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KEY PO INT S

l H499C and H499Y
mutations enhance
activation of TpoR by
novel L498W and
canonical S505N
mutations.

l Activation of TpoR by
eltrombopag and the
L498W, S505N, and
W515K mutants
depends on W491,
which might be
accessible on the cell
surface.

Mutations in the MPL gene encoding the human thrombopoietin receptor (TpoR) drive
sporadic and familial essential thrombocythemias (ETs). We identified 2 ET patients
harboring double mutations in cis in MPL, namely, L498W-H499C and H499Y-S505N.
Using biochemical and signaling assays along with partial saturation mutagenesis, we
showed that L498W is an activating mutation potentiated by H499C and that H499C and
H499Y enhance the activity of the canonical S505N mutation. L498W and H499C can
activate a truncated TpoR mutant, which lacks the extracellular domain, indicating these
mutations act on the transmembrane (TM) cytosolic domain. Using a protein comple-
mentation assay, we showed that L498W and H499C strongly drive dimerization of
TpoR. Activation by tryptophan substitution is exquisitely specific for position 498.
Using structure-guided mutagenesis, we identified upstream amino acid W491 as a key
residue required for activation by L498W or canonical activating mutations such as
S505N and W515K, as well as by eltrombopag. Structural data point to a common di-
merization and activation path for TpoR via its TM domain that is shared between the
small-molecule agonist eltrombopag and canonical and novel activating TpoR mutations

that all depend on W491, a potentially accessible extracellular residue that could become a target for therapeutic
intervention. (Blood. 2020;135(12):948-953)

Introduction
Patients with the polycythemia vera, essential thrombocythemia
(ET), or primary myelofibrosis (PMF) type of myeloproliferative
neoplasm harbor driver mutations in JAK2, CALR, orMPL.1 Mutations
in the human thrombopoietin receptor (TpoR) are restricted to
ET and PMF, largely W515K/L/A/R substitutions in the amphipathic
juxtamembrane (JM) domain2,3 and more rarely S505N in the trans-
membrane (TM) domain.4,5 Thesemutations lead to ligand-independent
receptor dimerization and resultant activation of signaling via
JAK2.6-8 Although 20% of ET and 10% to 15% of PMF patients
harbor none of the 3 driver mutations, some of these triple-negative
(TN) patients may harbor noncanonical MPL mutations.6,9-11

We analyzed 2 patients with ET negative for JAK2, CALR, and
MPL W515 mutations. We found that each patient harbored

double cis mutations in MPL, namely, L498W-H499C and H499Y-
S505N. These mutations have never been described in such
patients, and both combinations were active. Using structure-
guided mutagenesis, dimerization, biochemical, and signaling
assays, we defined a broad mechanism of activation shared by
these new mutants, as well as by the small-molecule agonist
eltrombopag and the canonical S505N andW515mutants. This
mechanism depends on a potentially accessible region upstream
of the JM-TM region.

Study design
Hemagglutinin-tagged human TpoR wild-type (WT) and mutant
complementary DNAs, as well as a TM-intracellular (TM-IC) TpoR
constructs lacking the extracellular domain,12 were cloned into
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Figure 1. Activation of TpoR signalingby L498W-H499Cmutations. (A) Effects of H499C and L498Wmutations on TpoR signaling. HEK-293T cells were transiently transfected
with the indicated hemagglutinin (HA)-TpoR variants, along with complementary DNAs (cDNAs) coding for JAK2, STAT5, and SpiLuc Firefly luciferase reporter reflecting STAT5
transcriptional activity and normalized with a control reporter (pRL-TK) containing Renilla luciferase. Shown are averages of 3 independent experiments, each performed in
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the pMX-IRES-GFP bicistronic vector. Transcriptional basal and
ligand-dependent activation of STAT5 downstream of TpoR was
tested in g2A and HEK-293T cells in a dual-luciferase reporter
assay (DualGlo; Promega, Madison,WI).12 Cytokine dependency
of proliferation in stably transduced Ba/F3 cells was determined
as previously described.12 The levels of TpoR total protein
expression were determined by western blotting using anti-
hemagglutinin antibodies (Roche Applied Science) or anti-TpoR
antibodies (MilliporeSigma, Burlington, MA). Cell-surface lo-
calization of TpoR was evaluated by flow cytometry using anti-
TpoR(CD110) phycoerythrin antibodies (Clone REA250; Miltenyi
Biotec, Bergisch Gladbach, Germany). TpoR dimerization was
assessed in HEK-293T cells using the NanoBiT complementation
assay.13,14

MPL sequencing in the 2 study patients was performed with a
diagnostic goal, with patient approval according to local French
and European guidelines.

