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KEY PO INT S

l OS of patients with
FLT3-ITD differs
significantly when
categorized by the
2017 ELN risk
stratification.

l In a multivariate Cox
model for OS, there is
a consistent beneficial
effect of midostaurin
across the 3 2017 ELN
risk groups.

Patients with acute myeloid leukemia (AML) harboring FLT3 internal tandem duplications
(ITDs) have poor outcomes, in particular AML with a high (‡0.5) mutant/wild-type allelic ratio
(AR). The 2017 European LeukemiaNet (ELN) recommendations defined 4 distinct FLT3-ITD
genotypes based on the ITD AR and the NPM1 mutational status. In this retrospective
exploratory study, we investigated the prognostic and predictive impact of theNPM1/FLT3-
ITD genotypes categorized according to the 2017 ELN risk groups in patients randomized
within the RATIFY trial, which evaluated the addition of midostaurin to standard chemo-
therapy. The 4 NPM1/FLT3-ITD genotypes differed significantly with regard to clinical and
concurrent genetic features. Complete ELN risk categorization could be done in 318 of 549
trial patients with FLT3-ITDAML. Significant factors for response after 1 or 2 induction cycles
were ELN risk group and white blood cell (WBC) counts; treatment with midostaurin had no
influence. Overall survival (OS) differed significantly among ELN risk groups, with estimated
5-year OS probabilities of 0.63, 0.43, and 0.33 for favorable-, intermediate-, and adverse-risk

groups, respectively (P < .001). Amultivariate Coxmodel for OS using allogeneic hematopoietic cell transplantation (HCT)
in first complete remission as a time-dependent variable revealed treatment with midostaurin, allogeneic HCT, ELN
favorable-riskgroup, and lowerWBCcounts as significant favorable factors. In thismodel, therewas a consistent beneficial
effect of midostaurin across ELN risk groups. (Blood. 2020;135(5):371-380)

Introduction
Activating mutations of FLT3 are among the most common mu-
tations in patients with acute myeloid leukemia (AML).1-3 There are
2 major types of mutations, internal tandem duplications (ITDs),
and mutations within the activation loop of the second tyrosine
kinase domain.4 ITDs are in-frame duplications that involve dif-
ferent functional domains of the receptor, most commonly the

juxtamembrane domain, and lead to constitutive activation of the
receptor.4 FLT3-ITD has consistently been associated with higher
white blood cell (WBC) counts, higher percentages of bonemarrow
(BM) blast cells, an increased risk for relapse, and inferior survival.5-7

Factors that have been shown to influence the prognostic impact of
FLT3-ITDs are the mutational context, in particular the mutational
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status of NPM1,8-10 the insertion site of the ITD,11-13 and, impor-
tantly, the allelic ratio (AR),14-16 which is most commonly assessed
by DNA fragment analysis using a polymerase chain reaction
(PCR)-based method combined with capillary electrophoresis.
Recent studies have indicated that patients with NPM1 mutation
(NPM1mut) and concurrent FLT3-ITD with a low (,0.5) AR (FLT3-
ITDlow) have a favorable outcome that is similar to patients with
NPM1mut and wild-type FLT3 (FLT3wt).8,9,15,16 In contrast, patients
with wild-typeNPM1 (NPM1wt) and FLT3-ITDwith a high ($0.5) AR
(FLT3-ITDhigh) have a poor outcome.9,17

Another important observation relates to the impact of allogeneic
hematopoietic cell transplantation (HCT) in patients with these
different genotypes. Several groups have shown that patients with
the more favorable genotype NPM1mut/FLT3-ITDlow may not de-
rive benefit from allogeneic HCT as first-line treatment,10,15,18 al-
though this effect has not been observed in all studies.19,20 The
preponderant evidence for the prognostic significance of the
FLT3-ITD AR is now reflected in the 2017 European LeukemiaNet
(ELN) recommendations that distinguish prognostic NPM1/FLT3-
ITD genotypes by accounting for the FLT3-ITD AR.21

The natural course of AML with FLT3 mutation may change with
the use of FLT3 inhibitors, and the prognostic impact of the
above genotypes will need to be revisited.22 Midostaurin, a
multikinase inhibitor, is a first-generation FLT3 inhibitor.23

Based on the results of the international randomized CALGB
10603/RATIFY study, midostaurin was approved, in combination
with intensive chemotherapy, by the US Food and Drug Admin-
istration and by the European Medicines Agency; in addition, it
was approved as maintenance therapy for adult patients with AML
exhibiting an activating FLT3mutation by the EuropeanMedicines
Agency.24 Further evidence for the efficacy of midostaurin in
patients with FLT3-ITD1 AML comes from the AMLSG 16-10 trial,
which also included older patients aged 60 to 70 years.25

The objectives of this study were to validate the prognostic impact
of the NPM1/FLT3-ITD genotypes, as defined by the 2017 ELN
recommendations, and to evaluate the potential predictive impact
of these genotypes for response to midostaurin in randomized
patients from the RATIFY trial.

