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KEY PO INT S

l Dysregulated
enhancers and
increased levels and
activity of b-catenin–
TCF7L2–JMJD6–c-Myc
mediates BETi
resistance in post-
MPN sAML cells.

l Cotreatment with
BC2059 and BET-
PROTAC inhibits the
b-catenin–TCF7L2–
JMJD6–c-Myc axis,
overcoming preclinical
BETi resistance in
AML cells.

The promising activity of BET protein inhibitors (BETi’s) is compromised by adaptive
or innate resistance in acute myeloid leukemia (AML). Here, modeling of BETi-persister/
resistance (BETi-P/R) in human postmyeloproliferative neoplasm (post-MPN) secondary
AML (sAML) cells demonstrated accessible and active chromatin in specific superenhancers/
enhancers, which was associated with increased levels of nuclear b-catenin, TCF7L2, JMJD6,
and c-Myc in BETi-P/R sAML cells. Following BETi treatment, c-Myc levels were rapidly
restored in BETi-P/R sAML cells. CRISPR/Cas9-mediated knockout of TCF7L2 or JMJD6
reversed BETi-P/R, whereas ectopic overexpression conferred BETi-P/R in sAML cells,
confirming the mechanistic role of the b-catenin–TCF7L2–JMJD6–c-Myc axis in BETi re-
sistance. Patient-derived, post-MPN, CD341 sAML blasts exhibiting relative resistance
to BETi, as compared with sensitive sAML blasts, displayed higher messenger RNA and
protein expressionof TCF7L2, JMJD6, and c-Myc and followingBETiwashout exhibited rapid
restoration of c-Myc and JMJD6. CRISPR/Cas9 knockout of TCF7L2 and JMJD6 depleted
their levels, inducing loss of viability of the sAML blasts. Disruption of colocalization of
nuclear b-catenin with TBL1 and TCF7L2 by the small-molecule inhibitor BC2059 combined
with depletion of BRD4 by BET proteolysis-targeting chimera reduced c-Myc levels and

exerted synergistic lethality in BETi-P/R sAML cells. This combination also reduced leukemiaburden and improved survival
of mice engrafted with BETi-P/R sAML cells or patient-derived AML blasts innately resistant to BETi. Therefore, mul-
titargeted disruption of the b-catenin–TCF7L2–JMJD6–c-Myc axis overcomes adaptive and innate BETi resistance,
exhibiting preclinical efficacy against human post-MPN sAML cells. (Blood. 2020;135(15):1255-1269)

Introduction
Hematopoietic stem/progenitor cells of myeloproliferative neo-
plasms with myelofibrosis (MPN-MF) express pathogenetic mu-
tations in JAK2, c-MPL, or calreticulin (CALR) gene and display
constitutive activation of JAK-STAT5/3 and NF-kB signaling.1-3

Transformation of MPN-MF to secondary acute myeloid leukemia
(sAML) occurs in #15% of patients,4,5 where standard induction
anti-AML therapy is ineffective.6,7 The JAK1 and JAK2 inhibitor
ruxolitinib that confers notable clinical benefits in MPN-MF is only
modestly active, without significantly improving clinical outcome
in post-MPN sAML.6-8 The BET protein BRD4 is a nononcogene
addiction target in AML, and treatment with acetyl-lysine mi-
metic BET protein inhibitors (BETi’s) disrupt binding of BRD4 to

acetylated chromatin and transcription factors (TFs).9-12 This
attenuates transcription of c-Myc and other superenhancer
(SE)-regulated oncogenes, including Bcl-xL, PIM1, and CDK4/
6, while inducing expression of HEXIM1, p21, and BIM and
inhibiting cell growth and survival of post-MPN sAML blast
progenitor cells (BPCs).9-14 BETi treatment also inhibits bind-
ing of BRD4 to acetylated RELA (NF-kB–p65), inhibiting its
transcriptional activity and levels of its targets.3,9,10,15,16

Treatment with the small-molecule acetyl-lysine-mimetic BETi
OTX-015 was shown to induce clinical complete remissions
in patients with relapsed/refractory AML.10,16-18 Exposure to
BETi’s has been shown to induce BRD4, potentially reduc-
ing BETi activity.19,20 To circumvent this, heterobifunctional
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Figure 1. Generation and characterization of sAML cells with resistance to BETi’s. (A) Cultured AML cells were treated with the indicated concentrations of OTX015 for
48 hours. Apoptosis was determined by annexin V staining and flow cytometry. The LD50 value for each cell line was calculated with GraphPad V7. (B) PD, CD341 AML (n5 17),
and sAML (n 5 39) cells were treated with 1 mM OTX015 for 48 hours. The percentage of propidium iodide–positive, nonviable cells were determined by flow cytometry. (C)
Schematic of the process used to generate OTX persister/resistant HEL92.1.7 (HEL) and SET-2 cells. (D) SET-2, HEL, and their OTX P/R counterparts were treated with the indicated
concentrations of OTX015, JQ1, or ABBV-075 for 48 hours. Apoptosis was determined by annexin V staining and flow cytometry. (E) Relative mRNA expression in SET-2-OTX P/R
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proteolysis-targeting chimera (PROTAC) molecules have been
designed.21-24 Unlike BETi’s, BET-PROTACs can degrade and
deplete BRD4.21-24

Transformed cells exhibit varying level of sensitivity/resistance
to BETi-induced apoptosis and mechanisms of resistance to
BETi are cell-type specific and depend on cellular context.25-33

Based on the mechanism, BETi resistance was broadly char-
acterized as BRD4 dependent25-28 or BRD4 independent.29-33

