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KEY PO INT S

l Genetically
heterogeneous BC
progenitors
demonstrate molecular
convergence
on PRC1- and
PRC2-regulated
pathways.

l Amodel of PRC-driven
reprogramming
identifies novel BC
combination
therapies, tumor
suppressor genes, and
biomarkers for
transformation.

Targeted therapies against the BCR-ABL1 kinase have revolutionized treatment of chronic
phase (CP) chronic myeloid leukemia (CML). In contrast, management of blast crisis (BC)
CML remains challenging because BC cells acquire complex molecular alterations that
confer stemness features to progenitor populations and resistance to BCR-ABL1 tyrosine
kinase inhibitors. Comprehensive models of BC transformation have proved elusive be-
cause of the rarity and genetic heterogeneity of BC, but are important for developing
biomarkers predicting BC progression and effective therapies. To better understand BC,
we performed an integrated multiomics analysis of 74 CP and BC samples using whole-
genome and exome sequencing, transcriptome and methylome profiling, and chromatin
immunoprecipitation followed by high-throughput sequencing. Employing pathway-based
analysis, we found the BC genome was significantly enriched for mutations affecting
components of the polycomb repressive complex (PRC) pathway.While transcriptomically,
BC progenitors were enriched and depleted for PRC1- and PRC2-related gene sets re-
spectively. By integrating our data sets, we determined that BC progenitors undergo PRC-
driven epigenetic reprogramming toward a convergent transcriptomic state. Specifically,
PRC2 directs BC DNA hypermethylation, which in turn silences key genes involved in

myeloid differentiation and tumor suppressor function via so-called epigenetic switching, whereas PRC1 represses an
overlapping and distinct set of genes, including novel BC tumor suppressors. On the basis of these observations, we
developed an integrated model of BC that facilitated the identification of combinatorial therapies capable of reversing
BC reprogramming (decitabine1PRC1 inhibitors), novel PRC-silenced tumor suppressor genes (NR4A2), and gene
expression signatures predictive of disease progression and drug resistance in CP. (Blood. 2020;135(26):2337-2353)

Introduction
Early-stage or chronic phase (CP) chronic myeloid leuke-
mia (CML) is a genetically simple disease caused by the
BCR-ABL1 fusion gene, and most patients treated with
ABL1 tyrosine kinase inhibitors (TKI) enjoy a normal life

expectancy.1,2 In contrast, patients with late-stage or blast
crisis (BC) CML continue to die of TKI-resistant disease, with
the development of novel therapeutic approaches made
especially daunting by the molecular heterogeneity found
within BC.3,4
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In response to these challenges, several groups have suggested
using convergence-based frameworks to elucidate resistance-
conferring pathways that drive cancer progression as strategies
to overcome them.5,6 Phenotypic convergence in cancer pro-
gression and drug resistance occurs in various cancers and has
been attributed to evolutionary selection of recurring genetic
and epigenetic alterations.5 The emergence of stem cell signa-
tures within various cancer progression transcriptomes is a prime
example of convergence, where it confers dual advantages of
multidrug resistance and enhanced self-renewal.7,8 In BC, con-
vergence can be appreciated phenotypically in patients by
the inexorable accumulation of differentiation-arrested and
multidrug-resistant CD341 progenitors,3 and at the cellular and
molecular levels by acquisition of leukemia stem cell (LSC)
properties in bulk CD341 BC progenitors,9,10 as well as a BC-
specific gene expression signature that distinguishes them
from CP progenitors.11,12 However, because BC-specific ge-
netic events exist at low frequencies and occur in functionally
diverse genes,3,4 recent work has focused on epigenetic al-
terations in driving CML progression.12 Notably, both poly-
comb repressive complex 2 (PRC2) and complex 1 (PRC1) have
been implicated in CML: PRC2 in CP LSCs (which are dis-
tinct from BC LSCs)3,13-15 reprogramming, and PRC1 in BC
transformation.16-18 Although both PRCs comprise multiprotein
complexes with histone modification activity, and in general
act to repress gene expression,19,20 the precise mechanisms
by which they contribute to CP or BC remain unclear.13

Intriguingly, the mechanisms by which PRCs contribute to
transformation are diverse and disease specific.21,22 Thus, even
within hematologic malignancies, PRC2 can function either as
an oncogene (lymphomas) or tumor suppressor gene (myeloid
leukemias).19,23,24 Furthermore, understanding the stage-
specific roles in CML has direct therapeutic implications, as
drugs targeting EZH2 and BMI1, the enzymatic component of
PRC2 and core component of PRC1, respectively, are being
actively evaluated in clinical trials.21,25

To assess the contribution of genetic and epigenetic events
toward pathway convergence in BC CML, we annotated the
genomes, epigenomes, and transcriptomes from a rare set of
paired CP to BC progression samples and supported this by
analyses of a collection of unpaired samples. We identified
recurrent PRC-associated events at the genetic, epigenetic, and
transcriptomic levels, and by integrating these data sets, pro-
pose a novel BC model incorporating critical roles of PRC1 and
PRC2 in BC reprogramming (Figure 7C). Guided by this model,
we identify combinatorial epigenetic therapies capable of re-
versing BC reprogramming, novel PRC-silenced tumor sup-
pressor genes, and potential biomarkers for disease progression
and TKI resistance in CP.