Patients and methods
Patients
Overall, 717 patients with AML and activating FLT3 mutations
(ITD and tyrosine kinase domain mutations) were included in the
CALGB 10603/RATIFY trial.24 This post hoc exploratory analysis
focuses on the subset of patients with FLT3-ITD.

Data on the 4 NPM1/FLT3-ITD genotypes, considering the
FLT3-ITD AR (low, 0.05 to ,0.5; high, $ 0.5), were available in
427 of 549 patients with FLT3-ITD AML. Table 1 shows the
characteristics of these patients. The 2017 ELN high-risk markers
RUNX1, ASXL1, and TP53 could be assessed in 358 of these
patients who gave informed consent for further molecular
studies and for whomDNAwas still available. Table 1 shows how
these high-risk markers segregated among the 4 NPM1/FLT3-ITD
genotypes. The study was approved by the Institutional Review
Board of Ulm University.

Complete 2017 ELN risk categorization could be done for
318 of 549 patients. Table 2 provides the clinical and genetic
characteristics of these 318 patients by risk group. Baseline
characteristics between the clinical trial cohort of all FLT3-ITD1

patients (n5 549) and the ELN biomarker cohort (n5 318) were
balanced, as were complete remission (CR) rates and overall
survival (OS) times (supplemental Table 1; supplemental Figure 1,
available on the Blood Web site).

Table 1. Patient and disease characteristics as well as incidence of 2017 ELN high-risk molecular markers by the
4 NPM1/FLT3-ITD genotypes

NPM1mut/FLT3-
ITDlow

NPM1mut/FLT3-
ITDhigh

NPM1wt/FLT3-
ITDlow

NPM1wt/FLT3-
ITDhigh P

Patients, n (%) 85 (19.9) 159 (37.2) 74 (17.3) 109 (25.5)

Age, median, y 50.6 48.1 47.2 45.7 .05

Female, % 64.7 66.0 47.3 48.6 .0065

WBCs, median (range), 3109/L 23.6 (1.4-253.2) 45.3 (1.4-329.8) 23.6 (0.6-207.4) 44.6 (0.8-236.0) ,.0001

Median BM blasts, % 72 80 72 77 .0019

Incidence of 2017 ELN high-risk mutations,
n (%)
RUNX1 1/73 (1.4) 1/140 (0.7) 16/53 (30.2) 24/92 (26.1) .0005
ASXL1 4/73 (5.5) 9/140 (6.4) 6/53 (11.3) 12/92 (13.0) .23
TP53 0/73 (0) 1/140 (0.7) 1/53 (1.9) 0/92 (0) .50

Karyotype, n (%)
Normal 52 (89.7) 101 (90.2) 32 (52.5) 54 (58.1) .0005
Abnormal 6 (10.3) 11 (9.8) 29 (47.5) 39 (41.9)
Missing 27 47 13 16

The Fisher’s exact test was used for categorical variables, and the Kruskal-Wallis test was used for continuous variables.
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D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/135/5/371/1632901/bloodbld2019002697.pdf by guest on 04 M

ay 2024



Genetic analyses
FLT3-ITD mutation analysis was performed as described.24

Testing was done in 9 reference laboratories in 6 countries using
a harmonized PCR method based on capillary electrophoresis
detection. PCR was done in triplicate, and the mean values of
these measurements were reported. To ensure consistency
among laboratories, a cross-validation quality control procedure
was performed every 6 months.26 Patients were eligible for the
clinical trial when exceeding the diagnostic cutoff for the FLT3-ITD
AR ($0.05). Randomization tomidostaurin vs placebowas stratified
by the ITD AR (low, 0.05-0.7; high, .0.7).6 For this analysis, we
chose a cutoff for the AR of 0.5 (low, .0.05 to ,0.5; high, $0.5),
because this cutoff value has been shown to better discriminate
and has also been adopted in the 2017 ELN risk classification.10,15,21

Semiquantitative assessment of FLT3-ITD AR (usingDNA fragment
analysis) was determined as the area under the curve “FLT3-ITD”
divided by the area under the curve “FLT3wt.”21