BRD4-dependent mechanisms include increased levels and/or
phosphorylation of BRD4.25-28 Hyperphosphorylated BRD4
due to loss of the serine phosphatase 2A and unchecked
phosphorylation by casein kinase II increased avidity of binding
of BRD4 to the mediator protein MED1, conferring acquired
resistance to BETi in breast cancer cells.25 Elevated BRD4
levels causing BETi resistance were attributed either to in-
creased levels of its deubiquitinase DUB3 or to loss-of-function
mutations in SPOP (speckle-type POZ protein), which is an
adaptor protein for CUL3 E3 ligase substrates, including
BRD4.26-28 Wild-type SPOP binds to BRD4, promoting ubiq-
uitylation and proteasomal degradation of BRD4, whereas
mutant SPOP is unable to do so.27,28 Among BRD4-independent
mechanisms are adaptive kinome-reprogramming with ele-
vated receptor tyrosine kinase and phosphatidylinositol 3-kinase/
extracellular signal-regulated kinase activities, which stabilize
MYC/FOSL1 in BETi-resistant ovarian cancer cells,29 as well as
enhancer (E) remodeling that leads to phosphatidylinositol
3-kinase overexpression and activity documented in BETi-
resistant neuroblastoma cells.30 Additionally, despite BETi
treatment, attenuation of c-Myc downregulation or restoration
of c-Myc expression caused BETi resistance in colorectal
cancer and leukemia cells.31-33 Adaptive resistance to BETi in
mouse models of genetically engineered MLL-AF9/NrasG12D
AML was shown to occur due to rapid restoration of c-Myc
expression induced by WNT–b-catenin signaling in leukemia-
initiating stem/progenitor cells.31,32 Genetic or chemical in-
hibition of this pathway restored BETi sensitivity in mouse
MLL-AF9/NrasG12D AML cells.31,32 However, the status and
mechanistic relevance of WNT–b-catenin–TCF7L2 signaling
was not fully assessed in the setting of either adaptive or
innate BETi resistance in human AML or post-MPN sAML
cells.

Following iterative cycles of treatment of human post-MPN
sAML SET-2 and HEL92.1.7 cells to 90% inhibitory concentra-
tions of the BETi OTX015 and full recovery, we generated BETi-
persister/resistant (BETi-P/R) SET-2-OTX P/R and HEL-OTX P/R
cells.34 These cells show .10-fold resistance to OTX015 and
cross-resistance to other BETi’s. As compared with their parental
sensitive controls, BETi-P/R cells showed higher levels of TCF7L2
(TCF4) and the arginine demethylase JMJD6 that regulates
E-mediated transcriptional pause-release,35-38 associated with
increased expression of nuclear b-catenin–TCF7L2 targets, in-
cluding c-Myc.36,39 Additionally, patient-derived (PD) human

AML blasts demonstrating ex vivo relative resistance to BETi also
exhibited higher expression of TCF7L2, JMJD6, and c-Myc.
Therefore, we also elucidated the mechanistic role of the
b-catenin–JMJD6–TCF7L2–c-Myc axis in conferring BETi re-
sistance in human AML and post-MPN sAML cells. We dem-
onstrate that cotreatment with BC2059, a disruptor of binding
of b-catenin with the nuclear adaptor protein TBL1XR1/
TBL1 and TCF7L2,36,39 and BET-PROTAC ARV-771, a de-
grader of BRD4,39,40 exerted synergistic lethal in vitro activity
and improved survival of mice engrafted with BETi-P/R human
AML or sAML cells.

Materials and methods
Cell lines and cell culture
Human sAML cell line SET-2 cells (RRID:CVCL_2187) were
obtained from the DSMZ. HEL92.1.7 cells (RRID:CVCL_2481)
were obtained from the ATCC (Manassas, VA). All experi-
ments with cell lines were performed within 6 months after
thawing or obtaining cells. The cell lines were also authen-
ticated in the Characterized Cell Line Core Facility at MD
Anderson Cancer Center (Houston, TX). HEL-OTX P/R and
SET-2-OTX P/R cells were generated by exposing HEL92.1.7
or SET-2 cells to 90% lethal dose (LD90) concentration (1.0mM)
of OTX015 for 48 hours. Live cells were washed and cul-
tured until viability was .90%. This process was performed
10 times.

Confocal immunofluorescent microscopy
Following drug treatments or single guide RNA (sgRNA) trans-
fection, cells were cytospun onto glass slides, fixed, permeabilized,
and stained with antibody for TCF7L2 or b-catenin or Alexa Fluor
647–conjugated TBL1 (SC-137006; RRID:AB_2199796). Imaging
was performed on a Zeiss confocal microscope, as previously
described.39

Methods for transcriptomic analysis, analysis of epigenetic state
in sAML cells and in vivo models are in supplemental Methods
(available at the Blood Web site).

Results
Adaptive BETi resistance in human BETi-P/R sAML
cells is characterized by increased expression of
TCF7L2, JMJD6, and c-Myc
Dose-dependent apoptotic effects of the BETi OTX015 in
several human AML cell types with diverse genetic alterations
highlighted concentrations that induced apoptosis in 50% of
cells ranging between 89 nM and .2000 nM (Figure 1A; sup-
plemental Figure 1A). Similar diversity of apoptotic response was
also noted among BPCs derived from patients with de novo AML
(17 samples) and post-MPN sAML (39 samples) (Figure 1B).
Oncoplots depicting genetic alterations in the de novo and
sAML samples used are presented in supplemental Figure 1A-B