Results and discussion
The TpoR L498W-H499C variant was identified by targeted
sequencing in a patient with TN ET. Whole-exome sequencing
of genomic bone marrow DNA did not identify any other po-
tential driver when assessing a 171-gene myeloid pathology panel.
Targeted next-generation sequencing to assess variant allele
frequency in the patient’s peripheral whole mononucleated cells
(18%) and granulocytes (43%) pointed toward an acquired muta-
tion (supplemental Table 1). Both single mutations led to ligand-
independent STAT5 transcriptional activity, although L498W had a
stronger effect, and the combination was even stronger (Figure
1A). When stably transduced and at equivalent levels in the
interleukin-3–dependent Ba/F3 cell line, autonomous growth
was detected in L498W, which was enhanced in L498W-H499C
(Figure 1B). Cell-surface localization of L498W was similar to
that of the WT receptor (Figure 1C).

We and others had previously shown that the human TpoR is
mainly a cell-surface monomer that dimerizes, in the presence of
either Tpo or the small-molecule agonist eltrombopag12,15 or
when mutated (S505N, W515K), via a structural change in the
region around H499. We hypothesized that L498W and H499C
would induce persistent dimerization of TpoR. As detected by
protein complementation using the LargeBit and SmallBit
fragments of Nano-luciferase,13,14 each mutation induced strong
dimerization of the TpoR cytosolic domains (Figure 1D; sup-
plemental Figure 1B).

Although TpoR H499C did not support proliferation in Ba/F3
cells, its dimerization was comparable to or higher than that of
L498W (Figure 1D). Cell-surface localization and stability of
H499C were increased in comparison with WT or L498W (Figure
1C,F; supplemental Figure 1E-F). Total expression of the mutants
was comparable across cell lines (supplemental Figure 2A). These
data suggest that H499C, although it increases cell-surface TpoR
localization, dimerizes TpoR in a conformation not optimal for
signaling. Indeed, different dimeric orientations are compatible
with different degrees of signaling.16,17

To assess whether dimerization and activation involve only the
TM intracellular domains or require the extracellular region as
well, we truncated TpoR upstream of position 489 and intro-
duced the mutations into this receptor construct.13 Both the
single and doublemutants exhibited significantly more signaling
than the WT truncated receptor (Figure 1E; supplemental
Figure 2C). Thus, themutations act on the TM cytosolic domains.
In contrast, treatment with eltrombopag activated the TpoR
WT but not the mutants, in agreement with a requirement for
extraamino acid residues upstream of H499.15

We next asked whether other residues could activate at position
498 and whether Trp could activate at other positions between
residues 494 and 504. We found that activation was unique
to Trp at 498 (supplemental Figures 1C-D and 2B). On the basis
of previous structural data showing that dimerization induces
a helical conformation around H499,7,12 L498W is predicted to
stabilize a TM dimer with W498 facing partially toward the dimer
interface, as does S505N (Figure 1G; supplemental Figure 1A).

In a second ET patient, we identified the double mutation
H499Y-S505N (in cis) by targeted sequencing (supplemental
Table 1). Although the H499Y mutant was found to be active
alone, the double mutant exhibited significantly enhanced ac-
tivation of STAT5 over S505N (Figure 2A). Both mutants were
localized on the cell surface and in the cells at similar or higher
levels than the WT receptor (Figure 2B; supplemental Figure 2D).
Examining whether residues other than H499C/H499Y could ac-
tivate at position 499, we found that it was not the case for Leu,
Phe, Trp, or Asn (Figure 2C; supplemental Figure 2E), a finding
that is corroborated by a recent study.18 The next question was
whether these H499 mutations also enhanced signaling by other
TpoR mutants such as L498W or W515K. H499C and H499Y
increased activity of both S505N and L498W, but not W515K
(Figure 2D). The enhancement was specific for the H499 mu-
tations, because L498W failed to enhance S505N or W515K

