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A homozygous deletion in the SLC19A1 gene as a cause of
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Megaloblastic anemia resulting from ineffective hematopoiesis
in the bone marrow (BM) is one of the main hematologic signs
of folate or vitamin B12 deficiency. Functional deficiencies of
these 2 vitamins originate from nutritional, gastrointestinal, or genetic

factors, and their clinical symptoms result from the impaired synthesis
of nucleotides in hematopoietic cells and S-adenosylmethionine
in the nervous system.1 Folates are pteroyl(poly)glutamate deriva-
tives with various 1-carbon moieties at the pterine ring, with
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the major circulating form being 5-methyltetrahydrofolate.
Folates are delivered to tissues by at least 5 transporters with
different kinetic properties and variable expression.2,3 Two
inherited disorders in folate transport, hereditary folate mal-
absorption and cerebral folate deficiency resulting from mutations
in the SLC46A14 and FOLR15 genes, have been reported in
humans.

Reduced folate carrier (RFC; FOLT1) is encoded by the SLC19A1
gene and facilitates the cellular uptake of anionic folates,6 of
folate analogs such as methotrexate (MTX), and 2939-cyclic-
GMP-AMP, a second messenger that activates the antiviral
stimulator of interferon genes pathways.7 Loss of its function
leads toMTX resistance in cancer cells.8,9 Amurinemodel of RFC
deficiency showed embryonic lethality before E9.5. These mice
could be partially rescued by supplementing the pregnant dams
with folic acid; however, all liveborn mice died within 12 days
because of the absence of hematopoiesis in BM, spleen, and
liver.10 To our knowledge, no inherited disease caused by loss-
of-function mutations in the SLC19A1 gene has been described
in humans.

In our study, we presented the first case of recurrent severe
megaloblastic anemia in a patient with a homozygous SLC19A1
mutation. The patient’s history was unremarkable with normal
growth and development until age 15 years, when he presented

with the first episode of severe anemia (hemoglobin [Hb], 5 g/dL),
mild hemolysis, hyperhomocysteinemia of 34.7 mmol/L, low
total vitamin B12 levels of 138 ng/L, and normal serum folates of
10.7 nmol/L. He denied having any bleeding, limb numbness,
any other neurologic symptoms, or symptoms of glossitis. He
reported poor eating habits with decreased intake of food for
6 months preceding his presentation, avoidance of vegetables,
and avoidance of morning meals. He responded well to treat-
ment with cyanocobalamin and folate, but he returned at age
17 years with a second episode of severe anemia (Hb, 7.8 g/dL)
and signs of hemolysis with elevated bilirubin (46 mmol/L),
hyperhomocysteinemia, and low total vitamin B12 levels (for
laboratory and clinical details, see Table 1 and supplemental
Data, available on the Blood Web site). BM aspiration showed
48% megaloblastic erythroid precursors with dysplastic signs,
and the peripheral blood smear revealed sporadic macro-
ovalocytes, frequent schistocytes, and hypersegmented neu-
trophils (supplemental Figure 1). Flow cytometry of the BM
showed abundant erythropoietic precursors. Despite parenteral
cyanocobalamin therapy, anemia and hyperhomocysteinemia
persisted. The laboratory abnormalities and clinical signs
normalized within a month but only after adding folic acid
(10 mg/day) to the patient’s therapy. In contrast, carefully
monitored withdrawal of folic acid resulted in an immediate
increase in homocysteine to levels of 17 to 31 mmol/L, despite
persisting normal folate levels in serum (Figure 1A).

Table 1. Laboratory markers during the second episode of anemia

Markers Biological material Reference range
Before treatment
with folic acid*

With folic acid
treatment†

Blood count
Hemoglobin, g/L 135-175 61-99 131
Red blood cells 31012/L 4-5.8 2.02-3.21 4.34
Hematocrit, % 40-50 17.1-30.4 41
Mean cell volume, fL 82-98 82.1-97.3 94.5
Reticulocytes, % 0.5-2.5 0.62-3.71 0.52

Routine biochemistry
Bilirubin, mmol/L Serum 2-17 42.2-60.6 17.4
Lactate dehydrogenase, mkat/L Serum 1.67-3.17 13.38-115.66 2.6
Ferritin, mg/L Serum 17-304 413.2-954.8 1036.3
Iron, mmol/L Serum 7.2-29 49.4-50.5 6.7