Figure 1 (continued) andHEL-OTXP/R cells comparedwith parental SET-2 andHEL cells. The relativemRNAexpression levels were normalized to glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) expression. *P, .05 and †P, .005 indicate values significantly greater in OTX P/R cells compared with parental cells. (F) Immunoblot analyses of HEL,
HEL-OTX P/R, SET-2, and SET-2-OTX P/R cells following 10 shocks with OTX015. The expression levels of b-actin or GAPDH served as the loading control. The graph shows
densitometry quantification of protein expression differences in the HEL-OTX P/R and SET-2-OTX P/R cells compared with the parental cells. Asterisk (*) indicates values
significantly greater (P, .05) in OTX P/R cells compared with parental cells. (G) SET-2 and SET-2-OTX P/R cells were treated with 1 mMOTX015 for 16 hours. Following this, the
cells were washed free of the drug and incubated for 2 and 8 hours. Cells were harvested and lysed, and immunoblot analyses were conducted.
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Figure 2. Analysis of the epigenome in OTX-P/R sAML cells demonstrates greater presence of H3K27Ac and increased BRD4 occupancy. (A) Number of gained and lost
peaks in SET-2-OTX P/R and HEL-OTX P/R cells compared with parental SET-2 and HEL cells as determined by ATAC-seq analysis. (B) TF binding motif analysis was conducted
utilizing HOMER. The 2log10 P values of the rank-sorted motifs in the gained ATAC-seq peaks of SET-2-OTX P/R cells compared with parental SET-2 cells are shown.
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(resistant samples are marked “R”). HEL-OTX P/R and SET-2-
OTX P/R cells were generated as in Figure 1C and described
above. Compared with parental controls, HEL-OTX P/R and SET-
2-OTX P/R were resistant to apoptosis induced by not only
OTX015 but also the BETi JQ1 or ABBV-075 (Figure 1D).
Supplemental Table 1A shows the resistance index for OTX015,
JQ1, and ABBV-075 in SET-2-OTX P/R and HEL-OTX P/R over
SET-2 and HEL92.1.7 cells. Notably, supplemental Figure 1C
shows that when cultured for 8 weeks in BETi-freemedium, there
was a partial but statistically significant reversal of resistance to
BETi (OTX015)-induced apoptosis in HEL-OTX P/R and SET-2-
OTX P/R cells. SET-2-OTX P/R and HEL-OTX P/R cells were as
sensitive as the parental SET-2 and HEL92.1.7 cells to cytarabine
(AraC), etoposide and the Bcl-xL–specific inhibitor A1155463,
but all cell types were resistant to the BCL2 inhibitor venetoclax
(supplemental Figure 2A-D). NextGen sequencing (full exomes
of 300 genes) showed that although few mutations were new, or
lost, in BETi-P/R as compared with the sensitive control sAML
cells, none of these alterations were either common to both SET-
2-OTX P/R and HEL-OTX P/R sAML cells or driver mutations that
could mechanistically explain BETi resistance in BETi-P/R sAML
cells (supplemental Table 1B). Compared with controls, HEL-
OTX P/R and SET-2-OTX P/R cells, expressed significantly higher
messenger RNA (mRNA) expression of TCF7L2, JMJD6, c-Myc,
PU.1, c-Myb, PIM1, Bcl-xL (BCL2L1), and Mcl-1 (Figure 1E;
supplemental Table 1C). However, protein expression of p-Rbp1
or Rbp1 of RNAP2 was unaltered (Figure 1F). Importantly,
protein levels of TCF7L2, JMJD6, c-Myc, c-Myb, and PU.1, as
well as of Mcl-1, Bcl-xL, and PIM1, were elevated, without sig-
nificant alterations in the levels of BRD4/3/2, pBRD4, DUB3,
SPOP, TRIM33/24, and USP28 in BETi-P/R over control sAML
cells (Figure 1F; supplemental Table 1D). Higher Bcl-xL levels in
BETi-P/R cells explained their sensitivity to A1155463, but not
to venetoclax. Although different for each protein, the half-life
of TCF7L2, JMJD6, c-Myc, RUNX1, PU.1, and Mcl-1 protein
was unaltered in BETi-P/R vs control sAML cells (supple-
mental Figure 2E-F). There were no copy-number gains of the
TCF7L2 and MYC genes (supplemental Figure 2G). Treatment
with OTX015 for 16 hours (time 0 in Figure 1G) depleted mRNA
levels of MYC, TCF7L2, and JMJD6 (while inducing p21 mRNA
levels) in SET-2-OTX P/R as well as SET-2 cells (supplemental
Figure 2H). However, notably, cMYC mRNA levels were rapidly
restored within 2 to 4 hours to higher than baseline levels in
SET-2-OTX P/R compared with SET-2 cells (supplemental Figure
2H). Treatment with OTX015 also depleted the protein levels of
c-Myc, TCF7L2, JMJD6, c-Myb, and PU.1 (Figure 1G), which
were again rapidly restored in SET-2-OTX P/R compared with
SET-2 cells (Figure 1G; supplemental Figure 2I). Taken to-
gether, these findings indicate that resistance to BETi’s is as-
sociated with increased levels of TCF7L2, JMJD6, and c-Myc in
BETi-P/R sAML cells. Rapid rebound to high base line levels
of c-Myc, TCF7L2, and JMJD6 in BETi-P/R sAML cells sug-
gested a dysregulated epigenome-based mechanism for the
transcriptome differences in BETi-P/R vs parental-control sAML
cells (vide infra).

