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Mutations impairing early B-cell development cause monogenic
primary immunodeficiencies that manifest with markedly re-
duced or absent B cells, hypogammaglobulinemia, and recur-
rent bacterial infections from childhood. Approximately 85% of
such patients have mutations in BTK, the gene responsible for
X-linked agammaglobulinemia.1 Current research focuses on
patients with unknown genetic defects, because the identifi-
cation of the causative genes not only will facilitate diagnosis of
primary immunodeficiencies but also can reveal new biological
roles of the affected proteins in human B-cell development and
point at novel drug targets.

The autosomal dominant syndrome of unknown etiology called
BILU (B-cell Immunodeficiency, Limb anomalies and Urogenital
malformations) was previously described in 2 unrelated families
originating from Cyprus and France2,3 (families A and B; Figure
1A; supplemental Tables 1 and 2, available on the Blood Web
site). The BILU patients have absent or reduced B cells, but
normal T and myeloid cells2,3 (supplemental Figure 1). Here we
studied these 2 families. Given that in family A, both parents of
patient II:4 are healthy, we hypothesized that the BILU syndrome
was caused by a de novo mutation. We sequenced exomes of 4
subjects in family A (Figure 1A) and identified the only mutation
in the coding part of the genome that was absent in healthy
parents I:3 and I:4, appeared de novo in their affected daughter
II:4, and then was transmitted to her affected daughter III:1. This
heterozygous G.C mutation at the cDNA nucleotide 1453 of
the TOP2B gene (ENST00000435706) resulted in the alanine-to-
proline substitution at position 485 (A485P) of topoisomerase 2b
(TOP2B). Next, we used Sanger sequencing and found that exactly
the same mutation was present in patients from family B (Figure 1B).
Given that this mutation was never found in any healthy subject
(eg, absent from more than 90000 subjects in the gnomAD
database4), but is present in the BILU patients from 2 unrelated
families, this novel mutation is the cause of the BILU syndrome.

TOP2B is a type II topoisomerase, an enzyme that generates
transient DNA double-strand breaks and solves topological
problems during replication and transcription (eg, removes DNA

supercoils, knots, and catenanes).5 TOP2B and the other human
type II topoisomerase 2a (TOP2A) can make active homodimers
and heterodimers.6,7 First, we studied how the newly discovered
A485Pmutation interferedwith the structure of the TOP2B protein.
The mutation affects alanine that is conserved in eukaryotic and
even in prokaryotic type II topoisomerases (Figure 1C). Its sub-
stitution with proline is predicted to destabilize ana helix within the
TOPRIM domain (Figure 1D-E) that is essential for the catalytic
activity of the TOP2B protein.8,9

Because BILU patients have no or few B cells in the blood, we
studied T cells, skin fibroblasts, and induced pluripotent stem
cells and found reduced amounts of the TOP2B protein in pa-
tients’ cells in comparison with cells of healthy control individuals
(Figure 2A). We then used CRISPR-Cas9 to knock-out TOP2B
in HEK-293 cells and expressed in these cells the wild-type
and mutant proteins, TOP2BWT and TOP2BA485P. We found
a low-molecular-weight product of TOP2BA485P degradation,
suggesting that the mutant protein is less stable than wild-type
TOP2B (supplemental Figure 2). Co-immunoprecipitation showed
that both TOP2BWT and TOP2BA485P interact with endogenous
TOP2A (supplemental Figure 2).

To find out whether the mutation affects enzymatic activity,
we then studied purified recombinant full-length TOP2BWT

and TOP2BA485P proteins using DNA relaxation and decatena-
tion in vitro assays.10 We found that enzymatic activities of
TOP2BA485P were reduced more than 10-fold (Figure 2B-C;
supplemental Figure 3A-B). In human cells, DNA relaxation can
be performed by both type I and type II topoisomerases, whereas
DNA decatenation is performed only by type II topoisomerases
TOP2B and TOP2A. Therefore, we studied cell lysates using only
the decatenation assay. The decatenation activity of lysed
patient’s T-cell blasts was reduced (Figure 2D; supplemental
Figure 4). Likewise, the decatenation activity of lysed wild-type
HEK-293 cells transiently expressing TOP2BA485P was lower than
the activity of cells expressing TOP2BWT (Figure 2E; supplemental
Figure 5). Interestingly, it was also lower than the decatenation
activity of untransfected wild-type HEK-293 cells that expressed
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only endogenous TOP2B, as well as endogenous TOP2A (Figure
2E; supplemental Figure 5). Similarly, in TOP2B-knockout HEK-
293 cells, co-expression of TOP2BWT and TOP2BA485P proteins
resulted in lower decatenation activity than the expression of
TOP2BWT alone (Figure 2F; supplemental Figure 6). These results
indicate that mutant TOP2BA485P protein itself not only has re-
duced intrinsic enzymatic activity but also exerts a dominant
negative effect on the activities of wild-type TOP2B and TOP2A.
Thus, our experimental data are consistent with the dominant
negative effect of the TOP2Bmutation that causes BILU syndrome,
rather than with haploinsufficiency. Moreover, haploinsufficiency of

