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KEY PO INT S

l The STAR system was
established to
generate CAR
T cell–compatible
nanobodies and the
respective tumor-
associated antigens.

l STAR-isolated CD13
nanobody and anti-
TIM3 redirected the
bispecific and split
CAR T cells to
eliminate AML in
preclinical models.

Chimeric antigen receptor (CAR) T cells have radically improved the treatment of B cell–
derived malignancies by targeting CD19. The success has not yet expanded to treat acute
myeloid leukemia (AML). We developed a Sequentially Tumor-Selected Antibody and
Antigen Retrieval (STAR) system to rapidly isolate multiple nanobodies (Nbs) that pref-
erentially bind AML cells and empower CAR T cells with anti-AML efficacy. STAR-isolated
Nb157 specifically bound CD13, which is highly expressed in AML cells, and CD13 CAR
T cells potently eliminated AML in vitro and in vivo. CAR T cells bispecific for CD13 and
TIM3, which are upregulated in AML leukemia stem cells, eradicated patient-derived AML,
with much reduced toxicity to human bone marrow stem cells and peripheral myeloid cells
in mouse models, highlighting a promising approach for developing effective AML CAR
T cell therapy. (Blood. 2020;135(10):713-723)

Introduction
Cancer immunotherapy hasmade striking progress and changed
the course of cancer therapy.1-6 Adoptive T-cell cancer therapy
using chimeric antigen receptor (CAR)-expressing T cells can
eradicate relapsed or refractory B-cell lymphoma or B-cell
lymphocytic leukemia through targeting CD19.2,7 The CAR
construct has an ectodomain, generally consisting of a single-chain
variable fragment (scFv) derived from a monoclonal antibody
(mAb), anchored to the cells via a transmembrane domain, fol-
lowed by the intracellular costimulatory 4-1BB and/or CD28 do-
mains, and CD3z signaling domain.8,9 Despite the remarkable
achievement of CD19 CAR T cell therapy, this success has yet to
be expanded to other types of cancers, such as acute myeloid
leukemia (AML), which has dismal 5-year survival rate. One im-
pediment to expanding the CAR T-cell application, among other
factors, such as suppressive microenvironment,10,11 is often the
lack of choices of mAbs.

The extracellular domain of a cell surface protein with a cancer-
specific mutation or overexpression is ideal for targeting by CAR
T-cell technology; however, the availability of mAbs suitable
for developing CAR T-cell therapy against many potential
targets is very limited. Moreover, many mAbs are not capable
of endowing T cells with cytotoxicity, which requires the

appropriate engagement between the T cell and target cell to
elicit a productive immunological synapse and promote cancer
cell death.12 Thus, it is imperative to generate diverse antibodies
that meet these needs. Conventional antibodies cannot always
bind certain antigen surfaces as a result of the large size of the
antibody’s tetrameric heavy chains and light chains, coupled with
the possible challenge in generating the optimal scFv.13 The
camelid family of animals, which includes the llama, can produce
heavy chain–only antibodies with a small (15-kDa) single variable
domain (nanobodies [Nbs]) to bind various epitopes.14 Moreover,
a single domain of Nbs is more effective to generate functional
CAR T cells.15 The rapid identification of CAR T cell–compatible
Nbs and their associated antigens would allow quick expansion
of the available choices of CAR T cells by targeting previously
unappreciated cell surface antigens/targets to develop potent
cancer immunotherapy.

One disease in need of new therapeutic approaches is
chemotherapy-resistant AML, which is highly aggressive and has
a poor prognosis.16,17 CAR T cells targeting CD33, a cell surface
lectin, and CD123, a subunit of the interleukin-3 receptor, were
tested to suppress AML, but their application was hindered by
their negative side effects on hematopoietic stem cells (HSCs)
and other normal tissues.18,19 Here, we developed the Sequentially
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Tumor-Selected Antibody and Antigen Retrieval (STAR) system
to isolate multiple Nbs that preferentially bind AML cells. In pre-
clinical models, STAR-isolated anti-CD13, as well as an antibody
against TIM3, which is upregulated in AML stem cells (LSCs), co-
direct CAR T cells to eradicate AML in patient-derived xenografts
(PDXs), with much reduced toxicity to human HSCs.