Chromatin accessibility, SE/E activity, and
transcriptional dysregulation of TCF7L2, JMJD6,
and c-Myc in human BETi-P/R sAML cells
We next determined chromatin accessibility and active E profile
in BETi-P/R vs the parental control sAML cells. Figure 2A
demonstrates that there were significant gains and losses in
chromatin accessibility in SET-2-OTX P/R and HEL-OTX P/R over
SET-2 and HEL92.1.7 cells. Heat map of the percentage of assay
for transposase-accessible chromatin using sequencing (ATAC-
seq) peaks demonstrates the range of TF-binding motifs present
in the chromatin of SET-2-OTX P/R and HEL-OTX P/R over SET-2
and HEL92.1.7 cells (supplemental Figure 3A). Log 2-fold
changes in the ATAC-seq peak densities were detected in
loci shown in supplemental Figure 3B. Rank-sorted TF motifs
enriched in the accessible chromatin in sAML P/R cells included
those of MYC, MYB, PU.1, STAT3/5, LEF1 (TCF7L2), and ERG
(Figure 2B; supplemental Figure 3C). The signal-density plots
of H3K27Ac and BRD4 chromatin immunoprecipitation se-
quencing (ChIP-seq) analyses globally showed significantly
higher H3K27Ac, but not BRD4, peaks on the chromatin of SEs/
Es compared with 62 kb on either side of SEs/Es DNA in BETi-
P/R sAML cells (Figure 2C; supplemental Figure 3D). Based on
SE/E score (reflecting both the E size and density of reads), the
“ROSE” (rank ordering of SEs) plot shows several SEs/Es with
high scores, including those of MYC, RUNX1, Bcl-xL, and PIM1
in BETi-P/R cells (Figure 2D). Sequence density plots dem-
onstrated high H3K27Ac and BRD4 signals in the SE/Es of MYC,
PVT1,41,42 Bcl-xL (BCL2L1), and PIM1,43 as well as in the Es of
TCF7L2 and JMJD6 genes in BETi-P/R cells (Figure 2-F; sup-
plemental Figures 3E and 4A-D).37,38,44 Loci with log 2-fold
increase in H3K27Ac and BRD4 peaks in SET-2-OTX P/R over
SET-2 cells are shown in supplemental Figure 3F. WNT–b-
catenin signaling through TCF7L2 was previously implicated
in restoring c-Myc expression in BETi-resistant mouse AML cell
type.31,32 Therefore, we determined TCF7L2 occupancy, by
ChIP-qPCR, at the previously described MYC-Es (SE1, SE3, and
SE5) within MYC SE and in the PVT1 Es (E857 and E904) known
to regulate c-Myc expression.31,41,42 Although more TCF7L2
was bound to MYC SE3 and SE5, as well as to PVT E857 and
E904 (supplemental Figure 5A), treatment of SET-2-OTX P/R
cells with LD90 concentration of OTX015 dramatically in-
creased TCF7L2 occupancy at MYC SE1 while decreasing it at
the PVT1 Es (supplemental Figure 5B). This suggests that re-
peated exposure to LD90 levels of BETi, through TCF7L2 oc-
cupancy, remodeled Es of MYC and PVT1. RNA sequencing
(RNA-seq) analysis showed a larger number of genes up- or
downregulated in SET-2-OTX P/R and HEL-OTX P/R compared
with SET-2 and HEL92.1.7 cells (Figure 3A). Figure 3B and
supplemental Table 2 show that among the 69 upregulated
gene expressions in SET-2-OTX P/R and HEL-OTX P/R sAML
cells, 39 (56%, noted in red) were TCF7L2 targets, according to
ENCODE. Also, gene set enrichment analyses (GSEAs) of TF
targets showed positive correlation with TCF7L2/LEF1, MYC/
MAX, NF-kB, and STAT5 genes in BETi-P/R sAML cells
(Figure 3C). GSEA according to Gene Ontology pathways also

Figure 2 (continued) (C) Sequence tag density of H3K27Ac and BRD4 within Es and SEs vs 2 kb upstream or downstream in SET-2-OTX P/R compared with SET-2 cells. (D) Rank
ordering of SEs (ROSE) analysis was performed on the H3K27Ac ChIP-seq peaks from SET-2-OTX P/R and HEL-OTX P/R cells. The numbers indicate the rank of the SE out of the
total number of identified SEs in each P/R cell line. (E-F) IntegratedGenomics Viewer plots of H3K27Ac and BRD4 signal densities at theMYC SE and PVT1 gene in SET-2 and SET-
2-OTX P/R cells. The log2 fold change (log2FC) in peak numbers for H3K27Ac and BRD4 was calculated with diffReps. The fold changes for significant alterations (P , .05) are
noted beneath the SEs/Es.
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Figure 3. OTX P/R sAML cells exhibit a dysregulated transcriptome with enrichment of TCF7L2/LEF1 target genes. (A) mRNA-seq analysis was performed on total RNA
fromHEL, HEL-OTX P/R, SET-2, and SET-2-OTX P/R cells. The heat map shows the number of up and downregulated genes in theOTX P/R cells comparedwith the parental cells
at a log2 fold change of$1.5 and a P value, .05. (B) Venn diagram of overlap in upregulated genes in the HEL-OTX P/R and SET-2-OTX P/R cells. (C) GSEA of HEL-OTX P/R cells
with TF target datasets from the Molecular Signatures Database (MSigDB). F.D.R., false discovery rate; N.E.S., normalized enrichment score. All q-values , 0.1. (D) Gene
Ontology analysis (MSigDB) of the common upregulated genes in HEL-OTX P/R and SET-2-OTX P/R cells. (E) Relative mRNA expression of selected TCF7L2 target genes in
SET-2-OTX P/R and HEL-OTX P/R cells compared with parental cells as determined by qPCR analysis.
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Figure 4. Knockout of TCF7L2 and JMJD6 depletes target gene expression, reduces cell viability, and resensitizes OTX-P/R cells to the lethal effects of BETi
treatment. (A) SET-2 and SET-2-OTX P/R cells were transfected with negative control sgRNA or sgRNAs against TCF7L2 exon 3 or exon 6 and incubated for 5 days. Then, cells
were cytospun onto glass slides and stained with anti-b-catenin, TCF7L2, or TBL1 antibodies. Nuclei were stained with 49,6-diamidino-2-phenylindole (DAPI). Confocal
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showed significant enrichment in the WNT–b-catenin and reg-
ulation of stem cell proliferation anddifferentiation pathway genes
(Figure 3D). Quantitative polymerase chain reaction (qPCR)
analyses confirmed that BETi-P/R cells exhibited significantly
higher mRNA expression of TCF7L2, JMJD6, MYC, MYB, PU.1,
RUNX1, PIM1, Bcl-xL, and Mcl-1 compared with their sensitive
controls (Figure 3E). Consistent with this, higher levels of b-cat-
enin-TCF7L2-JMJD6-c-Myc axis proteins were detected (Figure
1F-G). Confocal microscopy demonstrated increased nuclear
levels and co-localization of b-catenin with TCF7L2 in SET-2-OTX
P/R and HEL-OTX P/R vs SET-2 and HEL92.1.7 cells, respectively
(Figures 4A and 5A). Increased nuclear co-localization of b-catenin
with TBL1 was also observed in SET-2-OTX P/R and HEL-OTX P/R
cells (Figures 4Aand5A).Wenext determinedeffects of treatment
with OTX015 on BRD4 occupancy on Es, as well as associated
transcriptional perturbations in BETi-P/R and BETi-sensitive sAML
cells. Supplemental Figure 5C-D shows that OTX015 treatment
reducedBRD4occupancy on the JMJD6gene and the Es ofMYC,
TCF7L2, and PIM1 in BETi-sensitive and BETi-P/R SET2 sAML
cells. Consistent with this, greater transcriptional perturbations
(up and downregulation of mRNA levels) were detected by
RNA-seq analysis in BETi-sensitive compared with BETi-P/R
sAML cells (supplemental Figure 5E-G).

