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Development and survival of MYC-driven lymphomas
require the MYC antagonist MNT to curb
MYC-induced apoptosis
Hai Vu Nguyen,1,2,* Cassandra J. Vandenberg,1,2,* Ashley P. Ng,1,2 Mikara R. Robati,1 Natasha S. Anstee,1,2 Joel Rimes,1,2 Edwin D. Hawkins,1,2

and Suzanne Cory1,2

1The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; and 2Department of Medical Biology, University of Melbourne, Melbourne,
VIC, Australia

KEY PO INT S

l MNT aids MYC-driven
B lymphomagenesis
by curbing MYC-
induced apoptosis,
primarily through
suppressing BIM.

l Induced MNT loss in
transplanted Em-Myc
lymphomas extends
recipient survival,
making MNT a novel
therapeutic target for
MYC-driven tumors.

Deregulated overexpression of MYC is implicated in the development and malignant
progressionofmost (∼70%) human tumors.MYCdrives cell growth andproliferation, but also,
at high levels, promotes apoptosis. Here, we report that the proliferative capacity of MYC-
driven normal and neoplastic B lymphoid cells depends onMNT, aMYC-related transcriptional
repressor. Our genetic data establish that MNT synergizes with MYC by suppressing MYC-
driven apoptosis, and that it does so primarily by reducing the level of pro-apoptotic BIM. In
Em-Myc mice, which model the MYC/IGH chromosome translocation in Burkitt’s lymphoma,
homozygous Mnt deletion greatly reduced lymphoma incidence by enhancing apoptosis
and markedly decreasing premalignant B lymphoid cell populations. Strikingly, by inducing
Mnt deletion within transplanted fully malignant Em-Myc lymphoma cells, we significantly
extended transplant recipient survival. The dependency of lymphomas on MNT for survival
suggests that drugs inhibitingMNT could significantly boost therapy ofMYC-driven tumors by
enhancing intrinsic MYC-driven apoptosis. (Blood. 2020;135(13):1019-1031)

Introduction
The transcription factor c-MYC (hereafter MYC) regulates expres-
sion of a multitude of genes involved in cell growth, proliferation,
metabolism, and the DNA damage response.1 In normal cells, the
level of MYC is tightly regulated, but in cancer cells, it is almost
always elevated and constitutive.2,3 Althoughnot fully transforming,
MYC overexpression provides a strong drive toward malignancy.4

Importantly, however, MYC’s oncogenic potential is tempered by
its propensity to induce apoptosis in cells stressed by inadequate
access to cytokines or nutrients,5,6 particularly at high MYC levels.7

Mutations that inhibit apoptosis therefore synergize with MYC in
tumorigenesis, as first shown for anti-apoptotic BCL-2.8,9

MYC and its closest relatives, N-MYC and L-MYC, bind DNA
at canonical CACGTG E-boxes (and noncanonical variants)
as a heterodimer with MAX, a related basic helix-loop-helix
leucine zipper (bHLHLZ) protein.1 MYC:MAX heterodimers can
activate10 or repress11 hundreds of genes,12 although many may
be indirect targets.13 MYC action is opposed by other bHLHLZ
relatives such as the 4 MXD proteins and MNT, which also
heterodimerize with MAX and bind to E-boxes in many pro-
moters and enhancers. By interacting with SIN3 proteins, MXD/
MNT proteins recruit histone deacetylase-containing complexes
to repress target genes.1

MNT14,15 is evolutionarily conserved and widely expressed during
development and in adult tissues. Certain genes targeted by
MYC:MAX heterodimers are also targets of MNT:MAX hetero-
dimers.16 Genetic loss or knockdown of MNT was reported to
enhance proliferation, increase RAS-induced transformation,
and augment sensitivity to apoptotic stimuli, all characteristics
of MYC overexpression.17-19 Therefore, MNT was posited as a
tumor suppressor, a role supported by early mouse studies showing
that its tissue-specific loss produced mammary adenocarcinomas20

and thymic lymphomas.21 Furthermore,MNTdeletions have been
noted in a variety of human cancers,22 including chronic lym-
phocytic leukemia23 and Sezary syndrome, a cutaneous T-cell
lymphoma/leukemia.24

Surprisingly, however, recent studies indicate that MNT actually
facilitates MYC-driven tumorigenesis, rather than acting as a
tumor suppressor. Thus, Hurlin’s group found that T-cell-specific
homozygous Mnt deletion prevented thymic lymphoma de-
velopment in mice expressing a hypermorphic MYC protein
(MYCT58A) in T cells,25 and we found that Mnt heterozygos-
ity slowed T lymphomagenesis in VavP-Myc10hom mice and
B lymphomagenesis in Em-Myc mice,26 which model the c-MYC/
IGH chromosome translocations that hallmark Burkitt’s lymphomas.4

Link et al showed that MNT-null thymocytes expressing MYCT58A
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were more susceptible to apoptosis and proposed that MNT’s
dominant physiological role is to suppressMYC-driven apoptosis.25

However, pre-B cells from Mnt1/2 Em-Myc mice were not dis-
cernibly more sensitive to apoptosis than those from Mnt1/1