NPM1mutational status was assessed as previously described.27

Data on RUNX1, ASXL1, and TP53 mutation status were avail-
able from a comprehensive targeted sequencing study per-
formed on pretreatment specimens from the trial.28

Statistical analysis
CRwas defined by standard criteria21; responses included all CRs
achieved during induction cycles 1 and 2. The definition of OS,
event-free survival (EFS), cumulative incidence of relapse (CIR),
and cumulative incidence of death (CID) were based on rec-
ommended criteria.21 Survival times were calculated from
the date of randomization. The median follow-up for survival
was calculated using the reverse Kaplan-Meier estimate.29

Logistic regression and Cox proportional hazards models
were used to identify prognostic variables for CR, OS, and
CIR.30 Additional covariates in multivariate analysis were
age, BM blast counts, andWBC counts as continuous variables
and sex and treatment (midostaurin vs placebo) as dichoto-
mous variables; allogeneic HCT was included as a time-
dependent variable. The subgroup results of proportional
hazards models were summarized in forest plots. Compari-
sons between the NPM1/FLT3-ITD genotypes and the 2017
ELN risk groups with respect to quantitative variables were
performed using the Kruskal-Wallis test. Survival distributions
were estimated using the Kaplan-Meier method,31 and dif-
ferences between groups were analyzed using 2-sided log-
rank tests.

Table 2. Patient and disease characteristics and response to therapy by 2017 ELN risk groups

Favorable risk* Intermediate risk† Adverse risk‡ P

Patients, n (%) 85 (26.7) 111 (34.9) 122 (38.4)

Age, median, y 50.6 47.9 47.0 .07

Female, % 64.7 64.9 49.2 .04

WBC count, median (range), 3109/L 23.6 (1.4-253.2) 42.6 (0.6-329.8) 38.0 (0.8-236.0) .0019

Median BM blasts, % 72 78 76 .33

Treatment, n (%)
Placebo 47 (55.3) 57 (51.4) 54 (44.3)

.27
Midostaurin 38 (44.7) 54 (48.6) 68 (55.7)
Allogeneic HCT in CR1 24 (28.2) 31 (27.9) 36 (29.5) .95

Concurrent gene mutations, n (%)
RUNX1 1/73 (1.4) 0/110 (0) 31/106 (29.2) .0005
ASXL1 4/73 (5.5) 0/110 (0) 21/106 (19.8) .0005
TP53 0/73 (0) 0/110 (0) 2/106 (1.9) .19

Karyotype, n (%)
Normal 52 (89.7) 98 (88.3) 68 (57.1) .0005
Abnormal 6 (10.3) 13 (11.7) 51 (42.9)
Missing 27 1 3

All patients Midostaurin Placebo

Response to induction therapy, %§
Favorable 69.4 71.1 68.1 .82
Intermediate 63.1 66.7 59.6 .56
Adverse 51.6 57.4 44.4 .20

For definition of risk groups, see also supplemental Table 2.

*NPM1mut/FLT3-ITDlow AML cases, irrespective of additional high-risk gene mutation or additional chromosomal abnormalities.

†NPM1mut/FLT3-ITDhigh AML (n 5 93) and NPM1wt/FLT3-ITDlow AML (n5 18), both subgroups without the concurrent presence of the high-risk molecular markers RUNX1, ASXL1, and TP53.
Also, NPM1wt/FLT3-ITDlow AML without adverse-risk cytogenetics.

‡NPM1wt/FLT3-ITDhigh AML (n5 92),NPM1mut/FLT3-ITDhigh AML exhibiting high-risk molecularmarkers (n5 8), andNPM1wt/FLT3-ITDlow AMLwith high-riskmolecular markers and/or adverse-
risk cytogenetics (n 5 22).

§CRs achieved during induction therapy (cycles 1 and 2).
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To estimate survival probabilities considering the effect of
allogeneic HCT in first CR (CR1), the Simon-Makuch method
was used with clock-back correction, according to Bernasconi
et al.32 Simon-Makuch estimates show the survival probabilities
for fictional patients who either never receive an allogeneic
HCT or have received an allogeneic HCT at t 5 0. To examine
the effect of allogeneic HCT, univariate and multivariate Cox
models, with allogeneic HCT as a time-dependent intervening
event, were applied.33 An effect was considered significant if its
P value was ,5%. The analyses were not adjusted for multiple
testing.

