with natural (cleavable) high-affinity CD16 (WTCD16-
iNK cells).33 hnCD16-iNK cells and WTCD16-iNK cells exhibit
similar expression levels of CD16 (supplemental Figure 3A-B).
In line with our previous findings (Figure 1C), CD16 expression
in WTCD16-iNK cells was downregulated when cells were
activated with PMA/ionomycin, Raji cells 1 anti-CD20 mAb
rituximab, or Cal-27 cells1 anti-EGFRmAb cetuximab for 4 hours
(supplemental Figure 3C). In contrast, hnCD16-iNK cells main-
tained uniformly high levels of CD16 expression (supplemental
Figure 3C). Notably, hnCD16-iNK cells mediated ADCC better
than did WTCD16-iNK cells (supplemental Figure 3D-E). These
results demonstrate that noncleavable CD16 contributes to the
improved ADCC in hnCD16-iNK cells.

Figure 2 (continued) (unstimulated) or with the indicated stimuli. Heat maps quantify the frequency of NK cells that are positive for IFN-g, TNF-a, or CD107a and are scaled from
0% (black) to 30% (yellow), with background expression subtracted such that unstimulated5 0. (D) ADCC against Raji cells was analyzed using a caspase-3/7 green flow cytometry
assay. Raji cells were incubated with NK cells, with or without anti-CD20 antibody, for 4 hours. (E) ADCC against Raji cells was analyzed over a 24-hour period using an IncuCyte
real-time imaging system. Anti-CD20 was titrated from 0.001 mg/mL to 20 mg/mL. (F-G) Long-term (66-hour) ADCC assays using the IncuCyte real-time imaging system. ADCC
against the lung cancer cell line A549 with and without anti-EGFRmAb (F) and against the ovarian cancer cell line SKOV-3 with and without anti-HER2mAb (G). Data in panels F-G
are presented as the normalized frequency of target cells remaining, where target cells without NK effectors 5 100%. Data in panels D-G were repeated independently in
3 separate experiments. ***P , .001, 2-tailed Student t test.
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Next, we investigated downstream signaling mediated by
CD16 activation. Upon cross-linking by anti-CD16 antibody,
all 3 cell populations mediate efficient downstream signaling
activation, as shown by phospho-flow staining of CD3z, ZAP70,
and SLP76, which are downstream targets of CD16 activation47

(supplemental Figure 4A). This was supported by immuno-
blot analysis that also demonstrates ERK phosphorylation
(supplemental Figure 4B). Furthermore, we studied the de-
tachment of NK cells after killing target cells using an
IncuCyte real-time imaging system. Again, hnCD16-iNK cells
show significantly better killing against Cal27 cells with the
addition of cetuximab (supplemental Figure 5A-D). Notably,
the number of target cells killed per single hnCD16-iNK cell
was significantly higher than that seen with unmodified iNK
cells and PB-NK cells (supplemental Figure 5D). The per-
centage of NK cells detached from targets and the detach-
ment time after killing targets are also similar among hnCD16-
iNK cells, unmodified iNK cells, and PB-NK cells (supplemental
Figure 5E-F), demonstrating that hnCD16 does not inhibit the
detachment of NK cells from targets (see also supplemental
Videos 1-3).

A single dose of hnCD16-iNK cells effectively
mediates in vivo ADCC against human
B-cell lymphoma
To evaluate the in vivo ADCC activity of the hnCD16-iNK cells, we
used a Raji-Luc xenograft mouse model (Figure 3A) to compare 8
treatment groups: tumor alone (untreated), anti-CD20mAb alone,
and PB-NK cells, unmodified iNK cells, or hnCD16-iNK cells alone
or in combination with anti-CD20 mAb (Figure 3B). As previously
seen with NK cells in this in vivo xenograft model,48 treatment with
PB-NK cells, unmodified iNK cells, or hnCD16-iNK cells alone did
not inhibit tumor growth, and mice in these 3 groups show tumor
burden similar to that seen in the untreated tumor group at all time
points (Figure 3B-C). In comparison with anti-CD20 mAb treat-
ment alone, combination treatment with hnCD16-iNK and anti-
CD20 mAb was the only one to result in a significant decrease in
tumor burden (at day 10 posttreatment, **P , .001) (Figure 3C).
Specifically, a single dose of anti-CD20 mAb improved median
survival from 27 to 38 days, whereas the combination of PB-NK
cells or unmodified iNK cells with anti-CD20mAb further inhibited
tumor progression and resulted in significantly better median
survival (43 and 44 days, respectively; Figure 3D). Combination
treatment with hnCD16-iNK cells and anti-CD20 mAb led to an
additional increase in median survival to 52 days (Figure 3D; anti-
CD20 vs hnCD16-iNK cells 1 anti-CD20; P 5 .0027). However,
survival in the hnCD16-iNK cells1 anti-CD20 mAb group was not
statistically better than in the PB-NK cells1 anti-CD20mAb group
or the unmodified iNK cells1 anti-CD20 mAb group (Figure 3D).
Therefore, in this single-dose model, any of the 3 NK cell pop-
ulations combined with anti-CD20 treatment mediated effective
antitumor activity in vivo (Figure 3D).