Em-Myc mice.26

To clarify the roles of MNT in B lymphopoiesis and lympho-
magenesis, we have now undertaken conditional homozygous
deletion of floxed Mnt alleles in wild-type (WT) and Em-Myc
transgenic mice. In Em-Myc mice,4,27,28 constitutive Myc over-
expression in B lymphoid cells, driven by the immunoglobulin H
(IgH) enhancer Em, produces a polyclonal expansion of cycling
nonmalignant pre-B cells, and every mouse goes on to develop
a monoclonal malignant (transplantable) pre-B or B lymphoma
harboring cooperating oncogenic mutations.29-31

We report here that B lymphopoiesis in both normal and Em-Myc
mice is strikingly dependent on MNT. In its absence, B lymphoid
cells are highly susceptible to apoptosis, largely as a result
of upregulation of the BH3-only protein BIM, a potent pro-
apoptotic BCL-2 family member.32,33 We show that Mnt de-
letion in Em-Mycmice greatly impedes B lymphomagenesis, and
that inducing Mnt deletion in transplanted fully malignant Em-
Myc lymphoma cells extends the survival of transplant recipients.
These data provide genetic proof of principle that MNT would
be an effective target for therapy of MYC-driven tumors.

Materials and methods
Mice
Mice used were Em-Myc,4,28 Bim2/2del339/1,34 Rag1Cre,35

Rosa26.CreERT2,36 andMntfl/1,37 all on aC57BL/6 background. To
activate CreER recombinase in Rosa26.CreERT2mice, 5-week-old
animals were given 200 mg/kg tamoxifen (T5648, Sigma-Aldrich)
daily for 3 days by oral gavage, and analyzed after 4 weeks.

Nondecalcified long bone immunofluorescence
Immunofluorescence analysis was performed on long bone
prepared without decalcification to maintain collagen signal, as
described previously38,39 and in supplemental Methods, avail-
able on the Blood Web site. Quantification using ImageJ/FIJI
“Analyze particle” function was performed blinded to genotype.

Statistical analysis
Statistical comparisons were made using unpaired 2-tailed
Student’s t-test or analysis of variance with Prism v8.0 soft-
ware (GraphPad, San Diego, CA), with P values# .05 considered
statistically significant. Mouse survival analysis was carried out
usingGraphPad Prism (Version 8.0), and significance determined
using log-rank (Mantel-Cox) test.

Results
Mnt deletion largely prevents lymphomagenesis
in Em-Myc mice
To investigate the physiological role of MNT in B lymphoma-
genesis and avoid the early embryonic lethality of homozygous
Mnt deletion (;E10 in C57BL/6mice; K. J. Campbell, C.J.V., and
S.C., unpublished results), we bred Em-Myc4 mice bearing floxed
Mnt alleles (Mntfl/fl)37 and the Rag1Cre35 transgene, which ex-
presses Cre recombinase only in lymphoid progenitor cells.

Lymphoid-specific Mnt deletion strikingly reduced lymphoma-
genesis in Em-Myc mice (Figure 1A). Mntfl/fl Em-Myc/Rag1Cre
mice (blue curve) had a median survival of more than 400 days vs
only 86 and 96 days, respectively, for Em-Myc (red) and Em-Myc/
Rag1Cre (purple) mice. Consistent with our earlier study of
Mnt1/2 Em-Myc mice,26 mouse survival was also significantly
extended in Em-Mycmice heterozygous forMnt deletion (Mntfl/1

Em-Myc/Rag1Cre mice, lime green curve; median survival,
138 days).

Most tumors that did arise inMntfl/fl Em-Myc/Rag1Cremice were
pre-B or B lymphomas, which is typical for Em-Myc mice, al-
though a few seemed more differentiated (supplemental Ta-
ble 1). The tumor burden was comparable in sickMntfl/fl Em-Myc/
Rag1Cremice andMnt1/1 Em-Myc/Rag1Cremice (supplemental
Figure 1A-B) although the Mnt-deleted tumors were less fre-
quently accompanied by leukemia (2/13 [15%] versus 25/34
[74%]; supplemental Figure 1B, panel 1). Most tumors analyzed
(10/13, 77%) lacked detectable MNT at either the DNA or
protein level, with the other 3 having escaped Mnt deletion by
loss (#344) or aberrant activity (#611, #340) of the Rag1Cre
transgene (supplemental Figure 1C; supplemental Table 1).
Inactivation of the p19Arf/p53 pathway in MNT-null tumors
(4/10, 40%) was similar to that reported for conventional Em-Myc
lymphomas (supplemental Figure 1C),30,40 suggesting that se-
lection against p53 is no higher in MNT-deficient than in MNT-
proficient lymphomas.

Overall, these data indicate that MNT expression is highly ad-
vantageous for MYC-driven B lymphomagenesis.

Mnt deletion mediated by Rag1Cre provokes
severe B lymphopenia in young Em-Myc mice
To investigate why MNT loss profoundly reduced lymphoma-
genesis in Em-Myc mice, we analyzed their premalignant phase.
First, we compared expression of MNT and MYC protein in
B lymphoid progenitor populations sorted from the bone
marrow of young (4-week-old) WT and Em-Myc mice (supple-
mental Figure 2A). Transgenic MYC protein was low in pre-pro-
B cells, but high in pro-B, pre-B, and recirculating IgM1 B cells,
whereas endogenous MYC was below the detection limit. MNT
was readily detectable in pre-pro-B cells from both WT and Em-
Myc mice, and its level increased substantially with matu-
ration. Quantification of intracellular MNT by flow cytometry
indicated that MNT was 2.5- to 3-fold higher in Em-Myc pro-B,
pre-B, and IgM1 cells than in their WT counterparts (supple-
mental Figure 2B).