TCF7L2 and JMJD6 and c-Myc overexpression
mechanistically regulate BETi resistance in human
BETi-P/R sAML cells
We next determined effects of specific guide RNA (gRNA)-
directed CRISPR/Cas9-mediated knockout of TCF7L2 in BETi-
P/R vs their sensitive control sAML cells. Treatment with gRNA
directed against exons 3 and 6 of TCF7L2 markedly reduced
protein expression of TCF7L2 and its downstream target, c-Myc,
in BETi-P/R and control sAML cells (Figure 4A-B; supplemental
Figure 6A-C). Knockout of TCF7L2 also led to decrease in mRNA
and protein expression of JMJD6, RUNX1, c-Myb, and PU.1
(Figure 4B; supplemental Figure 6C-D). These effects of TCF7L2
knockout caused significantly greater loss of viability of BETi-P/R
as compared with SET-2 and HEL92.1.7 cells (Figure 4C; sup-
plemental Figure 6E). CRISPR/Cas9-mediated knockout of
JMJD6 (by gRNAs directed against exons 2 and 3) also markedly
depleted protein expression of JMJD6, without significantly
affecting TCF7L2 expression, in BETi-P/R as well as in control
sAML cells (Figure 4D; supplemental Figure 6F). JMJD6 de-
pletion was also associated with decreased protein expressions
of c-Myb, PU.1, RUNX1, and c-Myc in BETi-P/R sAML cells
(Figure 4D; supplemental Figure 6G), which collectively caused
significantly greater loss of viability of SET-2-OTX P/R and HEL-
OTX P/R over sensitive sAML cells (Figure 4E; supplemental

Figure 6H). Individually, knockout of TCF7L2 and JMJD6 sig-
nificantly increased sensitivity of SET-2-OTX P/R and HEL-OTX
P/R, but not of SET-2 and HEL92.1.7 cells to BETi (OTX015)
(Figure 4F; supplemental Figure 6I-J). Conversely, ectopic over-
expression of TCF7L2 or JMJD6 conferred relative resistance to
BETi (OTX015)-induced apoptosis in SET-2 and HEL92.1.7 cells
(Figure 4G-H; supplemental Figure 6K-L). Correspondingly, this
altered LD50 values for OTX015 in SET-2-OTX P/R and HEL-OTX
P/R as compared with SET-2 and HEL92.1.7 cells (supplemental
Table 3A-B). Whereas knockout and overexpression of TCF7L2
reduced or increased JMJD6 expression, respectively, JMJD6
knockout or overexpression did not affect TCF7L2 expression,
indicating that TCF7L2 is upstream and regulates JMJD6 ex-
pression (Figure 4B,D,G; supplemental Figure 6C,G,K).

Targeting the b-catenin–TCF7L2–JMJD6–MYC axis
is effective against adaptive or innate BETi
resistance in sAML cells
We next determined the activity of BC2059, which depletes
nuclear b-catenin levels, and of BET-PROTAC ARV-825, which
depletes BRD4 against BETi-P/R sAML cells. BC2059 treatment
reduced nuclear levels of b-catenin and TCF7L2, but not of
TBL1, as well as reduced the nuclear colocalization of b-catenin
with TCF7L2 and TBL1 in SET-2-OTX P/R and HEL-OTX P/R, as
well as in SET-2 and HEL92.1.7 cells (Figure 5A; supplemental
Figure 7A). Concomitantly, BC2059 treatment dose-dependently
induced higher levels of apoptosis in BETi-P/R (SET-2-OTX P/R
more than HEL-OTX P/R) vs control sAML cells (Figure 5B).
BC2059 treatment also reduced levels of TCF7L2, JMJD6, c-Myc,
Survivin, CDK4/6, and Bcl-xL but increased Axin2, p21, and
cleaved PARP levels, again in SET-2-OTX P/Rmore so than inHEL-
OTX P/R cells (Figure 5C). Treatment with ARV-825 also dose-
dependently induced apoptosis in SET-2-OTX P/R and HEL-OTX
P/R, as well as in SET-2 and HEL92.1.7 cells, although SET-2-OTX
P/R cells were more sensitive than HEL-OTX P/R cells to ARV-825
(Figure 5E). ARV-825 treatment attenuated c-Myc, TCF7L2,
JMJD6, c-Myb, RUNX1, PU.1, CDK4/6, and Bcl-xL to a similar
extent in BETi-P/R and their sensitive controls (Figure 5D). BET-
PROTAC ARV-771 also exerted similar levels of lethality against
SET-2-OTX P/R and SET-2 cells, although HEL-OTX P/R and
HEL92.1.7 cells were less sensitive to ARV-771 (supplemental
Figure 7B). Next, we determined the range of sensitivity of
patient-derived, post-MPN, CD341 sAML blasts to BETi. Whereas
18 of the 35 samples of sAML blasts were sensitive (median LD50

dose was 2 mM), the remaining samples were relatively resistant
to lethal effects of OTX015 (median LD25 dose was 2 mM) (Figure
6A). Relatively BETi resistant (compared with sensitive) sAML
blasts displayed higher mRNA and mean fluorescence intensity