Leave-1-out cross-validated prediction errors were used to
evaluate the prognostic value of the 2017 ELN risk classification,
in which the prediction error is defined using Brier’s score as a
function of time.34 To account for allogeneic HCT in CR1 as a
time-dependent intervention, prediction errors were calculated
using multistate models.35 The “reference” model is the Aalen-
Johansen estimator.36 For ordinary (single-event) survival this
reduces to the Kaplan-Meier estimate. All statistical analyses
were performed with statistical software (R 3.5.1).

Results
Categorization of patients
The 427 patients, for whom data on FLT3-ITD AR and NPM1
mutational status were available, were first categorized to 1 of the
4 NPM1/FLT3-ITD genotypes: NPM1mut/FLT3-ITDlow (n 5 85,
19.9%), NPM1mut/FLT3-ITDhigh (n 5 159, 37.2%), NPM1wt/FLT3-
ITDlow (n5 74, 17.4%), andNPM1wt/FLT3-ITDhigh (n5 109, 25.5%).
Patient and disease characteristics according to these genotypes
are given in Table 1. Patients with concurrentNPM1mut were older
andmore frequently female; patients with high FLT3-ITD AR had
higher WBC counts and higher BM blast counts. Patients with
NPM1mut AML more frequently had a normal karyotype com-
pared with patients with NPM1wt AML. With regard to the
concurrent presence of 2017 ELN high-risk markers, NPM1mut

was almost mutually exclusive with RUNX1 mutations, whereas

30.2% and 26.1% of theNPM1wt/FLT3-ITDlow andNPM1wt/FLT3-
ITDhigh genotypes, respectively, had RUNX1 mutations; ASXL1
mutations were distributed more equally, and TP53 mutations
were only found in 2 cases.

We subsequently categorized patients according to the 2017
ELN risk groups (supplemental Table 2). Complete categorization
could be done for 318 patients (“ELN biomarker cohort”): (1)
favorable risk (n 5 85, ie, NPM1mut/FLT3-ITDlow AML), (2) in-
termediate risk (n5 111, ie,NPM1mut/FLT3-ITDhigh AML [n5 93]
and NPM1wt/FLT3-ITDlow AML [n5 18], both subgroups without
the concurrent presence of the high-risk molecular markers
RUNX1, ASXL1, TP53, as well as NPM1wt/FLT3-ITDlow AML
without adverse-risk cytogenetics; and (3) adverse risk (n5 122,
NPM1wt/FLT3-ITDhigh AML [n 5 92], NPM1mut/FLT3-ITDhigh AML
[n 5 8] exhibiting high-risk molecular markers, and NPM1wt/
FLT3-ITDlow AML [n 5 22] with high-risk molecular markers and/
or adverse-risk cytogenetics). Patient and disease characteristics
are given in Table 2.

Response to induction therapy
We assessed response to therapy by ELN risk group and by
treatment arm (midostaurin vs placebo). Responses included all
CRs achieved during induction cycles 1 and 2 (Table 2). Responses
in patients with favorable, intermediate, and adverse risk were as
follows: with placebo, 68.1% vs 59.6% vs 44.4%, respectively
(P5 .05); with midostaurin, 71.1% vs 66.7% vs 57.4%, respectively
(P5 .34). There was no significant difference in response between
treatment arms in the 3 ELN risk groups.

In multivariable logistic regression analysis, factors for lower CR
rates were ELN adverse vs favorable risk (odds ratio [OR], 0.54;
95% confidence interval [CI], 0.29-0.99; P 5 .052) and higher
WBC (10-fold) (OR, 0.62; 95% CI, 0.39-0.97; P 5 .039). Age
(difference of 10 years; OR, 1.07, 95%CI, 0.85-1.34; P5 .55), sex
(female vs male; OR, 1.00; 95%CI, 0.62-1.63; P5 .99), treatment
(midostaurin vs placebo; OR, 1.26; 95% CI, 0.78-2.03; P 5 .35),
and BM blasts (twofold) (OR, 0.96; 95% CI, 0.66-1.38; P 5 .84)
did not have a significant influence.

Outcomes
The estimated median follow-up of the 318 patients was
57.5 months (95% CI, 55.2-61.2). Median OS and 5-year OS rate
were 26.3 months (95% CI, 18.6-50.7) and 0.44 (95% CI, 0.39-
0.50); median EFS and 5-year EFS rate were 4.70 months (95%
CI, 1.97-7.49) and 0.24 (95% CI, 0.20-0.29). Median OS and
5-year OS rates in the placebo and midostaurin arms were
16.6 months (95% CI, 13.9-23.2) and 0.34 (95% CI, 0.27-0.43)
and not reached (95% CI, 29.8 months-not reached) and
0.53 (95% CI, 0.46-0.61), respectively.