TOP2B is an unlikely causative mechanism of BILU because mul-
tiple subjects with various heterozygous loss-of-function TOP2B
mutations have been detected in population cohorts (eg, the
gnomAD database4 has 42 such unaffected subjects; https://
gnomad.broadinstitute.org/).

Recently, other dominant mutations affecting the TOPRIM do-
main of TOP2B have been shown to cause Hoffman syndrome,
characterized by B-cell deficiency, limb abnormalities, and facial
dysmorphism11 (supplemental Tables 1 and 2). Our results indicate
that BILU and Hoffman syndrome are manifestations of the same
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Figure 1. Novel dominant mutation A485P affects TOP2B catalytic site and causes the BILU syndrome. (A) Two families with the BILU syndrome: s and N, unaffected;
d and n, affected; wt, wild-type allele; mut, A485P mutation in TOP2B. Exome sequencing was performed in 4 subjects, shown by dotted lines. (B) Electrophoregrams of the
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disease, TOP2B deficiency. Importantly, these findings demonstrate
a previously unknown critical role of TOP2B in B-cell development.

The developmental defect leading to B-cell deficiency in patients
with BILU and Hoffman syndromes has not been investigated
previously. To reveal the affected stage of B-cell development, we
studied a bonemarrow aspirate of the BILUpatient II:4 from family

A, using multicolor flow cytometry, and found a complete ab-
sence of any CD191 cells, including pro-B, pre-B, and immature
and mature B cells, but normal T, NK, and myeloid cell lineages
(Figure 2G; supplemental Figure 7). This finding for the first time
shows that TOP2B is critical during the earliest stages of B-cell
lineage after the common lymphoid progenitor stage (Figure 2H).
The early block in B-cell development distinguishes patients with
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Figure 2. Mutation A485P reduces expression and activity of the TOP2B protein and impairs early B-cell development. (A) Western blots showing expression of the
TOP2B protein in primary dermal fibroblasts, induced pluripotent stem cells (iPS cells) dedifferentiated from dermal fibroblasts, and T-cell blasts derived from peripheral blood
mononuclear cells. Patients: A is III.1 in family A; B is IV.1 in family B. Fold change of band densitometry is shown. (B) Relaxation of negatively supercoiled DNA by the purified
recombinant TOP2BWT and TOP2BA485P proteins. (C) Decatenation of kinetoplast DNA by the purified recombinant TOP2BWT and TOP2BA485P proteins. (D) Decatenation of
kinetoplast DNA by nuclear extracts from T-cell blasts. (E-F) Decatenation of kinetoplast DNA by nuclear extracts from wild-type HEK-293 cells (E) or TOP2B-knockout HEK-293
cell (F), untransfected or transfected with plasmids encoding TOP2BWT and TOP2BA485P. P values were calculated using 2-tailed (E) and 1-tailed (F) paired t tests. Graphs show
averages6 SD. *P, .05; **P, .01; ***P, .001. (G) Bonemarrow immunophenotyping of the BILU patient and a healthy unrelated control individual showing pro-B (i), pre-B (ii),
immature B (iii), andmature B (iv) cells. (H) B-cell development stages; red X shows defect in the BILU patients. CLP, common lymphoid progenitor; HSC, hematopoietic stem cell.
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TOP2B deficiency from most other B-cell immunodeficiencies
that either impair later stages of B-cell differentiation, resulting in
the accumulation of CD191 pro-B cells (eg, BTK deficiency), or
affect multiple hematopoietic cell lineages (eg, ADA or GATA2
deficiencies).12 Rather, it is reminiscent of the early block of B-cell
differentiation seen in patients with dominant TCF3 mutations
and recessive PIK3R1 mutations.13,14 Nevertheless, in TOP2B
deficiency, this block is leaky, because immunoglobulins and
small numbers of B cells have been found in peripheral blood of
several patients (supplemental Table 2).