B vitamins and related metabolites
Folate, nmol/L Serum 4.53-21.5 7.3-14.3 >45
Folate, nmol/L Erythrocytes 1185-2841 1155.2 2175.4
Vitamin B12, ng/L Serum 197-771 138-2000 866
Holotranscobalamin II, pmol/L Serum 19-119 44 151
Total homocysteine, mmol/L Plasma 5.2-11.3 31.5 to ‡50 9.49
Cystathionine, nmol/L Plasma, serum 80-1000 187-217 99
Methionine, mmol/L Plasma, serum 12-40 26-27 17
Sarcosine, mmol/L Plasma, serum 0.7-3 5.2 1.85
Methylmalonic acid, nmol/L Plasma ,270 136.8 204.5
Methylmalonic acid, mmol/mol creatinine Urine ,15 ,15 ,15
AICAr, mmol/mol creatinine Urine 0.04-1.01 1.87 0.18

Levels out of reference range are shown in bold; supraphysiological concentrations resulting from administration of respective vitamins are shown in italics.

*Ranges with the minimal and maximal observed levels during the period in which therapy with cyanocobalamin only was administered (days 1155-1414; single values are from day 1261).

†The levels at follow-up of 1 month of combined cyanocobalamin and folic acid therapy (day 1444, 3 days after the last cyanocobalamin injection).
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Whole exome sequencing revealed a homozygous 3bp de-
letion, c.634_636delTTC (rs757838708), in the SLC19A1 gene
inherited from heterozygous parents. This variant leads to a
deletion of phenylalanine residue 212 (p.Phe212del) located
in a highly conserved Lys204-Arg214 peptide sequence that is
crucial for the function of RFC11 (supplemental Figure 2).

To test the pathogenicity of the p.Phe212del mutation, we
generated a model system using genome-editing techniques to

produce a monoclonal homozygous SLC19A1mut K562 cell line
and 2 clones with full SLC19A1 gene knockouts (KOs) as a result
of frameshift mutations (supplemental Figure 4C-D). First, we
tested the capacity of the mutated RFC protein to transport
radioactively labeled MTX into cells. The ability of the SLC19A1mut

clone to transport MTX into K562 cells was significantly decreased
by;42% compared with the SLC19A1wt clone (P, .001), and it
was similar to that of the SLC19A1KO clone (Figure 1B). The
residual MTX transport into SLC19A1mut and SLC19A1KO cells
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Figure 1. Course of patient’s disease and functional evaluation of the SLC19A1 mutation. (A) The graphs show the results of laboratory tests obtained after the patient’s
first and second disease attacks and the course of treatment. The x-axis represents days from his first hospital admission (interrupted for a period between day 100 and 1150,
when he was monitored in the outpatient department, and laboratory results were normal). The hemoglobin levels (g/L; red) are plotted on the left y-axis, and total bilirubin
(mmol/L; blue) is plotted on the right y-axis. The serum folate levels (nmol/L; green) are plotted in the lower part of the graph, with homocysteine (mmol/L; orange) on the left
y-axis and vitamin B12 levels (ng/L; blue) on the right y-axis. Reference ranges are marked by bars in the corresponding colors on both axes. Treatment is indicated between both
graphs, with erythrocyte transfusions marked by red arrows and the number of units given. (B) MTX uptake assay into wild-type and monoclonal gene-edited K562 model cell
lines. The graph shows the amount of [3H]MTX per 1 million cells after 2-minute incubation with 0.5 mmol/L [3H]MTX. MTX uptake into the SLC19A1KO and SLC19A1mut cells was
significantly decreased in comparison with the SLC19A1wt. The data points were obtained from 3 independent experiments (each with 3 technical replicates) and tested by two-
way analysis of variance with Bonferroni corrections; horizontal lines in the boxplots indicate medians and the 25th and 75th percentiles. (C) Sensitivity of wild-type and
monoclonal gene-edited K562model cell lines toMTX. Cell proliferation assays of the K562 cell lines with CRISPR/Cas9 introduced homozygous (SLC19A1mut) mutation found in
the patient compared with a wild-type control and to a complete SLC19A1 KO (2 representative clones carrying different frameshift mutations). The assay was performed in
3 separate experiments, each of which was performed in 6 replicates. The results are shown as the mean and standard deviation of all values, which were normalized to the
appropriate controls in each experiment. ns, not significant. ***P , .001.
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represents the capacity of all other endogenously expressed folate
transporters12 with the exception of RFC. Confocal microscopy
using a monoclonal anti-RFC antibody showed the presence of
antigen in the SLC19A1mut clone, which indicated sufficient
(although slightly decreased) expression of the p.Phe212del
mutant (supplemental Figure 5). Next, we examined the re-
sistance of these cell lines to the cytotoxic effects of MTX. As
expected, the homozygous SLC19A1mut clone showed an in-
creased resistance to MTX compared with the SLC19A1wt cells
(50% inhibitory concentration [IC50], 0.287 vs 0.036 mM).
However, the IC50 of the SLC19A1mut clone was still about an
order of magnitude lower compared with that of the 2 clones
with a complete SLC19A1 KO (IC50, 3.078 and 1.681 mM;
Figure 1C). In summary, these experiments clearly and con-
gruently showed that homozygous deletion of the Phe212
residue impairs transport of MTX and increases the resistance
of genetically modified cells to this cytotoxic anti-folate drug,
which uses RFC to enter the cells.