Methods
Patient samples
CML samples were obtained from Singapore General Hospital;
Akita University Hospital, Japan; City of Hope National Medical
Center, United States; National University Hospital of Singapore;
and University of California, IrvineMedical Center, United States.
Written informed consent and institutional review board ap-
proval at the participating institutions were obtained from all
patients who contributed samples.

Reagents, tissue culture, cell biology, and
molecular biology techniques
Reagents and aforementioned techniques used are described in
detail in the supplemental Methods, available on the Blood
Web site.

Genomics analysis
Whole-genome sequencing (WGS) and exome sequencing were
performed on the HiSeq 2000 (Illumina). Additional details are
provided in the supplemental Methods.

Gene expression analysis
Patient cells were lysed immediately after thawing, and RNA was
extracted using the AllPrep DNA/RNA/miRNA Universal kit
(Qiagen, Netherlands). Samples were hybridized on Human
BeadChip HT12 v4 whole-genome expression arrays (Illumina,
San Diego, CA), as per manufacturer’s instructions. Additional
details are provided in the supplemental Methods.

DNA methylation analysis
DNA was extracted using the AllPrep DNA/RNA/miRNA
Universal kit concurrently with RNA extraction for gene expres-
sion analysis. Samples were hybridized on Illumina Infinium
HumanMethylation450 BeadChip (Illumina, San Diego, CA)
DNA methylation arrays. Additional details are provided in the
supplemental Methods.

Chromatin immunoprecipitation sequencing
Chromatin immunoprecipitation (ChIP)-seq methodology and down-
stream processing are described in the supplemental Methods.

Statistical and bioinformatics analysis
Details are provided in the supplemental Methods.

Results
Genomic alterations of CML display a moderate
mutation load and are enriched for PRC-related
genes during progression
We performed WGS on a discovery set comprising 13 pairs of
matched CP and BC (9 lymphoid BC [LBC] and 4 myeloid BC
[MBC]) samples within our cohort (supplemental Tables 1-3).
Because patients in the discovery cohort were deceased, non-
tumor germline controls were obtained from mesenchymal
stromal cells isolated from bone marrow aspirates when possible
(n 5 6; “Methods”; supplemental Table 4). We took advantage
of the 2 disease stages per patient by subtracting from the BC
samples such genomic alterations as could already be detected
in CP, thereby focusing on events acquired after CP (BC-specific).
We found evidence for a novel CML-specific mutational signa-
ture (supplemental Figure 1; supplemental Note), but little
evidence for reactive oxygen species (ROS) or activation induced
cytidine deaminase (AID)/apolipoprotein B editing complex
(APOBEC) signatures.26-28 On average, the mutational load was
comparable to other acute leukemias.29 Recurrently mutated
BC-specific genes encompassed those that have been pre-
viously described, with ABL1 kinase domain mutations and
RUNX1 mutations being the most common and recurrent so-
matic single nucleotide variants (SNVs), but also an IKZF1 stop
gain and a missense mutation (R208X and N159S, transcript
NM_006060, Figures 1A-B; supplemental Tables 5-8). The ABL1
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and RUNX1 mutations were not enriched for characteristic
mutations of the CML signature (supplemental Figure 2). Of
note, 5 of the patients with paired CP-BC samples progressed to
BC within 6 months (supplemental Table 1). All 5 were patients
with LBC, showing a lower mutation load than patients with LBC
who progressed after 6 months (supplemental Figure 3), but no
consistent differences for ABL1 mutations acquired during
progression (supplemental Table 5B).

We identified somatic copy number alterations (SCNAs) ac-
quired during transitions from CP to BC and found, on average,
60 Mb with copy number gain, 56 Mb with copy number loss,
and 11 Mb of complex structural changes (Figures 1C-D; sup-
plemental Table 9). Patients with LBC showed an average of 74
Mb gain and 67 Mb loss, whereas MBC showed 30 Mb gain and
33 Mb loss. Overall, more genes were affected by SCNAs than
nonsilent SNVs/indels during BC transformation (median5 5 for
nonsilent SNVs/indels [range, 0-12]; median 5 182.5 for SCNAs
[range, 1-4744]; supplemental Tables 5A and 9). This is in
agreement with the notion that BCR-ABL1 alters DNA double
strand repair.30,31 IKZF1 was the non-immunoglobulin-related
gene that was most frequently affected by deletions during
progression (7 of 13,.50%; Figure 1A; supplemental Table 9) as
previously reported.3,4 Using GISTIC analysis,32 we searched for
genomic regions that showed significant copy number alter-
ations and identified recurrent deletions on chromosomes 7
(containing TARP among others), 9 (CDKN2A/B), and 14
(FAM30A, also known as KIAA0125; Figure 1A,D; supplemental
Table 10) supporting earlier reports.4,33 Of note, the TARP and
KIAA0125 loci were affected by immunoglobulin rearrange-
ments, whereas rearrangements or deletions in immunoglobulin
genes per se were observed in 7 of 9 paired LBC samples, but in
none of the MBC samples. We noticed that PRC genes were
affected by SCNAs in a number of CP to BC progressions and
formally tested for enrichment of BC-specific genomic alter-
ations (SCNAs, SNVs, and indels) in cancer-related and epige-
netic pathways (supplemental Table 11).20,34-42 Interestingly, we
found the hematopoietic stem cell (HSC; including KIAA0125 as
a potential passenger event) signature and PRC genes to be
significantly enriched for genomic alterations, mainly SCNAs,
acquired fromCP to BC (1.4-fold enrichment [P5 .009] and 1.47-
fold enrichment [P 5 .042], binomial test Benjamini-Hochberg
corrected, respectively; Figure 1E). Next, we expanded our
analysis by whole-exome sequencing (WES) of 37 additional BC
(23 MBC and 14 LBC) and 2 accelerated phase samples and
found that PRC genes were still significantly enriched (Figure 1F).
Combining the BC-specific genome alterations of the paired
samples with the (unpaired) validation set, we observed addi-
tional genes as recurrently altered including CDKN2A/B, PAX5,
and EZH2 (supplemental Tables 12 and 13), which have docu-
mented roles as leukemia-initiating genes.4,24,43-50 We also
confirmed the enrichment of genomic alterations in HSC and
PRC genes, underscoring the relevance of these alterations for
CML (combined P values 5.43 1023 for HSC and,13 10210 for
PRC, using Fisher’s approach; supplemental Table 14).