TOP2B had been shown to produce signaling-induced double-
strand breaks at gene promoters15-18 and was involved in acti-
vation of transcription16-18 and transcription of long genes,19 as
well as formation and maintenance of topologically associated
domains and chromatin loops.20,21 Although these TOP2B func-
tionsmay contribute to the B-cell developmental defect, the exact
molecular mechanism affecting specifically B cells, but not other
immune cell lineages, remains unclear.

TOP2B and TOP2A are the targets of the anticancer drug
etoposide that traps these enzymes in a complex with cleaved
DNA, which eventually leads cells to apoptosis. Etoposide, in
combination with clofarabine and cyclophosphamide, had been
used for chemotherapy of acute lymphoblastic leukemia (ALL).22-24

Interestingly, in pediatric patients with refractory/multiple relapse
ALL, this chemotherapy regimen was found to be more effective
against B-cell precursor ALL than T-cell ALL.23 This clinical ob-
servation is consistent with the particularly important role of TOP2B
in B-cell precursors, rather than in T-cell lineage. Thus, etoposide,
as well as other inhibitors of type II topoisomerases, may be es-
pecially effective for the treatment of B-cell malignancies.
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Unlike older children with acute lymphoblastic leukemia (ALL),
there has been almost no improvement in outcome for infants in
the last 2 decades. Six-year event-free survival (EFS) and overall
survival (OS) in successive international infant trials, Interfant991 and
Interfant06,2 were 46.4% and 53.8%, and 46.1% and 58.2%,
respectively. High risk patients in Interfant06 had a 6-year EFS
and OS of 20.9% and 29.9%, respectively, despite hemato-
poietic stem cell transplantation (HSCT) in first complete re-
mission (CR1). Outcome after relapse is dismal, with a 3-year OS
of 20.9%.3

Among novel approaches, immune therapies, such as chimeric
antigen receptor (CAR) T cells and blinatumomab, offer the
greatest potential for improving cure rates. The bispecific CD3/
CD19-engaging antibody, blinatumomab, was found to result in
complete and often minimal residual disease (MRD)-negative
remission in children with relapsed/refractory B-cell ALL (B-ALL).
Better responses were observed in patients with ,50% bone
marrow blasts (55.6% vs 32.7%; 95% confidence interval, 30.8-
78.5 and 20.3-47.1, respectively),4 and an adult study showed a
complete MRD response rate of 78% when blinatumomab was
used to treat MRD-positive ALL in hematological remission.5

Because the risk of relapse after HSCT is predicted by MRD status
prior to transplant, deeper molecular remissions achieved by
using blinatumomab might improve posttransplant outcomes.

Here, we report the outcome of 11 infants who received blinatu-
momab for persistentMRDprior to HSCT. To our knowledge, this is
the largest experience reported in this rare subgroup of patients.

This retrospective analysis included patients from the United
Kingdom and the Republic of Ireland with B-ALL, whose initial

diagnosis was before the first birthday. Patients were identified
from the minutes of a national tumor board, supplemented by a
survey of pediatric hematologists in the 2 countries. All children
were initially treated according to the Interfant 06 protocol.2

Between 2016 and 2019, patients in first remission or after re-
lapse received blinatumomab for MRD reduction prior to HSCT.
None of the patients had received a prior HSCT. Individual
patient MRD at all time points was measured in the same lab-
oratory using a Euro-MRD Consortium–accredited and stan-
dardized technique for real-time quantitative polymerase chain
reaction of immunoglobulin gene rearrangements. EFS was
defined as time from diagnosis to relapse, secondary tumor,
or death, and OS was defined as time to death. OS and EFS
were reported using the Kaplan-Meier function. Analysis was
performed using GraphPad Prism version 7.00 for Windows
(GraphPad Software, La Jolla, CA).

Eleven patients were identified whomet the eligibility criteria for
analysis, which was treatment of KMT2A-rearranged infant ALL
with blinatumomab in first remission or relapse, regardless of the
age at which it was administered. The median age at the time of
blinatumomab administration was 0.5 years (range, 0.2-2.9). One
patient had a late relapse of KMT2A- rearranged infant ALL
(2.9 years) and was included in the analysis as per the intended
aim. All patients had KMT2A rearrangement. Seven patients
received blinatumomab after relapse, and 4 patients received it
as first-line therapy for resistant or refractory disease. Of the
8 patients who were in first or second MRD-positive CR, median
MRD was 0.2% (range, 0.06-1) (Table 1).

Nine patients received a single 28-day cycle of blinatumomab,
and the other 2 patients received a second cycle, pending
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