Figure 1 (continued) triplicate1 standard deviation (SD; error bars). (B) Induction of autonomous proliferation of Ba/F3 cells by L498W and L498W-H499C mutants of TpoR.
Ba/F3 cells stably expressing the TpoR mutants of interest were grown in the absence of cytokine. Cell proliferation was assessed by CellTiter-Glo (CTG) luminescent cell
viability assay. (C) H499C increased cell-surface localization of TpoR. HEK-293T cells were transiently transfected with the indicated HA-TpoR variants. TpoR cell-surface
localization among fluorescein isothiocyanate (FITC)–positive cells was assessed by flow cytometry using anti-TpoR antibody. Shown is 1 representative of 2 experiments. (D)
TpoR dimerization in the absence of cytokine. Dimerization of TpoR was determined in HEK-293T using the NanoBiT luciferase protein fragment complementation assay
using Nano-luciferase fragments fused in frame with the cytosolic domain of TpoR. (E) The extracellular domain of TpoR was not needed for constitutive activation by the
L498W-H499C mutant. HEK-293T cells were transiently transfected with the indicated HA-TM-intracellular (TM-IC) TpoR variants, along with cDNAs coding for JAK2, STAT5,
and SpiLuc Firefly luciferase reporter reflecting STAT5 transcriptional activity and normalized with a control reporter (pRL-TK) containing Renilla luciferase. Shown are
averages of 4 independent experiments, each performed in triplicate1 SD (error bars). (F) TpoR H499C continued to be overexpressed after cycloheximide (CHX) treatment.
Ba/F3 cells stably expressing the TpoR mutants of interest were grown in presence of interleukin-3 and treated with CHX (50 mg/mL). TpoR cell-surface localization among
FITC1 cells was assessed by flow cytometry using anti-TpoR antibody. Upper panel is an average of 3 independent experiments 1 SD (error bars). Lower panel is 1
representative of 3 experiments. (G) Model of the monomeric WT and dimeric L498W TM domains (TMDs) of the TpoR. On the left, the monomeric TMD has a break in the
helical secondary structure in the region N-terminal to H499.12 On the left, in the L498W-active TMD dimer, the helix is induced in the region N-terminal to H499. *P , .05,
**P, .01, ***P, .001. EC, extracellular; Elt, eltrombopag; eV, empty vector; LgBit, Nano-luciferase large-bit subunit; ns, nonsignificant (nonparametric multiple-comparison
Steel test with control); PE, phycoerythrin; PIG, pMX-IRES-GFP vector; SmBit, Nano-luciferase small-bit subunit.
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signaling (Figure 2D). That H499 mutations did not alter W515K
activity might reflect different active dimeric interfaces adopted
by S505N/L498W vs W515K.

In the active S505N dimer, Asn was in the dimer interface of
the coiled coil formed by the 2 TM domains, whereas H499
was oriented away from the interface12 (supplemental Figure 1A
lower). We previously found that substitution of H499 with Leu
(theWT residue in murine TpoR) in the TM-intracellular construct
of TpoR induced dimerization, but in an inactive orientation.12

The unique behavior of H499Y and H499C suggests that these
substitutions destabilize the inactive orientation of the WT re-
ceptor (as in H499L) and allow the TM helices to form more
stabilizing interhelical contacts in the active dimer.

On the basis of structural and mutational data,7,12 we modeled
the active TpoR dimeric state using an a-helical structure in the
region of H499. Another Trp residue (W491) exists upstream on
the same helical face as W498 and S505 (both predicted to
occupy an “a” position in a left-handed coiled coil motif; Figures
1G and 2E; supplemental Figure 1A), 25 residues from W515
of the RWQFP insert. The W515 position also belongs to the
same face, but in a “d” position (supplemental Figure 1A).7,19 We
hypothesized that, when rotated inward, the W491 residue might
stabilize the active state promoted by other mutations (L498W,
S505N, and W515K). Given the size of a Trp in the interface, it
could push apart helices, which is necessary to allow crossing
at S505, leading to activation.12 Indeed, replacing W491 with A or
K prevented TpoR activation by L498W, S505N, and W515K
(Figure 2F), although neither cell-surface nor global expression
was altered (Figure 2F; supplemental Figure 2F). Thus, W491 is
crucial for the changes in tilt andorientation required for activation.12

We also tested whether W491 is required, like H499, for acti-
vation by eltrombopag.W491mutations impaired eltrombopag-
mediated activation (Figure 2F) but did not block Tpo-induced
activation. We and others showed by polarized infrared spectros-
copy and nuclear magnetic resonance studies that eltrombopag
induces helix formation around H499 and TpoR dimerization.12,15

We propose now that eltrombopag activates TpoR by breaking
TpoR-membrane interactions via binding to both W491 and
H499 and shares the path of activation with the canonical mutants.

Furthermore, our model in Figure 2E predicts that rotating S505
and W515 inward and H499 outward will result in activation
stabilized byW491.W491might potentially be accessible on the
extracellular JM domain to become a target for small molecules
or antibody-mediated inhibition of TpoR. Other mutants such as
those described here are indeed likely to be identified in TN ET

patients, and they are likely to depend on W491. Interestingly, a
recent study using deep mutagenesis and sequencing reported
that mutations at positions 490 and 492 also lessened the activity
of the S505N mutant.18 This entire region might thus be im-
portant in the activation of TpoR.
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