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Sickle cell disease (SCD) is a debilitating disease associated with
extensive morbidity and early mortality. Survival in children has
improved significantly during the last 4 decades as a result of
newborn screening, penicillin prophylaxis, and pneumococcal
vaccination.1 Although studies have not shown an increased
incidence of solid tumors in adults living with SCD, 2 large
population studies have revealed an increased incidence of
leukemia.2,3 An association between hydroxyurea exposure in
SCD and leukemia is anecdotal and unproven.4-14 Allogeneic
hematopoietic cell transplantation (AlloHCT) remains the most
widely available cure that can be offered to patients with SCD,
with the goal of not only reversing the disease but perhaps also
prolonging survival. We and others have previously reported
myelodysplastic syndrome (MDS) or acute myelogenous leu-
kemia (AML) after unsuccessful AlloHCT.8,15,16 The underlying etiol-
ogy of this complication is unknown. We therefore performed
detailed genomic leukemic characterization of 2 of the 3 patients
who developedmyeloidmalignancy posttransplantation out of a
total of 76 adult patients who received an AlloHCT for SCD at the
National Institutes of Health Clinical Center between September
2004 and April 2018. We further sought to evaluate whether
mutations present at the time of malignancy diagnosis were also
detectable before transplantation.

All patients were enrolled on protocols (ClinicalTrials.gov iden-
tifiers: NCT00977691 or NCT00061658) approved by the Na-
tional Heart, Lung, and Blood Institute Institutional Review
Board after providing written informed consent. Next-generation
sequencing (NGS), using DNA from bone marrow at the time
of myeloid malignancy diagnosis, was performed clinically and
confirmed using an anchored multiplex polymerase chain re-
action (PCR)-based panel incorporating molecular barcode/
unique molecular identifier designed to cover regions of com-
monly mutated genes in MDS and AML. Paired-end 150-bp
sequencing used unique dual sample indices on an Illumina
HiSeq 2500 (rapid run mode). Data were analyzed using Archer
Analysis software (version 6.0.4). Digital droplet PCR (ddPCR)
was performed for research purposes, using approximately
1 mg DNA isolated from blood, using Custom TaqMan SNP
Genotyping Assays (#4351379; Thermo Fisher Scientific, Wal-
tham, MA) on the RainDrop platform (RainDance Technologies,

Lexington, MA). Data were analyzed using RainDrop Analyst II
software.

All 3 patients had homozygous SCD (HbSS) and received a
nonmyeloablative mobilized peripheral blood AlloHCT at the
National Institutes of Health Clinical Center (Table 1).

The first patient had HbSS complicated by stroke, chronic renal
insufficiency with a baseline creatinine of 5 g/dL, and recurrent
vaso-occlusive crises (VOC). He underwent haploidentical pe-
ripheral blood stem cell transplant (PBSCT) at 37 years of age
and received alemtuzumab, 400 cGy total-body irradiation, and
100 mg/kg posttransplant cyclophosphamide in divided doses.
The patient initially engrafted then rejected his graft at 73 days
posttransplant. Two years posttransplant, he presented with se-
vere neutropenia. Bone marrow evaluation revealed a hyper-
cellular marrow with megakaryocytic and myeloid dysplasia with
increased marrow fibrosis, less than 5% myeloid blasts, and
complex cytogenetics. NGS analysis of bone marrow detected a
TP53mutation c.524G.A with a variant allele frequency (VAF) of
72.4%. A custom ddPCR assay detected this mutation in blood
before, and then consistently increasing after, AlloHCT (Figure 1).
The patient received 3 cycles of decitabine with progression
followed by 1 cycle of azacytidine. He died shortly thereafter from
severe pulmonary hypertension at 3 years posttransplant.

A second patient had HbSS complicated by frequent VOC and
chronic pain. He underwent HLA-matched sibling PBSCT at
37 years of age and underwent conditioning with alemtuzumab
and 300 cGy total-body irradiation. He initially engrafted but
then rejected his graft at 6 months posttransplant. Bone marrow
examination at that time demonstrated hypoplasia, a com-
plex karyotype, but no blasts or dysplasia. Two and half years
posttransplant, he presented with worsening anemia and throm-
bocytopenia. A repeat bone marrow evaluation now showed
hyperplasia without evidence of increased blasts. Peripheral
blood smear revealed evidence of dyserythropoiesis. NGS
analysis of bone marrow demonstrated a TP53 mutation
c.658T.C at a VAF of 4.5%. A custom ddPCR assay also detected
this mutation in blood before initial transplantation (Figure 1). The
patient underwent salvage myeloablative haploidentical PBSCT
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3 years after his first transplant, but died 47 days later of in-
tracranial hemorrhage.

A third patient also developed therapy-related myeloid neo-
plasm 5 years after AlloHCT. She had been conditioned with
alemtuzumab and 400 cGy total-body irradiation. Bone marrow
evaluation at an outside facility revealed a hypercellular diffusely
fibrotic marrow with dysplastic megakaryocytic hyperplasia and
10% to 15% blasts. Cytogenetic results revealed a 7q deletion.
NGS was not performed at this time, and no samples were avail-
able for laboratory evaluation.