Rag1Cre-mediated deletion of floxed Mnt was highly efficient,
as shown by polymerase chain reaction (PCR) analysis of pro-B
and pre-B cells (Figure 1B). The loss of MNT induced severe
B lymphopenia in young Em-Mycmice. The several-fold increase
in immature B lymphoid (B2201IgM2) cells normally seen in the
bone marrow of young Em-Myc mice (red, purple bars)27 was
nullified by the Mnt deletion in Mntfl/fl Em-Myc/Rag1Cre mice
(blue bar; Figure 1C, panel 1; supplemental Figure 3A). Although
pro-B and pre-B cells were both reduced ;5-fold, the more
immature pre-pro-B cell progenitors (in which Rag1-driven Cre
expression is marginal) were unaffected (Figure 1C, panels 2-4).
The MNT-null phenotype was even more extreme in the spleen
(Figure 1D), where B lymphoid cells (B2201) were barely de-
tectable, and the deficit affected all major subpopulations: pre-B
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(B2201IgM2IgD2), immature B (B2201IgM1IgD2) and mature
follicular B (B2201IgM1IgD1). Circulating lymphocytes, normally
elevated in young Em-Myc mice, were even lower in Mnt-
deficient Em-Myc mice than in WT mice (Figure 1E).

Unsurprisingly, Mntfl/1 Em-Myc/Rag1Cre mice had a milder
preleukemic phenotype than Mntfl/fl Em-Myc/Rag1Cre mice:
B lymphoid cells were not significantly diminished in the bone

marrow, but the spleen had a significant reduction (;2-fold), and
blood lymphocytes were also low (supplemental Figure 3B).

Mnt deletion mediated by CreERT2 also produces
B lymphopenia
To confirm these results in an acute model ofMnt deficiency, we
used the Rosa26.CreERT2 transgene (hereafter CreERT2), which
encodes Cre recombinase fused to amodified hormone-binding
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Figure 1. Lymphoid-specific loss of MNT greatly diminishes lymphoma development and induces lymphopenia in Em-Myc mice. (A) Kaplan-Meier survival curves
showing reduced lymphomadevelopment inMntfl/flEm-Myc/Rag1Cremice (blue;median survival, 463 days) thanMntfl/1Em-Myc/Rag1Cremice (lime green;median survival, 138days)
and control Em-Mycmice (red; median survival, 86 days) and Em-Myc/Rag1Cre mice (purple; median survival, 96 days). **P # .01; ****P # .0001. Log-rank test. Killed mice showing
no malignancy on autopsy were censored (black mark). X-axis was arbitrarily terminated at 400 days, but monitoring continued. (B) PCR analysis shows efficient deletion of floxed
Mnt alleles by Rag1Cre in cells sorted from bone marrow of individual 4-week-old mice. WT and floxed Mnt alleles both produce 147-bp fragments, deleted Mnt allele (MntD), a
386-bp fragment. Lanes 1,2: pro-B and pre-B cells, respectively, from Mntfl/fl Em-Myc/Rag1Cre mouse #360; lanes 3,4: pre-B cells from control Mnt1/1 Rag1Cre mice (#403, #404);
lanes 5,6 pre-B cells from Mntfl/fl Rag1Cremice (#413, #414); C, control DNA forMnt PCRs. (C-D) Lymphoid-specific MNT loss induces lymphopenia. Flow cytometric quantification
of B lymphoid subpopulations in bone marrow (C) and spleen (D) of 4-week-old WT (light green), Em-Myc (red), Em-Myc/Rag1Cre (purple), and Mntfl/fl Em-Myc/Rag1Cre (blue)
mice. Supplemental Figure 3A exemplifies sorting strategy. Bar graphs show mean6 SD; *P# .05; **P# .01; ***P# .001; ****P# .0001. (E) Lymphocyte count in blood of 4-week-
old mice of indicated genotypes, determined in an Advia hematology analyzer. Mean 6 SD; *P # .05; **P # .01; ***P # .001; ****P # .0001.
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domain of the estrogen receptor within the Rosa26 locus.36 Five-
week-old Mntfl/fl Em-Myc/CreERT2 and control Em-Myc and Em-
Myc/CreERT2 mice were treated on 3 successive days with
tamoxifen by oral gavage and analyzed 4 weeks later (supple-
mental Figure 4A), to avoid early transient tamoxifen toxicity.41

PCR and immunoblot analyses of CD191 splenocytes demon-
strated highly efficient deletion of floxed Mnt alleles and barely
detectable MNT protein in 5 independent experiments (eg,
supplemental Figure 4B-C).

The bone marrow of tamoxifen-treated Mntfl/fl Em-Myc/CreERT2
mice had a significant deficit (2- to 3-fold) of B2201IgM2 cells
(supplemental Figure 4D). Although pre-pro-B cells were un-
affected, both pro-B cells and pre-B cells were substantially
reduced (;3-fold) and splenic B lymphoid cells (B2201) were
severely depleted (;5-fold; supplemental Figure 4E).