Taken together, the mutation load of the CML progression
genome is moderate, with SCNAs playing a more important role
than somatic SNVs, and indels and point mutations showing a
CML-specific mutation signature. In addition to changes in
previously described candidate genes, genomic alterations are
enriched in HSC and PRC genes.

Genetically heterogeneous BC progenitors
converge on stem cell- and PRC-related
transcriptional signatures
We next characterized the transcriptional changes associated
with transformation by comparing the gene expression signa-
tures of CP as well as MBC and LBC CD341 cells, as defined by
standard immunophenotyping.51 We found that, despite being
genetically heterogeneous for mutations in established leuke-
mia tumor suppressor genes and oncogenes, both MBC and
LBC transcriptomes were highly congruent, sharing a core set of
431 and 522 concordant significantly upregulated and down-
regulated genes, respectively when compared with CP, with less
than 2% of gene expression changes in opposite directions
(Figure 2A; supplemental Figure 4A; supplemental Tables 15
and 16). We also compared the LBC and MBC transcriptomes
directly and confirmed that the MBC and LBC transcriptomes
were enriched for gene signatures found in their normal (eg,
lymphoid progenitors and B cells) as well as malignant mye-
loid and lymphoid counterparts, respectively (supplemental
Figure 5A). We then used the MsigDB hallmark gene sets52 to
identify the major biological states and processes present within
the BC transcriptome, as well as identify significant differences.
We found that both MBC and LBC were enriched for in-
flammatory pathways, including interleukin 2, JAK-STAT, NF-kB,
and transforming growth factor b signaling, and were also de-
pleted of the cell cycle and proliferation genes (MBC, Figure 2B;
LBC, supplemental Figure 6A). We note that the combination of
inflammatory signatures coupled with quiescence is reminiscent
of a recently described TKI-resistant CP LSC population.53 Re-
garding differences, we found that the MBC transcriptome
was enriched for metabolism-associated pathways (eg, mTORC1
signaling, fatty acid metabolism, and bile acid metabolism)
when compared with LBC (supplemental Figure 5B). Increased
mTORC1 signaling is an established feature of BC,54 and our
data suggest that this pathway and other metabolic processes
are differentially activated in MBC compared with LBC.

Next, we examined the transcriptomes for evidence of LSC or
HSC signatures. Consistent with current understanding,3 both
MBC and LBC populations were enriched for LSC and HSC
transcriptional programs, as defined by 3 independent data
sets,37,55,56 whereas in contrast, CP CD341 cells resembled
progenitor populations that are devoid of self-renewal capacity
(MBC, Figure 2C; LBC, supplemental Figure 6B). Because the
enrichment of LSC/HSC signatures at the transcriptomic level
mirrored the genomic enrichment of HSC-related genes
(Figure 1E), we determined whether our transcriptomic data set
was also enriched for alterations in the PRC pathway we ob-
served genetically (Figures 1E-F; supplemental Tables 11 and
14). Using gene set enrichment analysis (GSEA), we found an
enrichment and depletion of genes that comprise the canonical
PRC1 and PRC2 complexes, respectively (MBC, Figure 2D; LBC,
supplemental Figure 6C). Gain- and loss-of-function events af-
fecting PRC1 and PRC2, respectively, are known to individually
contribute to myeloid leukemias,16-18,57-59 and our findings
suggest that both types of events occur simultaneously during
BC transformation. Importantly, using MSigDB gene sets for
biologically validated BMI1 and EZH2 targets, we found that
PRC1 (BMI1) and PRC2 (EZH2) target genes were enriched and
depleted for, respectively, in MBC and LBC transcriptomes
(MBC, Figure 2E; LBC, supplemental Figure 6D).
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Taken together, our integrated analyses of the BC progres-
sion genomes and transcriptomes revealed that stem cell- and
PRC-related expression signatures are remarkably consistent
across samples bearing a variety of leukemia-associated genetic
events.