Figure 4 (continued) microscopy analysis was performed (original magnification 3100). Representative images are shown for each condition. (B) Representative immunoblot
analysis of SET-2 and SET-2-OTX P/R cells transfected with negative control sgRNA or sgRNAs against TCF7L2 and incubated for 5 days. The expression levels of b-actin in the
cell lysates served as the loading control. KO, knockout. (C) SET-2 and SET-2-OTX P/R cells were transfected with negative control sgRNA or sgRNAs against TCF7L2. Following
this, the percent cell viability was monitored over 8 days. **P , .01; ***P , .005 for cell viability values significantly less in SET-2-OTX P/R cells transfected with TCF7L2 sgRNA
compared with SET-2 parental cells transfected with TCF7L2 sgRNA. (D) SET-2 and SET-2-OTX P/R cells were transfected with negative control sgRNA or sgRNA against JMJD6
and incubated for 5 days. Immunoblot analysis was conducted on the total cell lysates. The expression levels of b-actin in the cell lysates served as the loading control. (E) SET-2
and SET-2-OTX P/R cells were transfected with negative control sgRNA or sgRNAs against JMJD6. Following this, the percent cell viability was monitored over 10 days. Asterisks
(***) indicate cell viability values significantly less (P , .005) in SET-2-OTX P/R cells transfected with JMJD6 sgRNA compared with SET-2 parental cells transfected with JMJD6
sgRNA. (F) SET-2-OTX P/R and HEL-OTX P/R cells were transfected with negative control sgRNA or TCF7L2 or JMJD6 sgRNAs and incubated for 3 days. Following this, cells
were treated with the indicated concentrations of OTX015 for 48 hours. The percentage of annexin V–positive, apoptotic cells were determined by flow cytometry. (G) SET-2
cells were transfected with a vector for overexpression of TCF7L2 or JMJD6. The overexpression was confirmed by immunoblot analysis. The expression levels of b-actin in
the cell lysates served as the loading control. (H) SET-2 cells were transfected with a vector for overexpression of TCF7L2 or JMJD6. Parental and TCF7L2 or JMJD6-
overexpressing cells were treated with the indicated concentrations of OTX015 for 48 hours. Then, the percentage of annexin V–positive, apoptotic cells from each group
was determined by flow cytometry.
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Figure 5. Compared with parental HEL and SET-2 cells, BETi-P/R cells exhibit greater nuclear expression of TCF7L2 and TBL1 and sensitivity to treatment with the
b-catenin antagonist BC2059 or BET-PROTAC. (A) SET-2-OTX P/R, SET-2, HEL-OTX P/R, andHEL cells were treated with 100 nMBC2059 for 16 hours. Following this, cells were
cytospun onto glass slides and stained with antibodies for confocal microscopy (original magnification 3100). Representative images are shown for each condition. (B) SET-2-
OTX P/R, SET-2, HEL-OTX P/R, and HEL cells were treated with the indicated concentrations of BC2059 for 96 hours. At the end of treatment, the percentage of annexin
V–positive, apoptotic cells were determined by flow cytometry. (C-D) Immunoblot analysis of SET-2, SET-2-OTX P/R, HEL, and HEL-OTX P/R cells treated with 100 nM BC2059 or
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percentage of annexin V–positive, apoptotic cells was determined by flow cytometry.
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Figure 6. Treatment with BET-PROTAC and BC2059 exerts synergistic lethal activity in BETi-sensitive and resistant PD-CD341 sAML cells. (A) PD CD341 sAML cells
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of protein expressions of TCF7L2 and JMJD6 (Figure 6B; sup-
plemental Figure 7C-D). Confocal microscopy confirmed that
individual samples of relatively BETi-resistant sAML blasts
exhibited higher nuclear expression of TCF7L2 and JMJD6
(Figure 6C). Notably, compared with sensitive sAML blasts, rel-
atively resistant sAML blasts expressed higher median levels of
mRNA and protein expression of c-Myc (Figure 6D; supplemental
Figure 7C). Following treatment withOTX015 andwashout, c-Myc
and JMJD6 expression were rapidly restored (within 24 hours) in
2 representative sAML blast samples (supplemental Figure 7E).
Figure 6E-F demonstrates that ARV-771 and BC2059 dose-
dependently induced loss of viability in BETi-resistant sAML
blasts. Cotreatment with ARV-771 and BC2059 was synergistically
lethal against BETi-resistant and BETi-sensitive sAML blasts
(Figure 6G; supplemental Figure 7F). The combination was also
synergistically lethal against de novo AML blasts (supplemental
Figure 7F, right panel). In contrast, BC2059 alone, and its com-
bination with ARV-771, induced significantly less lethality in
normal CD341progenitor cells (supplemental Figure 7G).We also
determined the effects of the CRISPR/Cas9-knockout of TCF7L2
and JMJD6 in BETi-resistant sAML blasts (sample 43 in the
oncoplot in supplemental Figure 1B). Confocal microscopy
findings in Figure 6H and supplemental Figure 7H demonstrate
that CRISPR/Cas9 knockout markedly depleted nuclear protein
levels of TCF7L2 and JMJD6 in sAML blasts. This led to a loss of
viability of the sAML blasts (Figure 6I). Notably, knockout of
TCF7L2 and JMJD6 resensitized and markedly increased
OTX015-mediated loss of viability of the sAML blasts (Figure 6J).

Synergistic activity of cotreatment with BC2059
and BET-PROTAC against BETi-resistant de novo
AML and sAML cells
As shown in Figure 7A, combination of ARV-771 and BC2059
was synergistically lethal against SET-2-OTX P/R, HEL-OTX P/R,
and THP1-OTX P/R (de novo AML), as well as against SET-2,
HEL92.1.7, and THP1 cells (CI ,1.0). Next, we also determined
the in vivo activity of ARV-771 and BC2059 combination against
tail-vein infused HEL-OTX P/R post-MPN sAML cells engrafted in
NSG mice. As compared with treatment with vehicle control or
ARV-771 or BC2059 alone, cotreatment with BC2059 and ARV-
771 was significantly more effective in reducing sAML growth of
HEL-OTX P/R-GFP-Luc cells (Figure 7B; supplemental Figure
8A). Combined treatment with ARV-771 and BC2059 (vs each
agent alone) significantly improved the median survival of the
NSG mice (Figure 7C). We next determined the in vivo activity
of ARV-771 and BC2059 cotreatment against a patient-derived
xenograft (PDX) model of AML blasts that exhibited high in vitro

mean LD50 for OTX015 (12.5 mM) but lower mean LD50 for ARV-
771 (42 nM) and BC2059 (10 nM) (sample 22 in the oncoplot in
supplemental Figure 1A). These AML blasts also showed de-
tectable protein expression of TCF7L2, JMJD6, c-Myc, PU.1, and
Bcl-xL (Figure 7D). As compared with vehicle control or each
drug alone, cotreatment with ARV-771 and BC2059 was sig-
nificantly more effective in reducing in vivo growth and im-
proving median survival of NSG mice engrafted with GFP-Luc
transduced AML blasts (Figure 7E-F; supplemental Figure 8B).
Thus, combined therapy with a BET protein degrader as well as
a disruptor of TCF7L2 and b-catenin binding markedly depletes
c-Myc and overcomes BETi resistance in AML and post-MPN
sAML blasts.