Thus, MNT loss engineered by 2 independent approaches
abrogated the MYC-driven lymphocyte expansion that normally
hallmarks young Em-Mycmice. The reduced pool of proliferating
premalignant early B lineage cells was undoubtedly a major
contributing factor to the reduced lymphoma incidence in
MNT-deficient Em-Myc mice.

MNT loss exacerbates Em-Myc-driven apoptosis
To identify the mechanism for the profound decrease in
B lymphoid cells in young MNT-deficient Em-Myc mice, we
analyzed MYC levels, cell proliferation, senescence, and apo-
ptosis in pro-B and pre-B cells from the bone marrow of 4-week-
old Mntfl/fl Em-Myc/Rag1Cre and control mice. MYC protein was
substantially higher in Em-Myc pro-B and pre-B cells than in
WT cells, as expected, but its level did not differ significantly
between Em-Myc cells that had or lacked MNT (Figure 2A). Cell
cycle analysis of bone marrow cells (Figure 2B) indicated that
MNT loss did not diminish Em-Myc-driven cycling of pre-B
cells,27 although pro-B cell cycling appeared marginally sup-
pressed. The proportion of senescent cells was comparable
in pro-B cells of all 3 genotypes, as measured by intracellular
staining for H3K9 trimethylation,42 and although a small, non-
significant increase was noted in pre-B cells expressing Em-Myc,
MNT loss had no effect (Figure 2C).

Notably, however, MNT loss significantly exacerbated apoptosis
of Em-Myc B lymphoid cells (Figure 2D). Annexin-V1 cells in bone
marrow pro-B and pre-B cell populations of MNT-deficient Em-
Myc mice (blue) were ;3-fold higher than for regular Em-Myc
mice (red), which in turn were ;3-fold higher than for cells from
WT mice (light green).

MNT loss increases apoptosis in situ in
bone marrow
To complement these ex vivo analyses, we immunostained non-
decalcified long bones38,39,43 from 4-week-old (premalignant)
Em-Myc mice of all genotypes for CD19 (B lymphoid cells), Ki67
(proliferation), and cleaved caspase-3 (apoptosis) and collected
a tilescan map by dual 2-photon/confocal microscopy. Repre-
sentative stained images are presented in Figure 3A-B, and
whole-bone staining is quantified in Figure 3C-E. The bones
from Em-Myc and Em-Myc/Rag1Cre mice were packed with
CD191 and Ki671 cells, as anticipated. In contrast, Mnt-deleted
Em-Mycmice (Mntfl/fl Em-Myc/Rag1Cre) had far fewer CD191 cells,
consistent with analysis by flow cytometry (Figure 1C). The low

level of Ki67-positive cells in bones isolated fromMntfl/fl Em-Myc/
Rag1Cremice undoubtedly reflects this B lymphopenia. Of note,
cleaved caspase-3-positive cells were as prevalent in Mntfl/fl

Em-Myc/Rag1Cre bones as in those from Em-Myc and Em-Myc/
Rag1Cre mice (Figure 3E), consistent with a higher proportion of
the B lymphoid cells being apoptotic.

Taken together, these ex vivo (Figure 2) and in situ (Figure 3)
analyses strongly suggest that increased apoptosis is the dom-
inant effect of MNT loss during B lineage development in Em-
Myc mice.

MNT loss also constrains B lymphoid development
in WT mice
Because induction of apoptosis by MYC depends on its level
of expression,7 whether MNT deficiency would affect normal
B lymphopoiesis was unclear. To assess this, we compared
B lymphoid cell subpopulations in 6-week-oldWT, Rag1Cre, and
Mntfl/fl Rag1Cre mice (exemplified in supplemental Figure 5).
Notably, Mnt deletion significantly reduced B lymphoid cell
numbers in both the bone marrow and spleen, although the
reduction was less pronounced than in Em-Myc mice (Figure
4A-B). Tamoxifen-treated Mntfl/flCreERT2 mice also developed
B lymphopenia, having fewer pre-pro-B, pro-B, pre-B, and B cells
(Figure 4C-D). Thus, MNT loss impairs normal as well as Em-Myc-
driven B lymphopoiesis.

MNT constrains B lymphoid apoptosis largely by
down-regulating expression of pro-apoptotic BIM
B lymphopoiesis in the bone marrow depends on signaling
through the interleukin 7 (IL-7) receptor.44 Hence, to explore
the mechanism underlying the enhanced apoptosis of MNT-
deficient but otherwise normal B lymphoid cells, we cultured
bone marrow-derived B progenitor cells (CD191IgM2) in IL-7.
In WT cells, endogenous MYC protein increased substantially
by 48 hours, and MNT and anti-apoptotic MCL-1 also rose
(Figure 5A). MNT deficiency had little effect on either the MYC
level (supplemental Figure 6A) or the proliferation profile (sup-
plemental Figure 6B) of pro-B cells cultured for 4 days in IL-7.
Strikingly, however, apoptotic pro-B cells (annexin-V1) in-
creased ;3-fold (Figure 5B,E), despite the supraoptimal levels
of IL-7.

