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Cytotoxic therapy has been associated with both clonal hema-
topoiesis (CH) and therapy-related leukemia,1-3 and mutations in
DNA repair genes such as TP53 and PPM1D are strongly as-
sociated with prior chemotherapy exposure.1,4,5 However, data
on the origin and longitudinal dynamics of CH during and after
chemotherapy are sparse and only exist for smaller, heteroge-
neous patient cohorts.6-12 Therefore, in this study, we analyzed
the development and evolution of CH in a homogeneous cohort
of mantle cell lymphoma (MCL) patients before, during, and after
first-line chemotherapy, autologous stem cell transplantation (ASCT),
and long-term follow-up after end of therapy.

We investigated 335 DNA samples from 149 patients treated in
2 Nordic Lymphoma Group front-line trials for younger patients
(age ,66 years) with MCL; MCL2 and MCL3. Both trials con-
sisted of an induction phase of immunochemotherapy followed
by consolidation with high-dose chemotherapy (HDT) and
ASCT.13,14 All patients provided written consent, and the study
was approved by local ethics committees and conducted in ac-
cordance with the Declaration of Helsinki. For initial screening,
minimal residual disease (MRD)-negative DNA samples from bone
marrow and peripheral blood were collected according to avail-
ability (Figure 1A). In patients with detected CH in a screening
sample, additional follow-up samples from time points before,
during, and after therapy were collected regardless of MRD status
(Figure 2A). All samples underwent error-corrected NGS of 21 CH-
related genes (supplemental Tables 1 and 2, available on the Blood
Web site) andgeneral variant callingwith a VAF cutoff of 1.0%.Next,
consecutive samples from CH1 patients underwent focused variant
calling to identify specific low-frequencymutations already detected
in other samples from the same patients (supplemental Methods).

We identified 149 cases with MRD2 bone marrow (n 5 134) or
peripheral blood (n 5 15) samples after HDT-ASCT (Figure 1A).
By NGS, we identified 54 CH mutations in 44 (30%) of these
samples, with a median VAF of 3.2% (Figure 1B; supplemental
Tables 3 and 4). Both prevalence (12%) and clone size (median
VAF, 2.4%) were lower in 59 paired MRD2 postinduction
samples taken between induction-therapy and HDT-ASCT, in-
dicating a CH-promoting effect of HDT-ASCT (Figure 1C-D). We
observed no differences in baseline characteristics between
patients with and without CH (supplemental Table 5). Mutations
in DNA repair genes (PPM1D, n5 4; TP53, n5 3; RAD21, n5 1;
and BRCC3, n 5 0) were present in only 8 patients (5.4%), fewer
than in previous reports.1,5 We suspect this reflects the lower
cumulative dose of chemotherapy received in our cohort of first-
line–treated patients compared with the heterogeneous cohort

of more heavily pretreated patients published by Gibson et al1

(median, 2 prior lines of therapy; range, 1-6 prior lines).

With a median follow-up of 8.0 years from ASCT, median
overall survival was not influenced by CH (hazard ratio, 0.92;
95% confidence interval, 0.48-1.8; log-rank P 5 .82; Figure 1E).
Increasing the VAF cutoff for CH mutations to 2% or 10% did
not alter this result (data not shown). Only 4 patients developed
TMN disease, with a median time from post-ASCT sample to
TMN diagnosis of 30 months (range, 18-42 months), and only
1 of these patients carried a CH mutation in the post-ASCT
screening sample (DNMT3A P904L; VAF, 1.9%). Of note, com-
pared with the similar study by Gibson et al,1 in which CH clearly
showed poor prognostic impact at time of ASCT, our cohort
represented relatively good-risk MCL patients (MRD negativity
after ASCT) who all received ASCT in the first line.

Forty-seven patients carried a CH mutation in an MRD2 sample
at either the postinduction or post-ASCT time point. In these
patients, a total of 77 CH mutations were tracked in the con-
secutive samples (Figure 2A-B). Comparing 28 paired samples
before and after induction chemotherapy, 9 new CH mutations
appeared, whereas no mutations disappeared. Of 39 mutations
detected at both time points, the median VAF increased from
0.97% (IQR, 0.38%-2.6%) to 1.6% (IQR, 0.90%-3.3%; Wilcoxon
P 5 .001), corresponding to a median relative VAF increase of
44% (IQR, 20.88%-230%; Figure 2B). Similarly, comparing 36
postinduction and post-ASCT samples, 3 mutations appeared
and 2 disappeared, and the median VAF of 53 shared muta-
tions increased from 1.5% (IQR, 0.91%-3.1%) to 2.8% (IQR,
1.4%-4.8%; P 5 .001), corresponding to a median relative VAF
increase of 42% (IQR, 28.0%-157%; Figure 2B).