Survival analysis by ELN risk groups Figure 1 shows OS
according to the 2017 ELN risk groups. Patients with favorable-risk
AML had the best outcome (5-year OS probability 0.62; 95% CI,
0.53-0.74), followed by patients with intermediate-risk AML (0.43;
95% CI, 0.34-0.53) and patients with adverse-risk AML (0.33; 95%
CI, 0.25-0.42). The difference between the curves was statistically
significant (P , .001). Supplemental Figure 2A shows the pre-
diction error curve for the 2017ELN risk classification in comparison
with the marginal Kaplan-Meier reference. An advantage of the
ELN 2017 risk classifier is observed from 1-year follow-up onward.
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Figure 1. Prognostic effect on overall survival of patients with the different
NPM1/FLT3-ITD genotypes categorized according to 2017 ELN genetic risk
groups. The P values for the log-rank tests comparing favorable vs intermediate and
intermediate vs adverse are P 5 .007 and P 5 .20, respectively.
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For illustration purposes, we included supplemental Figure 3,
which shows OS according to the 4 NPM1/FLT3-ITD genotypes
not categorized according to the ELN risk groups. Supplemental

Figure 4 shows the forest plot of hazard ratios (HRs) from the
treatment arm (midostaurin vs placebo), derived from univar-
iate Cox models, by NPM1/FLT3-ITD genotypes.
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Figure 2.OS of patientswith the differentNPM1/FLT3-ITDgenotypes by 2017ELN risk group andby treatment. (A) Favorable-risk group. (B). Intermediate-risk group. (C)
Adverse-risk group.
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Figure 3. Forest plot of HRs of treatment arm (midostaurin vs placebo) derived from univariate Cox models by 2017 ELN risk groups. E, number of events; L95,
lower 95% CI; N, number of patients; U95, upper 95% CI.
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Outcome analysis by ELN risk group and by treatment arm
Figure 2 shows OS by ELN risk group and by treatment arm
(midostaurin vs placebo). Five-year OS rates of patients on the
midostaurin and the placebo arm were 0.73 (95% CI, 0.60-0.89)
and 0.53 (95% CI, 0.40-0.72), 0.52 (95% CI, 0.40-0.67) and 0.34
(95% CI, 0.23-0.49), and 0.43 (95% CI, 0.32-0.56) and 0.20 (95%
CI, 0.12-0.35) in the favorable-, intermediate-, and adverse-risk
groups, respectively. The corresponding forest plot of HRs for
OS is shown in Figure 3. A beneficial effect of midostaurin was
observed across all 3 risk groups. No treatment effect modifi-
cation by the 2017 ELN risk classification was found.

A multivariate Cox model for OS of the entire cohort, including
the covariates ELN risk groups, age, WBC count, BM blasts, sex,
allogeneic HCT in CR1, and treatment, identified the 2017 ELN
risk classification, treatment (midostaurin vs placebo), allogeneic
HCT in CR1, and log10 WBC count as significant prognostic
variables (Table 3). Leave-1-out cross-validated prediction error
curves, according to Spitoni et al,35 demonstrate the added value
of the 2017 ELN classifier for 1-year follow-up and beyond,
comparing the models with and without the 2017 ELN risk clas-
sification (supplemental Figure 2B).

CIR by ELN risk group, as well as by ELN risk group and by
treatment arm, is shown in supplemental Figures 5A and 6,
respectively. Five-year CIR rates for patients on the midostaurin
and the placebo arms were 0.22 (95% CI, 0.07-0.38) and 0.35
(95% CI, 0.19-0.52), 0.36 (95% CI, 0.20-0.52) and 0.62 (95% CI,
0.45-0.78), and 0.58 (95% CI, 0.42-0.74) and 0.61 (95% CI, 0.41-
0.81) in the favorable-, intermediate-, and adverse-risk groups,
respectively. Supplemental Figures 5B and 7 show CID by ELN
risk group and by treatment arm. In the adverse-risk group, there
was a significantly lower CID rate with midostaurin (0.05; 95% CI,
0-0.12) vs placebo (0.26; 95% CI, 0.08-0.44; P5 .024), providing
an explanation for the discrepancy between improvedOS on the
midostaurin arm without decreasing the relapse rate. A multi-
variate Cox model for CIR identified ELN risk classification,
treatment with midostaurin, allogeneic HCT in CR1, and WBC
count as independent prognostic factors (supplemental Table 3).
Supplemental Figure 8 displays the leave-1-out cross-validated
prediction error curves according to Spitoni et al,35 indicating the
advantage of the 2017 ELN classifier, comparing the models
with and without the 2017 ELN risk classification.