BIM, a potent BH3-only protein in the BCL-2 family,32,33 is amajor
apoptotic trigger during B lymphopoiesis.45-47 Flow cytometry
and immunoblotting (Figure 5C-D) revealed higher BIM protein
in cultured pro-B cells from Mntfl/fl Rag1Cre mice than in their
WT counterparts, although Bim mRNA was unchanged (sup-
plemental Figure 6D). MCL-1 protein (and RNA) levels fell in
MNT-deficient pro-B cells (Figure 5D; supplemental Figure 6D),
which would also increase susceptibility to apoptosis.

As BIM expression is haploinsufficient,31,45 we tested whether
loss of a single Bim allele could ameliorate the pro-apoptotic
effect of MNT loss. Indeed, the proportion of apoptotic pro-B
cells in day 4 IL-7 cultures of Bim1/2 Mntfl/fl Rag1Cre cells (light
orange) was significantly lower than for Mntfl/fl Rag1Cre cells
(light blue; Figure 5E). Bim heterozygosity did not, however,
rescue the lower MCL-1 in IL-7 cultured pro-B cells lacking MNT
(supplemental Figure 6C).
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Taken together, these studies show that IL-7 receptor
signaling upregulates MNT as well as MYC, and suggest
that MNT reduces the MYC-induced apoptotic response,
thereby facilitating MYC-driven cell production. They also
suggest that the increased apoptosis of MNT-deficient pro-
B cells is a result of elevated BIM levels, and probably also
lower MCL-1.

Loss of a single Bim allele abrogates B lymphopenia
provoked by MNT loss
These in vitro findings made it likely that the B lymphopenia
induced in WT and Em-Myc mice by MNT loss reflected, at least
in part, BIM-mediated apoptosis. Accordingly, MNT-deficient
CD191 spleen cells had more BIM protein than WT cells (com-
pare lane 1 and 2 in Figure 6A), and BIM was even higher in
splenocytes from Em-Myc mice (lane 4).

We therefore tested whether Bim heterozygosity would ame-
liorate B lymphopenia in MNT-deficient mice. Indeed, lowering
BIM partially restored B2201 cell numbers in the bone marrow of
young Mntfl/fl Rag1Cre mice (Figure 6B), and even more so in
their spleen (Figure 6C) (compare light orange and light blue
bars).

Bim heterozygosity also significantly ameliorated the B lym-
phopenia provoked by MNT loss in young Em-Myc mice. Total
B lymphoid cells in the bone marrow (Figure 6D) and spleen
(Figure 6E) of Bim1/2 MNT-deficient Em-Myc mice were signif-
icantly more frequent than in Bim1/1 MNT-deficient Em-Myc
mice (compare orange with blue bars), primarily as a result
of more pro-B and pre-B cells. Annexin V staining of bone
marrow pro-B and pre-B cells (Figure 6F) confirmed that Bim
heterozygosity (orange) significantly reduced apoptosis of
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loss does not change MYC level. Pro-B and pre-B cells were sorted from bone marrow of 4-week-old mice, permeabilized and stained with MYC antibody (blue) or isotype-
matched control (red). (Bottom) Mean intracellular MYC fluorescence (MFI) 6 SD in WT (light green), Em-Myc (red), and Mntfl/fl Em-Myc/Rag1Cre (blue) pro-B and pre-B cells;
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Figure 3. In situ analysis of cell proliferation and apo-
ptosis. (A) Tilescan sections of whole tibia. Bones were
harvested from 4-week old Em-Myc (n 5 5), Em-Myc/
Rag1Cre (n 5 4), Mntfl/fl Em-Myc/Rag1Cre (n 5 3), and WT
(n 5 4) mice, stained and imaged by combined 2-photon/
confocal imaging of cell populations in situ. Red 5 CD19;
green 5 Ki67; magenta 5 cleaved caspase-3; gray 5

second harmonic generation (bone). To better visualize
CC3-positive cells in Figure 3B, the data are presented
using an inverse black and white LUT (Lookup Table). Scale
bar, 500 mm. (B) Zoomed areas from original tilescans in
panel A (white boxes) with individual channels for CD19,
Ki67, and cleaved caspase-3. A merged image (bottom
panel) from each area is shown relative to bone signal (gray).
Scale bar, 50 mm. (C-E) Quantification of cells in tibia
positive for CD19, Ki67, and cleaved caspase-3. Color im-
ages were separated into single binary channels and then
thresholded, and the number of positive pixels for each
whole bone section quantified for CD19 (C), Ki67 (D) and
cleaved caspase-3 (E). Each data point represents a whole
quantified bone from an individual mouse in each genotype
(n 5 3-5). Bar graphs show mean 6 SD; significance was
determined by analysis of variance *P # .05; **P # .01).
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Mntfl/fl Em-Myc/Rag1Cre pro-B and pre-B cells (compare or-
ange with blue bars).

Most strikingly, Figure 6G shows that the extended tumor-free
survival afforded to Em-Mycmice by homozygous (blue) or even
heterozygous Mnt (lime green) loss was greatly diminished by
concomitant heterozygous loss of Bim (compare blue with
orange curve and lime green with mustard curve). These ob-
servations raised the possibility that the MNT-deficient tumors
arising at low frequency inMntfl/fl Em-Myc/Rag1Cremice might
have suffered mutations or epigenetic changes that reduce
BIM levels. Indeed, most of these tumors (10 of 13) did have
markedly less BIM (supplemental Figure 1C; supplemental
Table 1).