A BC-specific methylome is enriched for PRC
targets and regulates differentiation
Although DNA hypermethylation is an established hallmark of
BC, the failure of DNA methyltransferase inhibitors (DNMTi) to
produce durable responses in patients with BC prompted us to
reassess the contribution of methylation-altered genes to BC
reprogramming.13,60-65 We first confirmed prior work indicating
that MBC and LBC transitions consisted mainly of hyper-
methylation events (87% and 80% of differential probes in MBC
and LBC, respectively), and that hypermethylation occurred in
promoter regions rather than gene bodies (52% vs 45% re-
spectively, for MBC; 60% vs 38%, respectively, for LBC sup-
plemental Figure 7A). In addition, we found that the normal
bone marrow transition to CP is already marked by alterations in
DNAmethylation and includes a pan-CML signature that persists
through BC transformation and is characterized primarily by
hypomethylation (Figure 3A). Importantly, and as for the BC
transcriptome (Figure 2A), the BC DNA methylation signature
appears indifferent to underlying leukemia-associated gene
mutations (Figure 3A). Next, to assess the contribution of
methylation-altered genes to BC, we integrated our methylation
and gene expression data sets. We found the majority of BC
gene expression changes to be associated with hyper-
methylation instead of hypomethylation (MBC, Figure 3B; LBC,
supplemental Figure 6E; supplemental Table 17). Furthermore,
decreased gene expression wasmore commonly associated with
hypermethylation events in the promoter, in contrast to genes
with increased expression (supplemental Figure 7B), and is
consistent with prior observations.66-68

We then used GSEA to determine whether hypermethylated
expression-altered genes were enriched for a priori defined
cellular processes, and found an enrichment for gene sets in-
volved in stem cell fate, myeloid and lymphoid function, and
leukemia-related signatures (MBC, Figure 3B; LBC, supple-
mental Figure 6E; supplemental Table 18). Interestingly, we
noted DNA methylated genes were significantly enriched for
PRC-related processes, including genes that are established PRC
targets (MBC, Figure 3B; LBC, supplemental Figure 6E; sup-
plemental Table 18), and confirmed this association with 2 in-
dependent data sets (Figure 3C).35,36 These findings suggest that
PRC binding is instructional for genes destined for hyper-
methylation in BC, a finding we investigate here.

To better understand the limited efficacy of DNMTis in BC, we
determined the gene expression changes associated with
pharmacological reversal of DNA hypermethylation. Despite the

efficacy of low-dose 5-aza-2’-deoxycytidine (DAC)69 in de-
methylating 9083 genes within the BC methylome (supplemental
Figure 7C-D; supplemental Tables 19-21), only 97 (1.07%) genes
were significantly upregulated after 3 days of DAC treatment
(adjusted P , .05, cutoff: log2 fold-change of $0.58). Prominent
genes upregulated from days 1 to 3 include those involved in
neutrophil function (MPO, PRG2, TNFAIP6, MMP25), myeloid
differentiation (CEBPE, RXRA, TYROBP), and leukocyte activa-
tion, as well as myeloid tumor suppressor activity (EGR1,MS4A3,
CDKN1A/p21; Figure 3D; supplemental Table 19).70-76 In ad-
dition, GSEA indicated that DAC treatment resulted in depletion
of established HSC and LSC genes but enriched for myeloid
differentiation genes (Figure 3E). We conclude that although
DNAmethylation is associated withmany of the gene expression
changes associated with BC reprogramming, the inability of
DNMTis to reverse the majority of DNA methylation-associated
gene expression changes, even under optimized in vitro con-
ditions, suggests additional layers of epigenetic regulation in BC
reprogramming.

Differential contribution of BMI1 and EZH2 to BC
Because our analyses of orthogonal data sets (Figures 1E-F, 2D-
E, and 3B; supplemental Figure 6C-E) indicate that PRC1 and
PRC2 alterations are recurring features of BC, we investigated
whether PRC1 and PRC2 directly contribute to BC trans-
formation. We performed ChIP followed by high-throughput
sequencing (ChIP-seq) on CD341 CP and BC samples for
EZH2 and BMI1 binding.We found that both BMI1 and EZH2 are
bound to common genomic regions (Figure 4A), and that their
binding occurs primarily near transcription start sites (Figure 4B;
supplemental Figure 8A). Consistent with other studies,20,77 we
also found that 80% of EZH2-bound genes were co-occupied by
BMI1, and conversely, the majority of BMI1 binding occurs in-
dependently of EZH2 (6347/9676, or 66%; Figure 4C; supple-
mental Table 22). Gene ontology (GO) analysis revealed that
genes bound by BMI1 and EZH2 had distinct as well as over-
lapping functions, including cell development and differentia-
tion, inflammation, proliferation, leukocyte function, and apoptosis
(Figure 4C; supplemental Tables 23-25).

To specifically identify the subset of BC genes that are main-
tained by continued BMI1 and EZH2 activity, we treated primary
CD341 BC cells with the BMI1 and EZH2 inhibitors (PTC20978

and GSK126,79 respectively), using concentrations validated for
on-target effects in CML cell lines (Figures 5A-C; supplemental
Figure 12C-D), and identified BMI1- and EZH2-bound genes
whose expression was altered by drug treatment. Strikingly,
PTC209 treatment induced expression changes of 626 BMI1-
bound genes compared with only 19 EZH2-bound genes after
GSK126 treatment (Figure 4D; supplemental Figure 9A; sup-
plemental Tables 26 and 27). The BMI1-bound genes that
responded to PTC209 were significantly enriched for leuko-
cyte differentiation, apoptosis, and cell proliferation processes,