During induction therapy, the median increment of clones with
DNA repair mutations was significantly greater than CH with
non-DNA repair mutations (11.7; IQR, 1.1-3.3 vs 10.48; IQR,
0.008-1.4; Mann-Whitney P 5 .008; Figure 2C; supplemental
Figures 1, 3, and 4). In contrast, during HDT-ASCT, expansion
of clones with DNA repair mutations was less pronounced and
similar to that of clones with non-DNA repair mutations (Figure 2C;
supplemental Figures 2-4).

We hypothesized that mutations with relatively more COSMIC
references for myeloidmalignancies weremore likely to represent
CH drivers. Mutations with $3 COSMIC references compared
with ,3, respectively, showed a significantly larger increase
during HDT-ASCT (11.4; IQR, 0.61-2.1 vs10.20; IQR20.55-1.4;
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P5 .029; supplemental Figure 4D). This may represent either an
increased resistance to HDT or faster engraftment after ASCT.

During follow-up of 44 CH1 patients after end of therapy, 6 new
mutations appeared and 6 disappeared. The median interval
from post-ASCT to late follow-up sample was 54 months (IQR,
42-57 months). The median VAF of the remaining 62 mutations
continued to increase (from 2.9% [IQR, 1.4%-4.7%] to 3.8% [IQR,

1.6%-6.6%]; P5 .013), but themedian growth rate was only 5.1%
per year (IQR,29%-55%), which is likely to reflect an age-related
increment (Figure 2D).

Clones carrying DNA repair mutations or mutations with a higher
number of COSMIC references did not behave differently after
end of therapy (Figure 2C; supplemental Figure 4). However, we
observed an overall negative correlation between VAF change
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during treatment and VAF change during chemotherapy-free
follow-up (Spearman’s r 5 20.32; 95% CI, 20.53 to 20.064;
P 5 .013), suggesting that clones expanding during chemother-
apy tend to diminish after end of therapy, possibly because of
withdrawal of the selective pressure of chemotherapy (sup-
plemental Figure 5). Fifteen mutations expanded both during
treatment and follow-up: 10 DNMT3Amutations (including 3 at
the 882 codon), 3 PPM1D mutations, and 2 TET2 mutations.

With a median follow-up of 7.7 years (IQR, 6.8-8.8 years), of
these 15 patients, none developed TMN disease. We did not
find any association between posttreatment behavior of CH
clones and VAF size or number of mutations per patient.

To explore the origin of the chemotherapy-associated CH, we
investigated the presence of CH clones before exposure to che-
motherapy. Selecting allmutations with VAF.1% in postinduction
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or post-ASCT samples, 42 (78%) of 54 mutations were detectable
by NGS in pretreatment samples. Importantly, exploring the
remaining 12 mutations, which were not found by NGS, by sen-
sitive ddPCR, we were able to detect 11 additional mutations.
Therefore, taken together, 53 (98%) of 54 posttreatment CH
mutations were already detectable before exposure to any che-
motherapy (Figure 2E). The undetectedmutation (ASXL1p.A627fs)
occurred a patient who also carried 2 other CH mutations (ASXL1
p.Arg774fs and DNMT3A p.Arg598*). Whether this mutation was
in fact induced by chemotherapy or was present at VAF below the
detection limit of the ddPCR assay (0.018%) remains unknown
(supplemental Table 6). Similarly, we also investigated mutations
that seemed to disappear during chemotherapy-free follow-up. By
ddPCR, wewere able to detect 5 of 6mutations at a low VAF in the
late follow-up samples (supplemental Table 4). Therefore, in total,
66 (99%) of 67 post-ASCT mutations remained detectable during
follow-up after end of therapy.

Several previous studies have demonstrated cases where post-
chemotherapy CH mutations could be tracked back to a pre-
chemotherapy time point.3,6,8-12,15-17 We here confirm in a large
cohort of chemotherapy-naı̈ve patients that nearly all (98%) post-
chemotherapy CH mutations could be detected before any treat-
ment was administered, which suggests that CH clones are always
expanded, and not induced, by chemotherapy (supplemental
Figure 6).