Em-Myc tumor cells remain dependent on MNT to
curb MYC-induced apoptosis
Thus far, our results have shown that MNT plays a vital anti-
apoptotic role during early B lymphopoiesis, most strongly in
Em-Myc, but also in WT, mice. We hypothesized, therefore, that
the survival of fully malignant Em-Myc lymphoma cells might still
require MNT. To test this, we exploited our Mntfl/fl Em-Myc/
CreERT2 mice, which develop Em-Myc lymphomas carrying
tamoxifen-deletable Mnt alleles (Figure 7A).

We first tested 2 short-term cell lines derived from independent
primary Mntfl/fl Em-Myc/CreERT2 lymphomas. In both lines, ex-
posure to 4-OH tamoxifen for 24 hours greatly reduced MNT
levels, and annexin-V1 cells were;3-fold higher than in a control
Mnt1/1 Em-Myc/CreERT2 line (Figure 7B). Thus, fully transformed
Em-Myc-driven lymphoma cells depend on MNT for survival
in vitro.

As a more stringent test, we induced Mnt deletion in vivo in
transplanted primary lymphoma cells, predicting that MNT loss

would disadvantage the tumor cells and hence prolong survival
of transplant recipients. Fourteen independent Mntfl/fl Em-
Myc/CreERT2 lymphomas and 9 independent Mnt1/1 Em-
Myc/CreERT2 control lymphomas were transplanted into
nonirradiated syngeneic mice (6 recipient mice per lym-
phoma), and once the lymphoma cells were established
(5 days), 3 of the 6 recipients were treated with tamoxifen and
3 with vehicle alone. As expected, tamoxifen provided no
survival benefit to recipients of control (Em-Myc/CreERT2)
lymphoma cells (Figure 7C, lower panel). In marked contrast,
after tamoxifen treatment, mice bearingMntfl/fl Em-Myc/CreERT2
lymphoma cells survived significantly longer (Figure 7C, upper
panel; P , .0001), whether transplanted with IgM1 or with IgM2

tumors (supplemental Figure 7A). Comparable experiments with
Mnt1/2 Em-Myc/CreERT2 lymphomas showed that tamoxifen-
induced loss of even a single Mnt allele significantly extended
recipient survival (supplemental Figure 7B).

Strikingly, for 2 of theMntfl/fl Em-Myc/CreERT2 tumors (#508 and
#874), all (6/6) tamoxifen-treated transplant recipients survived
for more than 19 weeks and were deemed “cured” (all their
vehicle-treated recipients had required euthanasia within ;30
days). Eleven other tumors had a median survival benefit of
8.3 days (range, 4-22 days), and 1 had none (supplemental
Table 2). To address why the response rate varied, we analyzed
CD191 Ly5.21 cells isolated by fluorescence-activated cell
sorting from relapsing Mntfl/fl Em-Myc/CreERT2 lymphomas,
comparing those treated with vehicle (as a surrogate for the
primary tumor) and those treated with tamoxifen (supplemental
Table 2; supplemental Figure 7C-D). For the nonresponding
tumor (#676), PCR analysis indicated that failedMnt deletion was
a result of loss of the CreERT2 gene during tamoxifen treatment.
The 11 other tumors analyzed retained readily detectable Mntfl

DNA after treatment and still expressed significant MNT protein,
suggesting they derived from cells that had escaped complete
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Mnt deletion. Thus, Figure 7C likely underestimates the true
effect of MNT loss.

As 4/14 (29%) transplanted Mntfl/fl Em-Myc/CreERT2 lympho-
mas (including #508) lacked functional p53 (supplemental
Figure 7D; supplemental Table 2), vulnerability to MNT loss
did not appear to rely on WT p53. To directly test this, we
established cell lines from independent primary Mntfl/fl Em-
Myc/CreERT2 lymphomas and ascertained their p53 status by
exposure to nutlin 3a48 (supplemental Figure 8). Figure 7D
shows that 4/4 p53 WT Mntfl/fl Em-Myc/CreERT2 lines were
extremely sensitive to apoptosis after Mnt deletion, and that
4/4 p53 mutant Mntfl/fl Em-Myc/CreERT2 lines were also vul-
nerable, albeit to a lesser degree.

Discussion
The proliferation of lymphocytes, similar to most cell types,
requires MYC.49 MYC’s proliferative drive is checked, however,
by its propensity to induce apoptosis at high expression levels.7

In this study, using conditional deletion in normal and Em-Myc
mice, we provide strong genetic evidence that MYC antagonist
MNT plays a vital role in both normal B lymphopoiesis andMYC-
driven lymphomagenesis by reducing MYC-driven apoptosis.

These results have important implications for the treatment of
lymphomas and potentially other MYC-driven tumor types.

MNT was detectable at each major stage of B-cell development
in the marrow of youngWTmice, the highest levels being in pre-
B and IgM1 B cells (supplemental Figure 2). Of note, MNT levels
in Em-Myc mice were ;3-fold higher than in comparable pop-
ulations from WT mice.