Multiple doses of hnCD16-iNK cells mediate
improved survival in an in vivo human lymphoma
xenograft model
In the single-dose study, we identified a decrease in tumor
burden at day 10 (Figure 3C); however, relapse was observed in
most of the treated mice, which may be due to human NK cells
having a limited life span after adoptive transfer.2,22,23 We next
examined whether multiple doses of NK cells1 anti-CD20 mAb
would further augment in vivo ADCC. We performed a 1-month

dosing study consisting of 4 weekly doses of NK cells, with or
without anti-CD20 mAb (Figure 4A). Because unmodified iNK
cells and PB-NK cells, in combination with anti-CD20, show
similar tumor suppression in the single-dose study, in this study
we focused our comparison on hnCD16-iNK cells and PB-NK
cells. Similar to the single-dose study, all of the mice in the
untreated groups died between day 23 and day 26 (median
survival, 25 days; Figure 4). Again, 4 weekly doses of PB-NK cells
or hnCD16-iNK cells alone had no effect on tumor progression
(Figure 4B). As expected, 4 weekly doses of anti-CD20 mAb
alone induced tumor regression (Figure 4B-C) and prolonged
the median survival to 47 days (Figure 4D). Notably, median
survival was longer with multiple NK cell doses compared with
the single-dose study (hnCD16-iNK cells 1 anti-CD20 mAb),
demonstrating significant improvement in antitumor activity, with
a mean survival of 76 days (Figure 4D; anti-CD20 vs hnCD16-iNK
cells 1 anti-CD20; P 5 .0065).

Interestingly, of the 3 mice in the PB-NK cells1 anti-CD20 mAb
group that did not exhibit detectable tumor at day 14, all exhibited
tumor relapse by day 28 (Figure 4B). However, only 1 of the 4mice
that had undetectable tumor at day 14 in the hnCD16-iNK cells1
anti-CD20 mAb group experienced tumor relapse at day 28
(Figure 4B), and 2 mice maintained complete remission (.200
days), demonstrating amore durable antitumor response (Figure
4D). Furthermore, the survival rate of mice receiving multi-
ple dosing of hnCD16-iNK cells 1 anti-CD20 mAb treatment
was significantly better than for PB-NK cells 1 anti-CD20 mAb
treatment (P 5 .0485; Figure 4D). These results support the
strategy of multidosing of hnCD16-iNK cells to maximize ADCC
in vivo to enable long-term survival and possible complete tumor
elimination.

hnCD16-iNK cells effectively mediate ADCC in an
in vivo human lymphoma systemic tumor model
To evaluate the in vivo ADCC activity of hnCD16-iNK cells in a
more clinically relevantmodel, we used an in vivo systemic tumor
model in which Raji-Luc tumor cells and NK cells were dosed IV
(Figure 5A). In this model, tumor distribution is disseminated,
and disease progression is more aggressive than when tumor
cells are delivered intraperitoneally. The median survival of mice
in untreated groups was 17 days (Figure 5D). Consistent with
previous studies, treatment with PB-NK cells, unmodified iNK
cells, or hnCD16-iNK cells alone did not inhibit tumor growth
(Figure 5B). A single dose of anti-CD20 mAb alone decreased
tumor burden (Figure 5B-C) and improved the median survival
from 17 to 35 days (Figure 5D; P5 .021). Combination treatment
using PB-NK cells or unmodified iNK cells1 anti-CD20 mAb did
not improve tumor control in comparison with anti-CD20 mAb
treatment alone (Figure 5B-C). As with the intraperitoneal in-
jection model, combination treatment with hnCD16-iNK cells 1
anti-CD20 mAb mediated improved antitumor activity with sig-
nificantly better survival than anti-CD20 mAb alone (P 5 .0269),
PB-NK cells 1 anti-CD20 mAb (P 5 .0342), or unmodified iNK
cells 1 anti-CD20 mAb (P 5 .0350; Figure 5D). Notably, 3 mice in
the hnCD16-iNK cells 1 anti-CD20 mAb group maintained com-
plete remission at 100 days posttumor transplant, whereas nomice
in other groups survived beyond 60 days (Figure 5D). These results
further confirmed that hnCD16-iNK cells can effectively mediate
ADCC and provide a more durable antitumor response against
human lymphoma.
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We then investigated the in vivo persistence and homing of NK
cells in a separate group of tumor-bearing mice by examin-
ing blood, bone marrow, spleen, kidney, liver, and heart for
the presence of NK cells over 21 days postinjection. On day 7,
human NK cells were detected in all of the organs examined
(supplemental Figure 6A-B), although some of the cells seen in
organs may be from blood perfusing those organs, because
this cannot be distinguished when organs are processed for
analysis. The infused NK cells reached a peak at day 7 and
persisted for up to 21 days (supplemental Figure 6C). PD-1
expression was not detected on iNK cells before or after
adoptive transfer (supplemental Figure 6D). Unmodified iNK