Figure 1. Genomic alterations during progress from CP to BC. (A) The genomic DNA of 13 paired patients with CML was analyzed by WGS at 2 disease stages, allowing the
identification of stage-specific alterations for BC (CP→BC) for each patient. Circos plot shows in the outer layer genomic gains (red) deletions (blue), and inversion/complex
rearrangements (black), followed toward the center by SNVs (silent/noncoding in black and putative damaging in red). Each row represents 1 of the 13 samples. Central lines
show translocations with individual samples in different colors. (B) Significantly mutated genes by SNV and indels in 13 patients during progression. (C-D) Significantly copy
number altered genomic regions acquired during progression by (C) gains and (D) deletions. (E-F) Test for significant (x-axis) and enrichment (y-axis) of genomic alterations
acquired from CP to BC for paired (E, by WGS) or unpaired (F, by WES) samples in genes related to cancer and epigenetic pathways (see supplemental Table 11 for gene lists).
Dashed lines indicate significance and deviation from the null hypothesis of no enrichment (enrichment 5 1).
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Figure 2. CD341BCprogenitors exhibit transcriptional convergence. (A) Heat map of statistically significant (Log2 fold-change. 0.58 or,20.58 and adjusted P, .05) gene
expression differences between CD341MBC (n5 13), LBC (n5 5), and CP (n5 16) progenitors. Mutational profiles of the commonest recurring genemutations are depicted for
each transcriptome. All ABL1 mutations are in the 39 part of the gene belonging to BCR-ABL1. *Biphenotypic BC sample with myeloid and lymphoid immunophenotype
(“Methods”). (B) Enriched and depleted MSigDB v6.1 hallmark gene sets within the MBC gene expression networks. (C) GSEA-based network analysis for LSC gene set
signatures within MBC transcriptomes. (D-E) PRC1 and PRC2 pathway gene set signatures within MBC by GSEA.
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Figure 3. The BC methylome is enriched for PRC targets and regulates differentiation. (A) DNA methylation heat map of NBM (n5 7), CP (n5 28), MBC (n5 18), and LBC
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suggesting important functional contributions to BC reprog-
ramming (Figure 4D; supplemental Tables 28 and 29). Impor-
tantly, and in agreement with prior reports,80-83 PTC209-induced
differentially expressed genes were enriched for expression
signatures found in BMI1-deficient cells, as well as other
PTC209-treated cells (supplemental Figure 9B). Because BMI1’s
contribution to cancer occurs in part via suppressing tumor
suppressor genes,20 we focused on the subset of BMI1-bound
genes that are both downregulated in BC and upregulated by
PTC209 treatment (supplemental Figure 9C-D; supplemental
Tables 30 and 31). Interestingly, genes fulfilling these criteria
were involved in immune and inflammatory responses, cell
death, and cellular stress (supplemental Figure 10A; supple-
mental Tables 31 and 32), a subset of which we tested for tumor
suppressive function (Figure 6).

Having uncovered an association between PRC targets and BC
hypermethylated genes (Figure 3B-C), and because polycomb-
repressed genes regulate self-renewal and lineage commitment,84-87

we tested whether PRC binding in CP is instructional for promoter
DNA hypermethylation in BC. We observed significant enrich-
ment of promoters bound by EZH2 alone (4.7-fold; P, 10216), as
well as those bound by EZH21 BMI1 (3.5-fold; P, 10216), at sites
of DNA hypermethylation in BC, but not for BMI1-alone bound
promoters (Figure 4E). In contrast, BMI1 and/or EZH2 bound
promoters are not significantly enriched for DNA hypo-
methylation (Figure 4F). To gain insight into the dynamics of
EZH2-directed DNA hypermethylation during disease progres-
sion, we investigated EZH2-bound promoters with differential
binding in CP and BC. Strikingly, we found that 239 BC hyper-
methylated promoters showed stronger EZH2 binding in CP
compared with BC, but not vice versa (supplemental Figure 10B;
supplemental Table 22). Similarly, 629 promoters showed stronger
binding of BMI1 in CP and only 30 promoters in BC (supple-
mental Figure 10C; supplemental Table 22). Conspicuously, the
sites where EZH2 and/or BMI1 binding was reduced in BC
compared with CP were even more strongly enriched for DNA-
hypermethylation in BC (8.8-fold for EZH2, 9.1-fold for EZH2 1
BMI1, and 5.5-fold for BMI1) at high levels of significance (P, 102

16; supplemental Figure 8C). These results are in agreement with
reported decreased binding of EZH2 occurring at sites that have
become DNA hypermethylated.88 To further explore the re-
lationship between histone marks and DNA hypermethylation, we
performedChIP-seq experiments for the repressivemark histone 3
lysine 27 tri-methylation (H3K27me3) that is established by PRC2
catalytic activity and is recognized by DNMTs, and for H3K4me3,
an activation mark. We observed a strong enrichment for
H3K27me3 anddepletion for H3K4me3 at DNA-hypermethylation
sites, supporting the canonical model of PRC function, and that
bivalent genes, marked by both H3K27me3 and H3K4me3, are
also significantly enriched for DNA-hypermethylated sites (sup-
plemental Figure 11A-B; supplemental Table 22).89,90

In summary, our results indicate that both EZH2 and BMI1
contribute to reprogramming of the BC transcriptome, but do so
in distinct ways: EZH2 plays a greater role than BMI1 in speci-
fying genes for subsequent DNA methylation-mediated si-
lencing in BC, whereas BMI1 plays a greater role in maintaining
the BC transcriptome, in particular regulating processes involved
in differentiation and cell survival (Figure 4D; supplemental
Figure 10A). We next tested a BC model (Figure 7C) based on
these findings by evaluating the effect of inhibiting DNA
methylation and PRC activity in BC reprogramming and function,
determining whether PRC-silenced genes encompass novel BC
tumor suppressors, and assessing whether validated gene sets
predictive of poor outcome in CP progenitors are enriched for
targets of PRC and/or DNA methylation.