Discussion
In the present studies, we document active SEs/Es with in-
creased expression levels of TCF7L2, JMJD6, and c-Myc as the
mechanism underlying BETi resistance in AML and post-MPN
sAML cells. BETi-resistant sAML cells did not exhibit copy-
number gains of MYC. They also did not exhibit higher levels
of BRD4 or p-BRD4.25-28 This excluded any significant contri-
bution of altered BRD4 stability or its avidity for acetylated
histones, MED1, and TFs.9,25 Consistent with this, BETi-P/R and
BETi-sensitive sAML cells expressed similar levels of the E3 li-
gase TRIM33 and of SPOP and DUB3.26-28 Additionally, absent
detectable mutations in BRD4 (not shown) or new driver onco-
gene mutations, dysregulated Es, and increased gene expression
of TCF7L2, JMJD6, and c-Myc were the key determinants of BETi
resistance in BETi-P/R sAML cells.

BRD4 occupancy was reported to be reduced at MYC SE in
genetically engineeredmouseBETi-resistant AML stem/progenitor
cells.32 In contrast, our findings demonstrate that human BETi-P/R
sAML cells, compared with their sensitive counterparts, ex-
hibit increased BRD4 and H3K27Ac occupancy at the TCF7L2
E and MYC SE. This was associated with increased expression
of TCF7L2–JMJD6–c-Myc axis members in BETi-P/R over
BETi-sensitive sAML cells. RNA-seq and GSEA data also in-
dicated increased activity of this axis in BETi-P/R sAML cells.
Increased expression of TCF7L2 and its binding to b-catenin,
with increased expression of its targets, including c-Myc, also
underscored increased activity of the TCF7L2–JMJD6–c-Myc
axis in BETi-P/R sAML cells. Indeed, the majority of transcrip-
tionally up regulated genes, common to SET-2-OTX P/R and
HEL-OTX P/R cells, were targets of WNT–b-catenin signaling.
Higher expression of the TCF7L2–JMJD6–c-Myc axis proteins

Figure 6 (continued) (B) Violin plot of the mean fluorescence intensity of TCF7L2 or JMJD6 staining (as determined by confocal microscopy) in 11 sAML blast samples that were
sensitive or resistant to OTX015 treatment. Asterisks (****) indicatemean fluorescence intensity values that are significantly greater (P, .0001) in sAML blasts resistant to OTX015
compared with sensitive sAML blast samples. (C) Representative images of sAML blast samples analyzed for TCF7L2 and JMJD6 expression by confocal microscopy (original
magnification 3100). (D) Scatterplot of relative c-Myc protein expression in 17 sAML blast samples sensitive or resistant to OTX015 treatment. Asterisk (*) indicates c-Myc
expression levels that are significantly greater (P, .05) in OTX015-resistant sAML blasts comparedwithOTX015-sensitive sAML blasts. (E-F) PD, CD341 sAML cells determined to
be resistant to OTX015 were treated with the indicated concentrations of ARV-771 (n5 10) or BC2059 (n5 15) for 48 hours. Then, the percentage of propidium iodide–positive,
nonviable cells were determined by flow cytometry. (G) PD, CD341 sAML blast cells resistant to OTX015 were treated with ARV-771 (dose range, 20-250 nM) and/or BC2059 (10-
100 nM) for 48 hours. The percentage of propidium iodide–positive, nonviable cells were determined by flow cytometry. The graph shows the range of confidence interval (CI)
values in each sAML sample following the combination treatments. CI values,1.0 indicate a synergistic interaction of the drugs. (H) PD, sAML blast cells were transfected with
negative control sgRNA, TCF7L2 sgRNA, or JMJD6 sgRNA and incubated on amonolayer of GFP-expressingHS5 cells for 5 days. Then, cells were cytospun onto glass slides and
immunostained for TCF7L2, JMJD6, or c-Myc expression. Nuclei were stained with DAPI. Cells were imaged by confocal microscopy (original magnification3100). (I) PD, sAML
blast cells were transfected and cultured as in panel H. The cell viability of the sAML cells was monitored over 7 days. Asterisks (**) indicate cell viability values significantly less
(P, .01) in TCF7L2 or JMJD6 sgRNA-transfected cells compared with negative control sgRNA-transfected cells. (J) PD, sAML blast cells were transfected and cultured as in panel
H for 5 days. Then, cells were treated with the indicated concentrations of OTX015 for 48 hours. At the end of treatment, the percentage of propidium iodide–positive, nonviable
cells was determined by flow cytometry.
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were divided into groups and treated with vehicle, ARV-771, and/or BC2059 as indicated for 3 weeks. Mice were imaged weekly to document treatment efficacy. (F) Kaplan-Meier
survival plot of NSG mice engrafted with BETi-resistant AML PDX-GFP-Luc cells and treated for 3 weeks with ARV-771 and/or BC2059.
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retained BRD4 dependency, since inhibition of BRD4 activity by
BETi or BRD4 depletion by BET-PROTAC reduced expression
of TCF7L2–JMJD6–c-Myc axis proteins. In AML cells, re-
cruitment of BRD4 to their SEs/Es promotes activities of an
ensemble of myeloid TFs, including RUNX1, c-Myb, and PU.1, in
addition to c-Myc.9,45-48 Accordingly, BRD4 depletion by BET-
PROTAC reduced levels of these transcriptional regulators.38,47

How BRD4 is recruited to MYC SE/Es (despite BETi treatment) is
not formally established here, but bromodomain-independent,
direct interaction of BRD4 with TCF7L2 may be facilitating in-
creased occupancy of BRD4 and TCF7L2 at MYC Es in BETi-P/R
compared with BETi-sensitive sAML cells.9,49 Bromodomain-
independent interactions of BRD4 have been documented
with other transcriptional regulators, including TP53, YY1, and
CEBPa.49 Overall, BRD4 recruitment and dependency at active
TCF7L2, JMJD6, MYC, and PIM1 Es is retained in BETi-P/R sAML
cells. Collectively, our findings here establish that epigenomic and
transcriptional dysregulation of TCF7L2 and MYC leads to higher
nuclear levels and colocalization of b-catenin with TCF7L2 and
TBL1, which results in higher c-Myc expression in BETi-P/R
compared with sAML cells.