cells, hnCD16-iNK cells, and PB-NK cells show similar persis-
tence, and homing was confirmed by immunohistochemistry
staining in organs (supplemental Figure 6E), indicating that the
improved antitumor effect mediated by hnCD16-iNK cells was
due to increased ADCC rather than differences in persistence
or homing.

hnCD16-iNK cells 1 anti-HER2 mAb effectively
target ovarian cancer cells in vivo
To test whether hnCD16-iNK cells can also elicit antitumor ef-
fects against solid tumors in vivo, we used a mouse xenograft
model and SKOV-3 ovarian carcinoma cells (Figure 6). Combination
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reading. On day 4 after transplant, mice were left untreated or were treated with 13 107 PB-NK cells, unmodified iNK cells, or hnCD16-iNK cells, alone or in combination with
300 mg of anti-CD20 antibody. Mice were treated with IL-15 for the first week and with IL-2 for 3 weeks, and IVIS imaging was performed to track tumor progression. (B) Tumor burden
was determined by BLI. (C) Quantification of IVIS imaging time course. Data are mean6 SEM for themice in panel B. Data were not significant for anti-CD20 alone vs unmodified
iNK cells 1 anti-CD20 or for PB-NK cells1 anti-CD20 at all time points. (D) Kaplan-Meier curve demonstrating survival of the experimental groups. The median survival for the
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treatment with hnCD16-iNK cells 1 anti-HER2 mAb led to
significantly lower tumor burden at all time points between day
18 and day 60 (Figure 6A-B). Moreover, hnCD16-iNK cells 1
anti-HER2 mAb significantly improved survival (P 5 .0040;
Figure 6C). These results demonstrate that hnCD16-iNK cells
can also mediate an antitumor response in an in vivo ovarian
cancer model when combined with anti-HER2.

A key challenge in developing off-the-shelf adoptive cell ther-
apies is getting cells from the manufacturing site to the patient
without compromising safety or efficacy.49 Cryopreservation
provides the best opportunity to deliver multiple doses, which
can augment the antitumor effect while maintaining the high
levels of killing seen in previous studies,50 provided that the cell
viability and function are not negatively impacted upon thawing.
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To test the anticancer activity of hnCD16-iNK cells after cryo-
preservation, we compared cryopreserved cells and fresh cells in
the SKOV-3 cell ovarian tumor xenograft model (Figure 6D).
Notably, one-time dosing of cryopreserved hnCD16-iNK cells
demonstrated similar antitumor activity as fresh hnCD16-iNK
cells (Figure 6D-E).

Discussion
The ability to improve targeting and specificity are key require-
ments to better enable NK cell–mediated killing of solid tumors
and lymphoidmalignancies that are typically more resistant to this
therapeutic modality. Here, we demonstrate the ability to use
human pluripotent stem cells as a platform to produce engineered
NK cells that can be effectively combined with therapeutic mAbs

to successfully target and kill typically NK cell–resistant tumors.
Specifically, creation and use of a novel CD16 molecule that
contains the 158V high-affinity variant, combined with an S197P
mutation that confers resistance to ADAM17-mediated cleavage,
allows us to produceNK cells with improved ADCC activity in vitro
and in vivo. In this model, CD16 engagement and signaling
provide an important strategy to make NK cells antigen specific.
These engineered iPSC-derived NK cells can now be produced at
a clinical scale,20,24,51 as well as cryopreserved (Figure 6), to enable
upcoming clinical trials of hnCD16-iNK cells.