This patient presented a diagnostic conundrum that was re-
solved owing to next-generation sequencing analysis. The
biochemical findings at the beginning of both episodes of
anemia were dominated by low concentrations of serum vitamin
B12, probably caused by poor nutrition and/or increased de-
mand for cobalamin in the remethylation pathway. The absence
of serum folate deficiency obscured the role of folates in the
patient’s anemia; however, folates were decreased in erythro-
cytes in the single analysis performed when the patient was not
treated with folic acid. The classical metabolic consequences of
folate deficiency such as decreased serum methionine and in-
creased cystathionine were not present, but there was markedly
increased total homocysteine and sarcosine in blood and the
purine de novo synthesis intermediate 5-amino-4-imidazole-
carboxamide riboside (AICAr) in urine,13-15 as well as their nor-
malization only after introducing folic acid treatment, which
strongly indicates a functional folate deficiency in tissues.13,16

The episodic clinical course in the patient was milder than that
observed in the KO mouse model.10 Because of the existence of
multiple folate transporters and their complex biology,2 it is
conceivable that under conditions of normal dietary folate in-
take, the other folate transporters may compensate for the
impaired RFC transport activity.17 Indeed, an increased expres-
sion of the SLC46A1 and FOLR2 genes (7- to 14-fold messenger
RNA increase in the patient compared with healthy controls)
was observed in the patient’s bone marrow as well as in the
gene-edited mutant and KO K562 cells (supplemental Fig-
ure 6). These data indicate a grossly increased total capacity
of alternative (albeit less kinetically favorable) folate trans-
porters that may compensate for the impaired function of the
p.Phe212del RFC under conditions of sufficient folate intake
and moderate cellular needs (see supplemental Results).
However, inadequate folate intake combined with increased
demand for folates reported in adolescent males18,19 may have
contributed to episodes of anemia in our patient.

Our study describes the first human patient with recurrent
megaloblastic folate–dependent anemia resulting from a ho-
mozygous p.Phe212del mutation in the SLC19A1 gene. Several
lines of evidence support the causal role of this mutation in the
pathogenesis of anemia in this patient. First, the role of RFC in
hematopoietic cells was clearly demonstrated in a KO mouse

model.10 Second, the low frequency of this mutation in available
population databases (see supplemental Results) and its location
in the conserved cytosolic loop of RFC supports the hypothesis
of its pathogenicity. Third, detailed functional testing in CRISPR/
Cas9-edited K562 cells clearly showed the decreased ability of
the mutant protein to transport 5-methyltetrahydrofolate analog
MTX; because of the intrinsic limitations of the cellular transport
studies, the degree of functional impairment could not be ex-
actly quantitated and some residual activity of p.Phe212del RFC
cannot be ruled out. Fourth, the clinical observation of severe
anemia with megaloblastic changes in the patient’s BM sug-
gestive of impaired maturation and ineffective hematopoiesis as
well as the signs of demyelination on electromyography are
indeed compatible with clinically significant tissue folate de-
ficiency. Finally, the reversal of anemia and rapid drop of total
homocysteine and AICAr concentration only after the addition of
folic acid to cyanocobalamin therapy during the second episode
is typical for folate deficiency.20

In summary the above data support the key role of defective
folate transport to hematopoietic cells in the development of
anemia in this patient. We propose that there may be additional
individuals with germline mutations in SLC19A1; however, their
phenotypes could be masked either by mandatory folate forti-
fication or by the commonly used combined treatment with
vitamin B12 and folic acid in those with unresolvedmegaloblastic
anemia without properly elucidated primary cause.
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