EFS by ELN risk group and treatment arm is shown in supple-
mental Figure 9.

Impact of allogeneic HCT in the ELN risk groups To illustrate
the effect of allogeneic HCT in CR1 on OS, the Simon-Makuch
method was used to estimate survival probabilities with respect
to time-dependent interventions.32 Of note, there was a con-
sistent beneficial effect of midostaurin across all 3 risk groups,
whereas this was not evident for allogeneic HCT. A strong
beneficial effect of allogeneic HCT was only found in the adverse-
risk group, with an HR of 0.39 (95% CI; 0.21-0.73; P 5 .003).
Table 3 summarizes results from the multivariate Cox model for
OS in the entire cohort, as well as in the 3 ELN risk groups. Figure 4
provides Simon-Makuch plots illustrating OS by 2017 ELN risk
group, type of postremission therapy (conventional consolidation
vs allogeneic HCT in CR1), and treatment arm (placebo vs mid-
ostaurin). Supplemental Figure 10 shows the corresponding
Simon-Makuch plots by 2017 ELN risk group and by type of
postremission therapy only.

Discussion
The results from this retrospective explorative analysis of the
RATIFY trial confirm the prognostic value of the 2017 ELN ge-
netic risk classification in patients with FLT3-ITD1 AML. Fur-
thermore, the data show that midostaurin exerts a beneficial
effect in these patients across all 3 ELN risk groups.

Randomization in the RATIFY trial was stratified by the FLT3-ITD
AR with a cutoff . 0.7 vs 0.05 to 0.7.24 This cutoff was chosen
based on the initial study reported by Thiede et al.6 More recent
studies found an ITD AR of 0.5 to be a better discriminator for
prognosis.10,15 Based on these more recent studies, the 2017 ELN
recommendations put forward the current NPM1/FLT3-ITD risk
categories that are basedon an ITDAR cutoff of 0.5 and theNPM1
mutational status.21 An important aspect relates to the diagnostic
assay for assessment of the AR. In theRATIFY trial, testing for FLT3-
ITD was done in 9 reference laboratories in 6 countries using a
harmonized PCR method based on capillary electrophoresis de-
tection. To ensure a high degree of consistency among labora-
tories, a cross-validation quality control procedure was performed

Table 3. Multivariate time-dependent Cox model for OS

HR (95% CI) P

All patients (n 5 318)
2017 ELN intermediate-risk group* 1.75 (1.11-2.76) .017
2017 ELN adverse-risk group* 2.64 (1.69-4.13) ,.001
Allogeneic HCT 0.57 (0.42-0.94) .021
Age 1.01 (0.99-1.02) .709
WBC count (log10) 1.51 (1.11-2.00) .009
Female vs male 0.77 (0.54-0.99) .045
Treatment (midostaurin vs placebo) 0.55 (0.43-0.83) ,.002
BM blasts (log2) 1.03 (0.84-1.37) .603

Favorable-risk group (n 5 85)
Allogeneic HCT 0.78 (0.28-2.13) .621
Age 1.02 (0.97-1.06) .515
WBC count (log10) 0.89 (0.44-1.82) .750
Female vs male 0.53 (0.24-1.14) .102
Treatment (midostaurin vs placebo) 0.48 (0.20-1.11) .086
BM blasts (log2) 0.98 (0.62-1.54) .916

Intermediate-risk group (n 5 111)
Allogeneic HCT 0.81 (0.41-1.58) .535
Age 1.02 (0.99-1.05) .178
WBC count (log10) 2.03 (1.16-3.55) .013
Female vs male 1.06 (0.61-1.82) .846
Treatment (midostaurin vs placebo) 0.53 (0.31-0.89) .018
BM blasts (log2) 1.17 (0.68-2.01) .761

Adverse-risk group (n 5 122)
Allogeneic HCT 0.39 (0.21-0.73) .003
Age 1.00 (0.98-1.02) .867
WBC count (log10) 1.52 (0.97-2.38) .068
Female vs male 0.66 (0.42-1.06) .085
Treatment (midostaurin vs placebo) 0.51 (0.31-0.82) .006
BM blasts (log2) 0.98 (0.65-1.48) .928

*Favorable-risk group was used as reference.
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D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/135/5/371/1632901/bloodbld2019002697.pdf by guest on 04 M

ay 2024



every 6 months. The assessment of the ITD AR showed variability,
which could be reduced by using a triplicate analysis.26 Never-
theless, similar to many other diagnostic assays, there is a need for
further harmonization and standardization of the testing.