Consistent with individual case reports from other institutions,8,16

development of myeloid malignancy was only seen in those
rejecting their grafts. None of the 57 patients who engrafted
developed MDS/AML compared with these 3 cases out of 19
patients who rejected their grafts. Further, no TP53 mutations
were detected by NGS in pretransplant bone marrow samples
from 6 patients with HbSS undergoing AlloHCT: 4 who rejected
their grafts are between 4.4 and 7.7 years and 2 engrafted

patients with mixed myeloid chimerism are between 6.4 and
6.8 years post-AlloHCT. None has developed a myeloid ma-
lignancy. Further studies should evaluate the effect of graft
rejection and mixed chimerism on the incidence of myeloid
malignancies post-AlloHCT.

In 2 patients with SCD, we report clonal expansion of TP53
mutations present at the time of myeloid malignancy diagnosis
from earlier points, including before initial transplantation 2 to
3 years earlier. Wong and colleagues identified 4 patients with
therapy-related MDS/AML, and TP53 mutations had the same
mutations existent at low frequencies (0.003%-0.7%) 3 to 6 years
before.17 Further, they showed in mice that received bone
marrow mixtures of wild-type and TP53-mutated hematopoietic
stem/progenitor cells that the TP53 mutated clones specially
expanded after chemotherapy exposure. Because of factors
including erythropoietic stress and systemic inflammation, our
patients may have been predisposed to developing clonal hema-
topoiesis, which is not typically seen until older age.18,19 As these
clones may be more resistant to radiation and/or chemotherapy,

Table 1. Characteristics of patients with SCD developing therapy-related myeloid malignancy after allogeneic
hematopoietic cell transplantation at the National Institutes of Health Clinical Center

Patient
ID

SCD
complications

Age at
AlloHCT, y

Donor
type

Time from
transplant to

graft
rejection

Time from
transplant to

myeloid
malignancy, y

Cytogenetics at
myeloid

malignancy
diagnosis

TP53 mutation
and VAF at
myeloid

malignancy
diagnosis

1 Stroke, CRI,
recurrent VOC

37 Haplo 73 d 2 Complex c.524G.A,
72.4% in bone
marrow

2 Recurrent VOC,
chronic pain

37 HLA-matched 6 mo 2.5 Complex* c.658T.C, 4.5%
in bone marrow

3 ESRD, pHTN,
diastolic
dysfunction

44 Haplo 7 mo 5 7q deletion N/A

A total of 76 patients received AlloHCT for HbSS at this center; myeloid malignancy was only seen within those who did not engraft

CRI, chronic renal insufficiency; ESRD, end-stage renal disease; Haplo, haploidentical donor; N/A, not available; pHTN; pulmonary hypertension.

*Patient 2 had complex cytogenetics at graft rejection 2 years before formal myeloid malignancy diagnosis (no aspirate collected at a later point).

0.01

-25

(baseline)

0 60

0.34%

HCT

0.35%

0.85% 0.91%

14.41%

24.34%

100

Time (days)

VA
F (

pe
rc

en
t)

183 365 730

0.10

1.00

10.00

100.00

Patient #1
TP53 c.524G>A peripheral blood

73 days
(rejection)

0.06%
0.03% 0.03%

2.91%

HCT

Patient #2
TP53 c.658T>C peripheral blood

0.01

-17

(baseline)

0 6033 120

Time (days)

VA
F (

pe
rc

en
t)

180 984 1030

0.10

1.00

10.00

100.00

183 days
(rejection)

Figure 1. TP53mutations are detectable in bloodbefore
transplantation and increase until therapy-related
myeloid malignancy diagnosis. Mutations detected in
bone marrow at time of myeloid malignancy diagnosis
using NGS could be tracked in blood more than 2 years
earlier using ddPCR.
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they may preferentially expand after a failed transplant, leading
to the myeloid malignancy seen in our patients who rejected
their grafts.

Although all 3 patients were treated with hydroxyurea be-
fore transplant, the exact duration of therapy is unknown.
And because we do not have prehydroxyurea blood and
bone marrow samples, we cannot comment on the associa-
tion between hydroxyurea treatment and development of
TP53-mutated clones. Hydroxyurea was first approved by the
US Food and Drug Administration for SCD more than 2 de-
cades ago, and a clear increased risk for MDS/AML has not
been demonstrated. Although case reports describe patients
who developed MDS/AML after short- and long-term hy-
droxyurea usage, larger studies have not revealed a signifi-
cant increase in the risk for hematologic malignancies in
patients with hydroxyurea exposure.2,20 Further, data regard-
ing whether hydroxyurea is associated with genotoxicity are
conflicting.21,22

In summary, we report for the first time in patients with SCD after
unsuccessful alloHCT the progression of baseline high-risk TP53
clonal abnormalities into myeloid malignancy. This rare com-
plication occurred only in patients who did not engraft, and
multiple trials are ongoing with the goal of decreasing the graft
rejection rate in patients with SCD. Detectable mutations before
reduced-intensity AlloHCT in patients with AML in remission is
associated with posttransplant relapse of myeloid malignancy.23

The predictive value and clinical utility of screening for myeloid
malignancy-associated mutations such as TP53 in patients with
HbSS before AlloHCT is, however, currently unknown. Long-
term follow-up of all patients with SCD post-AlloHCT is critical,
and larger studies are indicated.
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