Methods
Nb phage library construction from THP-1
cell–immunized llama
A llama was immunized with 2 3 107 THP-1 cells (Caprologics,
Hardwick, MA) once a month for 3 months. Peripheral blood
mononuclear cell isolation, RNA extraction, and comple-
mentary DNA (cDNA) synthesis were performed as previously
described.20

Animals and in vivo models
NSG mice were conditioned with Busulfex (30 mg/kg) for
24 hours prior to tail injection with 2 3 107 patient-derived (PD)
AML cells. Two weeks later, CAR or untransduced (UTD) T cells
were administered into the mice. The recipient mice were eu-
thanized at the experimental end point based on the protocol,
and the long bones (femurs), spleens, and livers were collected
for histological analysis by hematoxylin and eosin staining.
Mice were euthanized according to protocol when moribund
or upon the development of hind-limb paralysis. All experiments
using mice were approved by the Institutional Animal Care and
Use Committee of the University of Pennsylvania.

Results
Generating Nbs that preferentially bind AML cells
To develop a strategy to isolate Nbs that can preferentially bind
tumor cells in vitro, as well as enable the CAR T cells to induce
tumor regression in vivo, we first isolated tumor-specific anti-
bodies (Figure 1A) and then identified the matching antigens by
the screening of cell surface protein cDNAs (STAR technology).

Using the STAR approach, we first immunized a llama with THP-1
cells, an aggressive leukemia cell line harboring the MLL-AF9
fusion protein, and then constructed an Nb-expressing phage-
display library consisting of ;109 independent members
(Figure 1A).21 The library was used for panning with THP-1 cells
in vitro, with negative absorption by Jurkat cells (a human acute
T-cell leukemia) to exclude Nbs that recognized T cells and with
negative absorption by K562 cells (a human chronic myeloge-
nous leukemia cell line) to stringently select AML-specific Nbs.
The resultant phage sublibrary (sub-lib) contained Nbs that
preferentially bind the cell surface antigens of THP-1 cells with
high affinity.

Identifying Nbs capable of endowing CAR T cells
with anti–THP-1 tumor activity in vivo
Not all of the enriched sub-lib Nbs were capable of empowering
CAR T lymphocytes with antitumor activities. Cytotoxic T-cell
effector functions are triggered by antigen recognition by the
T-cell receptor (TCR). Upon antigen binding, TCR activation can
induce T-cell proliferation .10 000 fold, achieving clonal se-
lection and expansion. The STAR system takes advantage of the
T-cell activation system to amplify and enrich tumor-preferred
CAR T cells in vivo. To identify CAR-compatible Nbs, we cloned

Nbs from the phage sub-lib into a CAR construct to generate Nb-
CAR T cells via lentiviral transduction, followed by CAR T-cell
treatment in vivo (Figure 1B). Fourteen days after T-cell infusion,
all tumor tissues were collected, andNb sequences were decoded
from the tumor-infiltrated Nb-CAR T cells. Polymerase chain re-
action results indicated that Nb sequences were specifically re-
trieved from the Nb–sub-lib CAR T-cell–treated THP-1 tumor
(Figure 1B, lane 2) but not fromK562- or UTD-treated THP-1 tumor
(Figure 1B). Among the 5 most enriched unique Nbs, Nb157,
Nb163, Nb176, and Nb393 specifically bound THP-1 cells but
not Jurkat or K562 cells (Figure 1C). Moreover, Nb157 and Nb163
also bound other AML cell lines, such as HL60, NB4, and U937
(supplemental Figure 1, available on the Blood Web site). To-
gether, these results indicated that the STAR system is capable
of enriching and isolating multiple Nbs that specifically bound
AML cells.

STAR-isolated Nbs redirect CAR T cells to potently
kill AML cells in vitro
To test whether STAR-isolated Nbs can guide CAR T cells to kill
target tumor cells, these Nb CARs were transduced into activated
primary human T cells (Figure 2A; supplemental Figure 2A-B). In
the cytotoxicity assay, UTD T cells did not cause obvious cyto-
toxicity (Figure 2B-D); however, Nb157 CAR T cells potently and
specifically killed THP-1 cells but not as many of the K562 or Jurkat
cells (Figure 2B,D). Similarly, Nb163, Nb176, and Nb393 CAR
T cells also specifically killed THP-1 cells (Figure 2C; supplemental
Figure 3A-B). Nb157 CAR T cells also killed HL60 cells, another
human AML cell line (Figure 2D).22

We also found that THP-1 cells, but not K562 cells, specifically
stimulated Nb157 and Nb163 CAR T cells to release cytokines,
including tumor necrosis factor-a (TNF-a) and interferon-g
(IFN-g) (Figure 2E-F). A similar increase in cytokine release
was detected with the coincubation of HL60 cells and Nb157
CAR T cells (supplemental Figure 3C). Moreover, THP-1 cells
specifically induced CAR T-cell degranulation, as reflected by an
increase in cell surface CD107a (Figure 2G), and specifically
induced proliferation of Nb157 and Nb163 CAR T cells (Figure
2H-K). Together, these findings demonstrated that Nb157 and
Nb163 CAR T cells were specifically activated by AML cells,
leading to enhanced proliferation, cytokine release, and de-
granulation to kill the AML cells.