Strikingly, homozygous deletion of floxed Mnt alleles in early
B-cell progenitors (via Rag-1Cre) significantly extended the
lifespan of Em-Myc mice by reducing the overall incidence of
lymphomas (from .90% to ;35%) and retarding their devel-
opment (Figure 1A). The reduced lymphomagenesis in Mntfl/fl

Em-Myc/Rag1Cre mice correlated with a profound early de-
pletion of proliferating premalignant pro-B and pre-B cells
(Figure 1C-E), the cells at risk of acquiring the oncogenic mu-
tations needed for fully fledged malignancy.28 Enhanced apo-
ptosis proved to be the major cause of this deficit, rather than
reduced proliferation or increased cellular senescence (Figures 2
and 3). We conclude that MNT plays a major role in suppressing
apoptosis driven by the high MYC levels in B lymphoid cells of
Em-Myc mice.

E
d4 +IL-7

WT

Rag1Cre

Mntfl/fl Rag1Cre

Bim+/-

Bim+/- Mntfl/fl Rag1Cre

0

5

10

15

20

25

An
ne

xin
-V

 (%
)

n=7 n=4 n=4 n=10 n=3 

****
** *

**

D

BIM

n=5 n=6 

2.5

2.0

1.5

1.0

0.5

0.0

Fo
ld

 in
cr

ea
se

***

MCL-1

n=7 n=8 

1.2
1.0
0.8

0.2
0.4
0.6

0.0

Fo
ld

 in
cr

ea
se

**

d4

W
T

Mnt
fl/fl  Rag

1C
re

Mnt
fl/fl  Rag

1C
re

Bim
-/-

ACTIN

MCL-1

MNT64

kDa

BIM

39

28

39

A

MYC

ACTIN

+IL7
(48hr)

- IL7
(24hr)

MCL-1

MNT

1re
st

in
g

0.5 24 48 hr
+IL-7 (5ng/ml)

51

kDa

64

39

39

B
d4

pro-B

R
ag

1C
re

0 104103 105

105

104

103

102

0

Annexin-V
4.96

Annexin-V

CD
19

M
nt

fl/
fl  R

ag
1C

re
0 104103 105

105

104

103

102

0

Annexin-V
12.8

C
d4

*

0

10

20

30

40

BI
M

-p
os

iti
ve

 ce
lls

 (%
)

*

0

200

400

600

800

1000

M
FI

WT Mntfl/fl Rag1Cre

BIM

BIM+
26.7

M
nt

fl/
fl 
R

ag
1C

re
 v

s 
B

im
-/

-

co
un

t

6.0K

4.0K

2.0K

0

0 104 105

W
T 

vs
 B

im
-/

-

co
un

t

BIM+
12.3

0

5.0K

4.0K

2.0K

1.0K

3.0K

0

104 105
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Mnt deletion also reduced B lymphoid cell numbers in the
bone marrow and spleen of normal mice (Figure 4), although
the cell deficit was less than in Em-Myc mice. Thus, normal
B-cell development also depends on MNT, perhaps because

endogenous MYC levels can rise above the proapoptotic
threshold at certain stages during their ontogeny. The most
vulnerable population is likely to be the highly prolifera-
tive pro-B cell stage, in which MYC expression is highest
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(Figure 2A; see also the immgen.org database and Huang
et al50), and which is dependent on IL-7 for proliferation and
survival.51

These investigations of MNT function confirm and greatly ex-
tend previous genetic studies.25,26 Link et al reported that
T lymphoid-specific Mnt deletion prevented thymic lymphoma
development in transgenic mice expressing a mutant, more
stable form of MYC, and that thymocytes lacking MNT were
more susceptible to apoptosis.25 Our own previous study,26

usingmice constitutively heterozygous forMnt,37 found retarded
lymphomagenesis in Em-Myc and VavP-MYC10 mice. However,
there was no measurable enhancement of apoptosis in Mnt1/2

Em-Myc B lymphoid cells. This disparity with our current findings
undoubtedly reflects the greater effect of homozygous vs het-
erozygous loss of Mnt (compare Figure 1 and supplemental
Figure 3B), but the germline deletion may also have selected
for compensatory mechanisms to overcome developmental
disadvantage.

In a major advance, we have established that the BH3-only
protein BIM, a potent proapoptotic BCL-2 family member,32,33

is in part responsible for the increased apoptosis of MNT-
deficient MYC-driven B lymphoid cells (Figure 6). BIM protein
levels were higher in MNT-deficient pro-B cells (Figure 5C-D),
apparently as a result of posttranscriptional mechanisms (sup-
plemental Figure 6D), and tellingly, Bim heterozygosity reduced
apoptosis of Mntfl/fl Em-Myc/Rag1Cre pro-B and pre-B cells
(Figure 6F). Furthermore, lymphomas arose significantly faster
and more frequently in Bim1/2 Mntfl/fl Em-Myc/Rag1Cre than in
Bim1/1 Mntfl/fl Em-Myc/Rag1Cre mice (Figure 6G).