In conclusion, we show for the first time in MRD2 samples from a
large, homogeneously treated cohort that CH clones, especially
those carrying DNA repair mutations, expand consistently
during chemotherapy and HDT-ASCT, whereas CH clones
generally stabilize after end of therapy. We found no clinical
impact of CH in our cohort of relatively good-risk MCL patients
treated in the first-line setting, and thus, our data do not support
using CH as a biomarker for choice of treatment in patients
undergoing first-line intensive chemotherapy and ASCT. In-
terestingly, 54 of 55 postchemotherapy CH mutations were
already detectable before any chemotherapy was administered.
This provides support for a model with expansion of preexisting
clones, in a permissive microenvironment, rather than induction
of new clones by chemotherapy (supplemental Figure 6).
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INSERM U955, Hôpital Henri Mondor, Créteil, France; 10Department of Pathology, CHU Toulouse, IUCT Oncopole, INSERM, UMR 1037 Centre de Recherche en
Cancerologie de Toulouse, Laboratoire D’Excellence Toulouse Cancer (TOUCAN), Paul Sabatier University Toulouse III, Toulouse, France; 11Department of
Pathology, Royal Marsden Hospital, London, United Kingdom; and 12Department of Biopathology and Tumor Immunology, Institut Paoli-Calmettes, Centre de
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Breast implant–associated anaplastic large cell lymphoma
(BI-ALCL) has emerged as a new provisional entity in the revised
2016 World Health Organization classification of lymphoid
malignancies.1 BI-ALCL is a rare T-cell lymphoma arising adja-
cent to breast implants and composed of large atypical CD301

cells frequently confined to the peri-implant seroma fluid and
adjacent capsule, more rarely forming a solid infiltrating mass.2,3

So far, only exceptional cases of lymphomas other than BI-ALCL
have been reported to occur in the vicinity of breast implants,
including miscellaneous B-cell lymphomas.4-7 It remains so far
unclear whether these cases are coincidental or could be related
to breast implants.

We report 3 cases of Epstein-Barr virus (EBV)1 diffuse large B-cell
lymphomas (DLBCLs) occurring in contact with breast implants.
These cases were also characterized by various degrees of in-
vasion of the periprosthetic capsule but no tumor mass, which
make them distinct from classical primary breast DLBCLs.8,9 To
our knowledge, no series of DLBCL adjacent to breast implants
has been documented so far. This study was approved by the
institutional review board of the Institut Paoli-Calmettes, and all
patients gave their informed consent.

In the 3 patients (aged 61 to 72 years), the diagnosis was allowed
by excision of the periprosthetic capsule due to esthetical issues
in cases 1 and 3 or incidental positron emission tomography
(PET) scanner during breast cancer surveillance in case 2
(Table 1). In all cases, the lymphoma tumor was strictly confined

to the capsule surrounding breast implants (macrotextured type
from Allergan), and the PET computed tomography finding was
negative otherwise. The bone marrow biopsy result was also
negative. No seroma had been observed prior to capsulectomy
in any case, which prevented any fluid aspiration and cytologic
analysis. None of the patients had any known immunodeficiency
or pharmacologic immunosuppression.

Formalin-fixed and paraffin-embedded capsulectomy samples
from the 3 cases were extensively characterized using histo-
logical, phenotypical, cytogenetic, and molecular analyses,
including targeted next-generation sequencing (tNGS) and ar-
ray comparative genomic hybridization (aCGH), as described in
supplemental Materials and methods (available on the Blood
Web site). Clinicopathological and biological features of the 3
cases are detailed in Table 1 and supplemental Tables 1 to 4 and
illustrated in Figure 1 and supplemental Figure 1.

The 3 cases shared common pathological features consisting
of sheets, clusters, and ribbons of large pleomorphic CD301

EBV-infected B-cells, with EBER expression in virtually all lym-
phoma cells. The latency profile was type III (LMP11/EBNA-21) in
2 cases, whereas the remaining case was negative for both LMP1
and EBNA2. Postresection plasma EBV levels were positive in
the 2 analyzed cases, with a decrease over time (supplemental
Table 1). Lymphoma cells were observed on the luminal side of
the capsule or suspended in a fibrinoid material with constant
thickening and invasion of the capsule. This invasion formed cell
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