Combined targeting of DNA methylation and BMI1
activity in BC cells
Our analyses indicated important roles for DNAmethylation and
BMI1 in maintaining the BC transcriptome, including altering the
function of genes involved in differentiation, proliferation, and
cell survival (Figure 3-4). Accordingly, we tested DNMT, BMI1,
and EZH2 inhibitors (DAC, PTC209, and GSK126, respectively)
against a panel of 3 CML BC cell lines. We found that PTC209
and DAC, but not GSK126, decreased the viability of most BC
cell lines in a dose-dependent manner (Figure 5A-C). Primary BC
CD341 cells exhibited similar responses, in that PTC209 and
DAC resulted in fewer progenitor colonies than GSK126
(Figure 5D). We note that the sensitivity of BC cell lines and
primary BC cells to BMI1 inhibitors, but not EZH2 inhibitors, is
consistent with our genomic and transcriptomic analyses (Figure
2D-E; supplemental Figure 6C-D), where recurrent gain-of-
function events affecting PRC1 suggest a pro-tumorigenic role
for BMI1, whereas recurrent loss-of-function events affecting
PRC2 suggest the opposite for EZH2.

We then compared the combination of DAC and PTC209
treatment in both primary BC CD341 and CD341 normal bone
marrow (NBM) cells. We found that both DAC and PTC209 had
single-agent activity against BC, and that the combination sig-
nificantly reduced BC colony formation by 90% (P 5 .0018),
whereas NBM colonies were not significantly affected (P 5 .14;
Figure 5E). Next, we used the serial replating assay to examine
whether the drugs were able to extinguish the BC self-renewal
function, a cardinal feature of BC cells.10,91 We found that each
drug was effective in decreasing serial replating efficiency, and
the combination was more effective than either agent alone
(Figure 5F). To understand how DAC and PTC209 are able to
reduce BC cell viabilities, we performed GO analysis on the
transcriptomic changes in BC cells after drug treatment. In upre-
gulated genes, we found that PTC209 and DAC induced over-
lapping and related processes, including programmed cell
death, immune function, cellular stress, and cytokine responses

Figure 4. Differential contribution of BMI1 and EZH2 to BC reprogramming. (A) Circos plot displays genome-wide regions bound by BMI1 and EZH2 by ChIP-seq and BC-
specific DNAmethylation regions. Chromosome 12 is enlarged to illustrate individual tracks. Each track shows the regional accumulation of the respective signals. Of note, in the
lowest 2 tracks (changes in BMI1/EZH2 binding), the weaker binding (light color) dominates. Bottom right shows the BMI1 and EZH2 ChIP-seq tracks at a gene locus on
chromosome 1, illustrating the consistent binding at a hypermethylated site and weaker binding in BC. (B) ChIP-seq heat maps displaying binding densities of BMI1 and EZH2 at
transcription start sites (TSS). TSS of all plots are arranged in the same order defined by BMI1 densities in CP. Data of 1 representative patient out of 3 patients with CP and 3 patients
with BC, respectively, is shown. Plots of all samples can be found in supplemental Figure 8A. Averaged binding profiles are plotted on top. Average expression levels of respective
genes are shown in red/yellow heat maps (16 patients with CP vs 15 patients with BC from Figure 2). (C) Top GO terms for BMI1- and EZH2-bound genes in CML. (D) Top GO terms
for genes that are bound by BMI1 and differentially expressed (FDR, 0.05; Log2FC. 0.58 or,20.58) after treatment with BMI1 inhibitor (BMI1i) PTC209 of CD341 BC cells. (E-F)
Enrichment analysis of BMI1 and EZH2 binding sites, each based on 3 CP and 3 BC samples, for DNA hypermethylated (red, E) or hypomethylated (blue, F) loci (as defined by 28
patients with CP vs 30 patients with BC in Figure 3A). Fold-enrichment for overlap is shown on the y-axis; negative logarithmic P values for enrichment are shown on the x-axis.
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(Figure 5H; supplemental Tables 36-38). In downregulated genes,
PTC209 alone inhibited genes involved in cell cycle and DNA
replication (Figure 5H; supplemental Table 37). Importantly, we
found that the combination resulted in gene expression changes
for an additional 1,055 genes compared with either PTC209 or
DAC alone, including those involved in programmed cell death, im-
mune function, cellular stress, and cytokine responses (Figure 5G-H).