The 4NPM1/FLT3-ITD genotypes were associated with significant
differences in clinical and concurrent genetic features. As pre-
viously shown,27 compared with patients withNPM1wt, more FLT3-
ITD patients with concurrent NPM1mut were female and had a

normal karyotype. Patients with a high FLT3-ITD allelic burden had
significantly higherWBC counts and higher BMblast numbers. The
genotypes also differed significantly with regard to the concurrent
presence of the 2017 ELN high-risk molecular markers RUNX1,
ASXL1, and TP53. RUNX1 mutations were almost mutually ex-
clusive of NPM1mut. The highest frequencies of RUNX1 mutations
were found in NPM1wt/FLT3-ITDlow AML (30.2%), moving these
cases from the intermediate-risk group to the adverse-risk group,
as well as in NPM1wt/FLT3-ITDhigh AML (26.1%). ASXL1 mutations
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ELN favorable-risk group: Placebo arm (left) and Midostaurin arm (right)
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ELN intermediate-risk group: Placebo arm (left) and Midostaurin arm (right)
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ELN adverse-risk group: Placebo arm (left) and Midostaurin arm (right)
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Figure 4. OS by 2017 ELN risk group, by type of postremission therapy (conventional consolidation vs allogeneic HCT in CR1), and by treatment arm (placebo
vs midostaurin). Simon-Makuch plots illustrating the influence of allogeneic HCT as a time-dependent variable: patients who receive an allogeneic HCT move from
the red to the blue curve at the time that the allogeneic HCT is performed. (A) ELN favorable-risk group: placebo arm (left panel) and midostaurin arm (right panel).
(B) ELN intermediate-risk group: placebo arm (left panel) and midostaurin arm (right panel). (C) ELN adverse-risk group: placebo arm (left panel) and midostaurin
arm (right panel).
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were distributed more equally among the 4 NPM1/FLT3-ITD
genotypes, and TP53 mutations were only found in 2 AML
patients.

Complete categorization of the NPM1/FLT3-ITD genotypes
according to the 2017 ELN classification could be done for 318
of the 549 trial patients with FLT3-ITD1 AML. The first important
finding of this study is that the data confirm the high prognostic
value of the 2017 ELN risk categorization, also among patients
with FLT3-ITD1 AML (Figure 1). In particular, the data provide
further evidence for the favorable prognosis of patients with
NPM1mut/FLT3-ITDlow AML. Five-year OS for patients in the 2
treatment arms combined was 62.5%; it was 73.0% in patients
treated on the midostaurin arm, which is comparable to the
outcome of patients with the other more favorable-risk AML,
such as core-binding factor AML37,38 andAMLwith biallelicCEBPA
mutations.39 Five-year OS for patients in the ELN adverse-risk
group was 32.7%; it was 43.0% on the midostaurin arm. Com-
pared with historical controls, outcomes for the adverse-risk
patient group appear to be significantly improved by the
addition of midostaurin and by allogeneic HCT.

The second important finding is that midostaurin had a bene-
ficial effect on OS in FLT3-ITD AML across all 3 ELN risk groups
(Figures 2 and 3). Thus, midostaurin appears to be active in
FLT3-ITD1 AML, irrespective of the allelic burden of the ITD,
and, importantly, as well as on different mutational backgrounds
(eg, with or without NPM1mut) and with or without selected
adverse-risk genetic features. The effect on CIR appeared to be
most pronounced in the ELN intermediate-risk group (supple-
mental Figure 6). The fact that midostaurin has a beneficial effect
on OS, independent of the ITD allelic burden and across various
underlying genetic signatures, raises the question of whether
the therapeutic effect is primarily mediated through its FLT3-
inhibitory effect or through other antileukemic effects of this
multikinase inhibitor.40

Finally, an important point of discussion in the past has been
the value of allogeneic HCT in patients with the different NPM1/
FLT3-ITD genotypes.10,15,17-19 To address the impact of allogeneic
HCT in CR1, we used the Simon-Makuch method to esti-
mate survival distributions of time-dependent interventions.32