Compared with BETi-sensitive sAML cells, following BETi treat-
ment MYC mRNA repression was more rapidly corrected and
c-Myc levels restored in human BETi-P/R sAML cells, which was
previously linked mechanistically to BETi resistance.31,32 Addi-
tionally, protein levels of TCF7L2, JMJD6, and c-Myc were also
more rapidly restored in BETi-P/R sAML cells. This indicates that
not only the higher pretreatment levels but also more rapid
restoration of TCF7L2, JMJD6, and c-Myc expression post-BETi
treatment contributes to BETi resistance in BETi-P/R sAML
cells. Notably, CRISPR/Cas9-mediated knockout of TCF7L2
decreased nuclear levels and colocalization of TCF7L2 with
b-catenin and TBL1, repressed c-Myc, and inflicted greater le-
thality in BETi-P/R compared with BETi-sensitive sAML cells.
Since TF occupancy recruits BRD4 and in turn JMJD6 to chro-
matin of SEs/Es, TCF7L2 knockout repressed JMJD637,38 and
reduced c-Myb, RUNX1, PU.1, and Bcl-xL levels in BETi-P/R
sAML cells, causing greater loss of viability of BETi-P/R com-
pared with BETi-sensitive sAML cells. JMJD6 demethylates
histone H4R3 and 7SK RNA, removing their repression of pTEFb-
RNAP2–induced mRNA transcript elongation, especially of
MYC.9,37 Indeed, JMJD6 has been implicated in E-mediated
transcriptional pause-release and adaptations promoting sur-
vival under stress.38 Knockout of JMJD6 did not affect TCF7L2
levels more than slightly, but it markedly reduced levels of
JMJD6, c-Myc, c-Myb, RUNX1, PU.1, and Bcl-xL in BETi-PR
sAML cells. Accordingly, JMJD6 knockout was also more lethal
against BETi-P/R than BETi-sensitive sAML cells. Notably,
knockout of either TCF7L2 or JMJD6 resulted in resensitization
of BETi-P/R sAML cells to BETi-induced apoptosis. Mechanistic
linkage of TCF7L2 and JMJD6 overexpression to BETi resistance
is further supported by our findings that ectopic overexpression
of TCF7L2 or JMJD6 conferred BETi resistance in BETi-sensitive
sAML cells. Collectively, findings presented highlight not only
the basis of increased expression but also the mechanistic in-
volvement of TCF7L2–JMJD6–c-Myc axis in regulating BETi
sensitivity/resistance in sAML cells.

In patient-derived de novo and post-MPN sAML blasts, relative
ex vivo innate resistance to BETi was associated with increased
mRNA and protein expression of TCF7L2, JMJD6, and c-Myc.

Notably, CRISPR/Cas9-mediated knockout of TCF7L2 or JMJD6
also depleted c-Myc levels, inducing lethality and significantly
increasing ex vivo BETi sensitivity in innately resistant patient-
derived sAML blasts. Thus, the b-catenin–TCF7L2–JMJD6–c-Myc
axis is involved in mediating both adaptive and innate BETi re-
sistance in human AML blasts. A similar common mechanism for
adaptive and innate BETi resistance was also demonstrated in
human neuroblastoma cells.30 A more definitive in vivo confirma-
tion that increased activity of theb-catenin–TCF7L2–JMJD6–c-Myc
axis mediates innate BETi resistance will require validation
through clinical phase 2 studies of BETi in AML, including post-
MPN sAML. Our findings also demonstrate that targeted dis-
ruption of b-catenin–TCF7L2 and downstream depletion of
c-Myc by BRD4 depletion overcomes BETi resistance in BETi-P/R
sAML cells. Treatment with BC2059, which attenuated levels
and colocalization ofb-catenin with TCF7L2 and reduced JMJD6
and c-Myc levels in BETi-P/R sAML cells, combined with BET-
PROTAC treatment, which depleted BRD4 levels, attenuated
TCF7L2, JMJD6, and c-Myc levels and induced lethality in not
only BETi-sensitive but also BETi-P/R sAML cells. Recently, fol-
lowing its recruitment by TFs, BRD4, in turn, was shown to recruit
Mediator protein and RNAP2 to form small or large stable
clusters on the chromatin of active gene Es/promoters.50 These
clusters exhibited properties of phase separated biomolecular
condensates in close proximity of actively transcribed genes,
indicating that diverse activation domains of TFs form phase-
separated condensates with mediator and RNAP2 to activate
genes.51,52 By depleting BRD4, TCF7L2, and JMJD6, it is pos-
sible that BET-PROTACs may abrogate these phase-separated
clusters and condensates, accounting for synergistic lethality
due to cotreatment with BC2059 and BET-PROTAC against not
only BETi-sensitive but also BETi-P/R sAML cells. Cotreatment
with BC2059 and BET-PROTAC also reduced in vivo sAML
burden and improved survival of mice engrafted either with
BETi-P/R sAML cells exhibiting adaptive BETi resistance or with
innately BETi-resistant AML blasts. Therefore, it is also possible
that in the clinic, cotreatment with BC2059 and BET-PROTAC
may overcome innate BETi resistance in post-MPN sAML cells.
Our findings also suggest that whereas increased nuclear ex-
pression of TCF7L2, JMJD6, and c-Myc, as well as increased
binding of b-catenin and TCF7L2 in the nucleus, may predict
BETi resistance, they may also indicate sensitivity of AML cells to
combined treatment with BC2059 and BET-PROTAC.
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