Although Bim heterozygosity substantially alleviated the
B lymphopenia in premalignant MNT-deficient Em-Myc mice, it
did not fully restore cell numbers (Figure 6 D-E). We speculate
that lower MCL-1, as observed in cultured MNT-deficient pro-B
cells (Figure 5D), may also have contributed to the enhanced
apoptosis of MNT-deficient Em-Myc B lymphoid cells. Perti-
nently, MCL-1 is essential for the development and sustained
growth of Em-Myc lymphoma cells.52,53

Another striking advance reported here is that even fully
malignant (transplantable) Em-Myc-driven cells remain
MNT-dependent (Figure 7). 4OH-tamoxifen-induction of Mnt-
deletion in cell lines from Mntfl/fl Em-Myc/CreERT2 lymphomas
rapidly induced cell death in vitro, particularly in lines retaining
p53 functionality, but also in those lacking it (Figures
7B,D). Furthermore, when multiple Mntfl/fl Em-Myc/CreERT2

lymphomas were each transplanted into several immuno-
competent syngeneic mice, recipients treated with tamoxifen
to induceMnt deletion in the tumor cells uniformly lived longer
than those treated with vehicle alone (Figure 7C; P 5 .0002).
Indeed, the true survival benefit of MNT loss is likely under-
estimated by this experiment because relapsing lymphoma
cells lacked complete Mnt deletion. Conversely, the cures
achieved for all recipients of 2 lymphomas likely reflected
highly efficient Mnt loss.

This study clearly establishes that the proliferative capacity of
MYC-driven B lymphocytes and lymphoma cells depends on
MNT suppression of apoptosis. Thus, in this cellular setting,Mnt
is a synergistic oncogene rather than a tumor suppressor,
as earlier studies suggested,20,21,23,24 although MNT might
well have a tumor suppressor role in certain cell types or
circumstances.

Elevated MYC levels are common in lymphoid and many
other malignancies,3 and often correlate with poor prognosis
(eg, Barrans et al54). In several tumor models, MYC down-
regulation can elicit tumor regression (eg, Felsher and
Bishop,55, Meyer and Penn,56 and Soucek et al57). To date,
however, drugs that directly target MYC have largely disap-
pointed in the clinic, probably because reducing MYC leads
to reduced MYC-driven apoptosis, and new approaches are
urgently needed.58,59

Our genetic demonstration that MNT loss is a synthetic lethal
vulnerability in MYC-driven lymphomas, even those mutant
for p53 (Figure 7D), elevates MNT as an exciting prospect for
drug development. We suggest that a therapeutic that in-
hibits or degrades MNT would serve as a Trojan horse by
unleashing the intrinsic potential of MYC-driven lymphoma
cells for self-destruction by apoptosis. Assessment of MNT and
MYC protein levels in different human tumor types may re-
veal which malignancies might benefit from MNT inhibitors.
A drug that substantially lowers MNT should not only ele-
vate spontaneous apoptosis in MYC-driven tumors but also
exacerbate sensitivity to diverse cytotoxic agents. Thus, co-
targeting MNT could lift the efficacy of many current cytotoxic
therapies, including the emerging BH3 mimetic drugs showing
such high potential in blood cell cancers.33 Although a tran-
scription factor such as MNT is a more challenging drug target
than an enzyme, a growing number of epigenetic targets are
showing promise,60 and targeted degradation has exciting
potential.61

Figure 7.MNT loss induced in vivo in Em-Myc lymphomas extends survival of transplant recipients. (A) Schematic of experimental design.Mntfl/fl Em-Myc/CreERT2 and Em-
Myc/CreERT2mice were aged until they developed tumors (;100 days). Tumor cells (Ly5.21) were harvested and either cultured to establish cell lines for in vitro treatment with
4-OH tamoxifen (4-OHT) (see panel B) or injected intravenously into syngeneic nonirradiated C57BL/6-Ly5.1 mice for in vivo treatment with tamoxifen (see panel C). (B) 4-OH
tamoxifen-induced Mnt loss enhances apoptosis of Em-Myc lymphoma cells in vitro. Short-term cell lines established from 2 independentMntfl/fl Em-Myc/CreERT2 lymphomas
(#1129 and #1271) and a control Em-Myc/CreERT2 lymphoma (#1194) were treated for 24 hours with or without 0.5 mM 4-OH tamoxifen and percentage annexin-V-positive cells
determined by flow cytometry. Results are from 4 (#1194, #1129) or 3 (#1271) independent experiments; mean6 SD **P# .01; **P# .001. Immunoblot shows MNT and ACTIN
protein in cells treated with tamoxifen or vehicle. (C) Tamoxifen-induced Mnt deletion significantly extends survival of mice transplanted with Mntfl/fl Em-Myc/CreERT2
lymphomas. Kaplan-Meier survival curves ofmice transplantedwith 14 independentMntfl/fl Em-Myc/CreERT2or 9 control Em-Myc/CreERT2 lymphomas and subsequently treated
with either tamoxifen or vehicle alone. Each lymphoma was transplanted into 6 nonirradiated C57BL/6 recipients (2-43 106 cells/mouse), 3 of which were treated by oral gavage
with tamoxifen and 3 with vehicle alone, for 2 successive days, starting on day 5; n indicates number of independent lymphomas transplanted. Significance was determined using
log-rank test. See also Supplemental Figure 6A. (D) Induced Mnt deletion reduces viability of p53 wt and p53 mutant Mntfl/fl Em-Myc/CreERT2 lymphoma cell lines. Cell lines
established from Mntfl/fl Em-Myc/CreERT2 and control Mnt1/1 Em-Myc/CreERT2 lymphomas were incubated with 0.5 mM 4-OH tamoxifen to delete Mnt, and cell viability was
determined by flow cytometry (supplemental Figure 8). Viability of 4-OHT-treated cells at 48 and 72 hours is expressed relative to that of cells incubated in parallel without 4-OHT.
P53 status, determined by treatment with nutlin3a, is indicated.
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