NK cell–based adoptive immunotherapy provides a promising
therapeutic option for allogeneic cancer therapy, with many
clinical trials underway for a variety of hematological malignan-
cies and solid tumors.3-5 Most of these clinical trials use allogeneic
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PB-NK cells, and significant remissions have been observed when
they are used to treat acute myeloid leukemia.2,19 However, as
noted, the efficacy of PB-NK cells in the treatment of solid tumors,
such as ovarian carcinoma and lung cancer, has been limited,10,15

likely as a result of the poor infiltration, inefficient homing, lack of
specificity, and decreased persistence of NK cells in these pa-
tients.52 The solid tumor microenvironment can also act to de-
crease immune cell functions, including the elicitation of CD16
shedding.53 Humanpluripotent stem cell-derivedNKcells provide
a novel option for adoptive immune cell therapy that may avoid
some of the limitations of PB-NK cells and UCB-NK cells.20,24

Specifically, iPSCs can be routinely genetically modified on a
clonal level to produce a homogeneous population of uniform
engineered NK cells, rather than the heterogeneous NK cells that
are typically obtained from peripheral blood or umbilical cord
blood.21 Additionally, iNK cells can be expanded into a clinically
scalable cell population that is suitable to treat hundreds or
thousands of patients simultaneously. Indeed, our studies dem-
onstrate that repeat dosing, combined with a targeting mAb,
leads to long-term elimination of otherwise refractory tumor cells
in these xenograft models (Figures 4 and 5).

Unlike autologous CAR-T cells that persist and remain functional
for years posttransplantation,54 allogeneic NK cells normally sur-
vive in the host for only a few weeks in the adoptive transfer
setting.2,7,10,19 However, considering the toxicities seen with CAR
T-cell therapies,55 this property of allogeneic NK cells may be
advantageous to enable more precise dosing strategies without
significant concern for limiting toxicities. The use of PB-NK cells
and UCB-NK cells does not typically allow for repeat dosing,
because all of the cells collected or produced are used for the
initial treatment, often after a dose of lymphodepleting chemo-
therapy. Indeed, clinical trials using genetically unmodified iPSC-
derived NK cells have been initiated with repeat cell dosing on a
weekly basis, for a total of 3 doses (clinicaltrials.govNCT03841110).
Other treatment schedules, such as monthly dosing, possibly
combined with chemotherapy to treat solid tumors, can also be
envisioned. Because previous trials of allogeneic NK cell–based
therapies utilizing PB-NK cells, UCB-NK cells, or NK92 cells did not
show complications, such as cytokine release syndrome, neu-
rotoxicity, or graft-versus-host disease, that are seen with CAR
T cells, these trials will be essential to demonstrate the safety
and suitability of this multidosing strategy.
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Untreated vs anti-HER2, P 5 .0140; anti-HER2 vs anti-HER2 1 hnCD16 iNK1, P 5 .004; 2-tailed log-rank test. (D) Mice injected with Luc-expressing SKOV-3 cells were treated
with 1 3 107 (1e7) or 2 3 107 (2e7) cryopreserved hnCD16-iNK cells or with 2 3 107 fresh hnCD16-iNK cells 1 anti-HER2 antibody. (D) IVIS imaging. (E) Quantification of the
geometric mean 6 standard deviation for the mice in panel D.
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A recent study demonstrated that ADAM17-mediated CD16a
shedding plays a role in the disassembly of the NK cell immune
synapse during ADCC and regulates NK cell motility and
detachment from target cells, potentially leading to improved
NK cell–mediated serial killing of tumor targets.56 However, we
did not observe the inhibition of detachment from targets by
hnCD16 in hnCD16-iNK cells (supplemental Figure 5). Further-
more, a direct comparison in long-term assays showed superior
killing with hnCD16 compared with wild-type CD16. The dis-
crepancy might be caused by different NK cells used in these
studies. Srpan et al56 used NK-92 cells, which do not express
endogenous CD16 and cannot mediate ADCC. Moreover, those
studies did not test the effects of blocking CD16a shedding on
NK cell effector functions in vivo and, in particular, in the tumor
microenvironment. Notably, NK cells from patients with solid
tumors have been shown to have lower CD16 expression and
function compared with healthy controls.57 For these studies, we
used multiple in vivo tumor models that all demonstrate the
benefits of stable high-level noncleavable CD16a expression by
NK cells.

In conclusion, this platform therapy provides high impact for
immediate translation because it can be combined with essen-
tially any readily available anti-tumor antibody (eg, rituximab,
trastuzumab, or cetuximab). This offers several advantages over
CAR T-cell therapy and avoids the complexities of develop-
ing individualized products with single specificity. Our data
demonstrate the advantages of multidosing strategies and the
ability to use cryopreserved iNK cell products to provide a new
off-the-shelf therapeutic strategy for improved cancer con-
trol when used in combination with anti-cancer mAbs that
mediate ADCC.
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