Multivariate analysis for OS using the Mantel-Byar test in the entire
patient cohort identified treatment with midostaurin, allogeneic
HCT, 2017 ELN favorable risk, and lowerWBC counts as significant
favorable factors for OS (Table 3). The same variables were iden-
tified in the multivariate model for cause-specific hazard of re-
lapse (supplemental Table 3). Next, we performed multivariate
analysis for OS within the 3 ELN risk groups. Of note, the only
variable that showed a consistent favorable effect across all risk
groups was treatment with midostaurin. For allogeneic HCT, in
contrast, a strong beneficial effect was only observed in the
adverse-risk group. Figure 4 provides Simon-Makuch plots illus-
trating the influence of allogeneic HCT vs conventional consoli-
dation onOS in the 3 risk groups and by treatment arm (placebo vs
midostaurin). These results need to be interpreted with caution
because the clinical trial was not powered to show statistically
significant differences in these genetic subgroups with regard to
allogeneic HCT and with regard to treatment with midostaurin vs
placebo. Nevertheless, the data provide further evidence that
conventional consolidation plus midostaurin is a postremission
treatment option for patients with FLT3-ITD, ELN favorable-risk

AML, and allogeneic HCT may be delayed until first relapse in this
patient population. Importantly, in these patients, NPM1mut pro-
vides a solid target for the monitoring of measurable residual
disease, allowing for further refinement of the prognostic assess-
ment, which taken all together, will inform the most appro-
priate postremission therapy.41,42 Based on the results of this
study, one could also envision a similar treatment strategy for
many patients with FLT3-ITD, ELN intermediate-risk AML, the
majority of whom also carry concurrent NPM1mut. This treatment
algorithm should be explored in future studies.

Of note, the RATIFY trial only recruited patients 18 to 60 years
of age; thus, the data provided by this retrospective explor-
atory study cannot be automatically extrapolated to patients older
than 60 years. Nevertheless, the AMLSG 16-10 trial, evaluating
midostaurin in patients 18 to 70 years of age, reported very en-
couraging results in patients 60 to 70 years of age, as well.25

In conclusion, the data from this study provide further support for
the high prognostic value of the 2017 ELN risk categorization in
patients with FLT3-ITD. A complete work-up according to 2017
ELN recommendations, including assessment of the ITD allelic
burden, should be mandatory for all newly diagnosed FLT3-ITD
patients eligible for intensive therapy. The multikinase inhibitor
midostaurin showed a beneficial effect across all risk groups and
independent of allogeneic HCT. This study further stresses the
beneficial impact of allogeneic HCT in patients with FLT3-ITD,
ELN adverse-risk AML.
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27. Döhner K, Schlenk RF, Habdank M, et al.
Mutant nucleophosmin (NPM1) predicts fa-
vorable prognosis in younger adults with
acute myeloid leukemia and normal cytoge-
netics: interaction with other gene mutations.
Blood. 2005;106(12):3740-3746.

28. Jahn N, Panina E, Bullinger L, et al.
Comprehensive molecular profiling of FLT3-
mutated acute myeloid leukemia (AML) pa-
tients treated within the Ratify trial (Alliance
C10603). Blood. 2018;132(suppl 1):1534.

29. Schemper M, Smith TL. A note on quantifying
follow-up in studies of failure time. Control
Clin Trials. 1996;17(4):343-346.

30. Cox DR. Regressionmodels and life-tables. J R
Stat Soc Series B Stat Methodol. 1972;34(2):
187-220.

31. Kaplan E, Meier P. Nonparametric estimation
from incomplete observations. J Am Stat
Assoc. 1958;53(282):457-481.

32. Bernasconi DP, Rebora P, Iacobelli S,
Valsecchi MG, Antolini L. Survival probabilities
with time-dependent treatment indicator:
quantities and non-parametric estimators. Stat
Med. 2016;35(7):1032-1048.

33. Therneau T, Crowson C, Atkinson E. Using
time dependent covariates and time de-
pendent coefficients in the Cox model.

https://cran.r-project.org/web/packages/
survival/vignettes/timedep.pdf. Accessed 15
October 2019.

34. Gerds TA, Schumacher M. Consistent esti-
mation of the expected Brier score in general
survival models with right-censored event
times. Biom J. 2006;48(6):1029-1040.

35. Spitoni C, Lammens V, Putter H. Prediction
errors for state occupation and transition
probabilities in multi-state models. Biom J.
2018;60(1):34-48.

36. AalenOO, Johansen S. An empirical transition
matrix for non-homogeneous Markov chains
based on censored observations. Scand J Stat.
1978;5:141-150.
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