Finally, to identify putative BMI1-silenced BC tumor suppressor
genes, we reexpressed a panel of BMI1-bound genes that were
repressed in BC but upregulated by PTC209 exposure in primary
CD341 BC cells (supplemental Figure 10A). Among these, we
confirmed the growth-inhibiting properties of a previously de-
scribed BC tumor suppressor gene, EGR192,93 (Figure 6A-B).
Among 5 novel candidate genes, we found that NR4A2, a nu-
clear receptor transcription factor with no known role in leuke-
mia,94 was able to inhibit colony formation in BC cell lines
(Figure 6C-D). Importantly, an inactive point mutant form of
NR4A2 (NR4A2-C283G) incapable of DNA binding and gene
transactivation,95 was unable to suppress BC cell line growth
(Figure 6E-F). We confirmed the tumor suppressor function of
NR4A2 in primary BCCD341 cells and found that overexpression
of only wild-type NR4A2 was effective in inhibiting BC colony
formation (Figure 6G-H). Together, our data support critical roles
both for DNA methylation, directed by PRC2, in permanently
silenced genes involved in differentiation, and for PRC1 actively
maintaining repression of additional genes that regulate apo-
ptosis, cell cycle progression, and inflammatory responses.

DNA methylation- and PRC-silenced genes in BC
predict poor outcome in CP patients
It is possible to identify patients with CP who are destined to
develop TKI resistance and BC progression by gene expression
changes in CD341 cells at the time of presentation.96,97 We
reasoned that PRC-directed gene silencing might already be at
play in progenitors from poor-prognosis patients with CP,
thereby inducing a TKI-resistant state poised for transformation.
Using our data sets, we examined whether genes predicting TKI
resistance96 and either early (,3 years from CP diagnosis) or late
($7 years) BC transformation97 were enriched for methylation
and PRC binding. We interrogated the McWeeney and Yong
data sets by first categorizing our BC gene sets according to their
methylation status (hyper-/hypomethylated) and PRC state
(PRC-/non–PRC-bound). Genes in each category were then
analyzed with GSEA to determine whether they were enriched
for prognostic genes. We found that only hypermethylated and
downregulated genes were enriched (false discovery rate
[FDR] , 0.05), including genes that were bound by PRC and
were common to both data sets (MBC, Figure 7A; LBC, sup-
plemental Figure 13A; supplemental Tables 39-41). GO analysis
of these genes revealed pathways that are associated with
myeloid and leukocyte-mediated immune activation and de-
granulation (MBC, Figure 7B; LBC, supplemental Figure 13B),
suggesting that, in poor prognosis CP samples, processes

associated with PRC-binding and DNA methylation silence the
expression of genes regulating lineage specification.

Discussion
We have developed a clinically informative molecular model of
BC progression by integrating multiomics data sets from primary
patient material (Figure 7C). In doing so, we determine that
leukemia stem cell and PRC-related gene expression signatures
are prevalent features of the BC transcriptome that transcend
genetics (Figures 2A and 3A). Our findings are indicative of
strong selective pressures for the emergence of TKI-resistant
clones with perturbations in PRC-related pathways (Figures 1E,
2D-E, 3B-C, 4, 5, and 6). Furthermore, given that BC progenitors
possess a long tail of diverse leukemia-initiating genes,4,11,12 our
integrated data suggest that genetic contributors of trans-
formation may be decoupled from PRC-driven maintenance
programs in BC. Because we find combined PRC1 and DNMT
inhibitors functionally dismantle these programs, it may be
possible to treat the majority of patients with BC with this
combination regardless of their underlying genetic events.

Although our data describe specific genetic alterations that may
contribute to the gain- and loss-of-function of PRC1 and PRC2,
respectively (Figure 1E-F), it is likely that additional mechanisms
contribute to changes in PRC1/2 activity, as highlighted by re-
cent reviews.23,98 Here, it is interesting to note that investigators
employing an inducible mouse model of CML found that BCR-
ABL1 per se can induce changes in DNA hypermethylation.99 It is
therefore tempting to speculate that prolonged, unopposed
BCR-ABL1 activity leads to epigenetic reprogramming of BC
progenitors, and that this proceeds via as-yet-undiscovered
connections between BCR-ABL1 and mediators of PRC activity.
Relatedly, it would be important to determine whether PRC-
driven reprogramming contributes to TKI resistance itself. This is
difficult to investigate in BC, as the majority of BC samples
harbor TKI resistance-conferring mutations in BCR-ABL1. How-
ever, it may be possible to address this issue in CP, where kinase
domain mutations are rare, even among those who develop
clinical TKI resistance. In these patients, it may be possible with
single cell-based analyses to determine whether PRC-driven
reprogramming occurs in clonal populations that emerge during
or before the development of full-blown clinical TKI resistance.

Our work also highlights differential contributions of PRC1 and
PRC2 to transformation at different stages. EZH2, the central
component of PRC2, is known to regulate reprogramming of CP
LSCs.14,15 We delineate EZH2’s association with genes that
eventually undergo DNAmethylation fromCP to BC, suggesting
a role in specifying sites for methylation. This process of epi-
genetic switching was proposed a decade ago, in which poised
PRC-bound genes are methylated in cancers, thereby inducing a
more permanent state of self-renewal.85-87,100 Supporting the
hypothesis that persistent PRC2/EZH2 binding predisposes

Figure 5. PRC1 and DNA methylation contributes to BC by promoting cell survival and proliferation.MTS assays of 3 CML cell lines that were incubated (3 days) with (A)
PTC209, (B) decitabine (DAC), (C) GSK126. Results shown asmean6 standard deviation (n5 3). (D) CFAs showing the effect of PTC209 (2.5mM), DAC (200 nM), andGSK126 (2.5mM)
onBCCD341 cells. *P5 .006; **P5 .023. (E) CFAs showing combination effect of PTC209 andDAC onprimary BC and normal CD341 cells. *P5 .0018; ^P5 .14. (F) Three rounds of
serial replating (SRP) assays were performed with primary CD341 BC cells. Relative colony formation is a percentage of the number of colonies in each sample relative to that in the
first SRP DMSO control. *P5 .0003 (1st SRP); **P5 .0001 (2nd SRP); ***P5 .0026 (3rd SRP). (G) Overlap of differentially expressed genes (log2FC. 0.58 or log2FC,20.58; FDR,

0.05) induced by PTC209 and DAC (either single or combined). (H) Top GO terms for differentially regulated genes after drug treatment.
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Figure 6. PRC1 contributes to BC by inhibiting expression of BC tumor suppressors. CFAs of K562 and KCL22 cells retrovirally transduced with (A) EGR1, either wild-type
(WT) or dominant negative (DN) or (C) the indicated cDNAs are shown. (A) *P5 .001; **P5 .00004; #P5 .03; ##P5 .04. (C) *P5 .000001; **P5 .0011; #P5 .000003; ##P5 .003.
CFAs of K562, KCL22 (E), and primary BC cells (G) retrovirally transduced with FLAG-NR4A2, either wild-type (WT) or (C283G) mutant are shown. (E) *P 5 .0009; **P 5 .0022;
#P 5 .027. (G) *P 5 .0021. For panels A, C, E, and G, results are given as mean6 standard deviation (n5 3). For each CFA plot, the corresponding immunoblots are shown on
the right (B,D,F,H). Control, cells retrovirally transduced with empty vector.
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normal cells to transformation, we also demonstrated that CP
prognostic genes were enriched for known PRC-bound and
methylation-prone genes in BC. This suggests the possibility of
reverting poor prognostic patients to a lower risk category by
inducing re-expression of these genes with suitable drugs.
Because we observed similar alterations in PRC1 and PRC2 in
both MBC and LBC (Figure 2D-E; supplemental Figure 6C-D), it
is perhaps not surprising that we found that both MBC and LBC
transcriptomes and DNA methylomes were remarkably similar
(supplemental Figure 4A; Figure 3A), despite maintaining dis-
tinct myeloid and lymphoid expression profiles (supplemental
Figure 5). Indeed, as we also observed a high degree of overlap

between genes that were prognostic in CP for both MBC and
LBC transformation (Figure 7A; supplemental Figure 13A), it is
possible that mechanisms mediating MBC and LBC trans-
formation are common to both.

We also determine that ongoing BMI1 activity is important in
maintaining the BC transcriptome. In contrast to DAC exposure,
BMI1 inhibitors de-repress a large set of genes involved in
apoptosis, proliferation, and differentiation, including estab-
lished (EGR1) and novel (NR4A2) BC tumor suppressor genes.
Although NR4A2 is known to restrict proliferation in normal
HSCs,101 it has not been reported to play a role in leukemia,
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Figure 7. DNAmethylation- and PRC-silenced genes in
BC predict poor outcome in patients with CP. Table
summarizing preranked GSEA results for MBC vs CP (A).
Normalized enrichment score (NES), FDR, as well as the
identity of the genes that drive the enrichment are pro-
vided (for details, see “Methods”; supplemental Tables
39-41). A negative NES value denotes that genes down-
regulated from CP to BC in our samples are enriched for
the indicated data sets. (B) Top GO terms, with FDR
scores, for genes in panel A. (C) CP to BC progression
model that illustrates that, despite genetic heterogeneity,
there is a convergence in progression-specific tran-
scriptomes and methylomes that are driven by BMI1 and
EZH2. Specifically, EZH2 directs BC-specific DNA hyper-
methylation that inhibits cell differentiation and tumor
suppressor programs, whereas BMI1 also inhibits cell
death.
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although other NR4A family members, NR4A1 and NR4A3, are
known myeloid tumor suppressors.102,103 Interestingly, HSCs
that are deficient in NR4A1 and NR4A3 exhibit increased
inflammation and aberrant activation of interferon and NF-
kB signaling, features we observed in BC transcriptomes
(Figure 2B).104 We therefore speculate that BMI1-mediated
NR4A2 silencing contributes to the inflammatory features of
BC we describe. When combined with DAC, BMI1 inhibitors
exert additional specific and potent effects on BC progenitors,
including suppression of their self-renewal ability while leaving
NBM untouched (Figure 5). Of note, early results of an orally
bioavailable BMI1 inhibitor, PTC596,105 suggest that BMI1 in-
hibitors are clinically tolerable and could be combined with
DAC, a drug approved by the US Food and Drug Administration.
With regard to the role of BCR-ABL1 in promoting genomic
instability via enhancing ROS,3 we saw little evidence for either
ROS- or APOBEC-mediated mutational signatures during pro-
gression, but instead, found that the mutational load in BC was
modest compared with solid tumors and similar to other acute
leukemias. The relatively quiet progression genome led us to
focus on epigenetic factors in BC transformation. We identified
PRC-driven events that could be pharmacologically dismantled
to extinguish BC cells and their self-renewal activity (Figure 5),
and at the same time, gained mechanistic insights into how
prognostic genes in CP are silenced (Figure 7A-B; supplemental
Figure 13A-B). Combined, our data suggest a model of BC
progression consistent with strong selective pressures for PRC-
driven events (Figure 7C) occurring against a background of
heterogeneous leukemia-associated mutations.
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