Nb CAR T cells potently induce AML tumor
regression in vivo
To determine whether Nb CAR T cells suppressed AML tumors
in vivo, THP-1 cells were subcutaneously transplanted into NSG
mice, followed by treatment with Nb157 CAR T cells, Nb163
CAR T cells, or UTD T cells. The tumors from UTD T cell–treated
mice grew exponentially (Figure 3A-B). Notably, the tumors in
Nb157 or Nb163 CAR T cell–treated mice failed to grow sub-
stantially and eventually regressed (Figure 3A-B). Histological
studies indicated that, although tumors in the UTD T-cell–treated
group contained abundant tumor cells (Figure 3C; UTD), the Nb
CAR T cells eradicated the cancer cells, leaving fibrotic tissues
at the tumor site (Figure 3C). Nb157 CAR T cells also dem-
onstrated significant antitumor efficacy against HL60 tumors
in vivo (Figure 3D). Nb157 and Nb163 CAR T cells failed to
induce regression of the nontarget K562 tumors (Figure 3E;
supplemental Figure 3D-E), supporting the specificity of CAR
T cells’ anti-AML efficacy. Furthermore, a low dose of Nb157 or
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Nb163 CAR T cells (1.5 million cells per mouse) led to complete
remission of the THP-1 tumor, without recurrence, throughout
a prolonged maintenance period of 52 days (Figure 3F), in-
dicating the ability of Nb CAR T cells to eradicate the tumors
in mice.

Moreover, other STAR-isolated Nbs (Nb173 and Nb393) also
endowed CAR T cells with anti-AML activity in vivo (supple-
mental Figure 3F-G), which was confirmed by histological
studies (supplemental Figure 3H). Collectively, these results
demonstrate that all 4 of the STAR-isolated Nbs were capable
of empowering cognate CAR T cells to potently kill AML cells,

highlighting an effective approach to isolate CAR-compatible
antibodies for developing novel CAR T-cell therapy.

Identification of CD13 as a CAR T-cell target to kill
AML cells
To identify the antigens of the isolated Nbs, ;3000 human
membrane protein cDNAs were individually overexpressed
in HEK293T cells and screened by flow cytometry (Figure 4A).
Nb157 and Nb163 bound the cells transfected with human
aminopeptidase N (CD13) (Figure 4B).23 CD13 cDNA ex-
pression was also confirmed by western blot (Figure 4C). CD13
is preferentially expressed in acute myeloid blast cells.24 To
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Figure 1. Generating Nbs that differentially bind tumor cells and empower CAR T cells to kill the tumor cells. (A) Flowchart of AML-specific CAR-compatible Nbs in vivo
screening. A llama was immunized with the AML cell line THP-1. An Nb library was generated from the llama PBMCs by molecular cloning. Two rounds of conventional cell-
based phage display were applied, which took the T-acute lymphoblastic leukemia cell line Jurkat and the chronic myelogenous leukemia cell line K562 as negative
absorption. Thereafter, 1 round of counter-selection was applied to obtain the nanobodies with high affinity. The resultant THP-1–specific Nbs were inserted into a CAR-
expressing lenti-vector to generate the Nb–sub-lib CAR (Nb-CAR) library. Human primary T cells were transduced by the Nb-CAR library and injected into NSG mice
with THP-1 or K562 tumors to perform the in vivo selection. Nbs that can redirect T cells to enrich in the tumor were amplified using polymerase chain reaction and
sequenced. (B) Ten million THP-1 cells or 5 million K562 cells were transplanted into NSG mice subcutaneously, followed by treatment with UTD T cells or Nb–sub-lib CAR
T cells. Two weeks later, Nbs from tumor-infiltrated T cells were isolated and identified using polymerase chain reaction amplification (n 5 3). (C) The 5 most frequent Nbs
in the THP-1 tumor are shown. The Nb-expressing phage was directly used to test the binding to THP-1 cells, Jurkat cells, or K562 cells using a flow cytometry assay, in which
the red line was flow with Nb-expressing phage, and the blue line was isotype control. bp, base pair.
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further confirm that Nb157 or Nb163 CAR T cells killed AML
cells by targeting CD13, 3 CD13-knockout THP-1 cell lines
were constructed using a guide RNA (gRNA)/Cas9 system,
followed by verification via western blot (Figure 4D). Consis-
tently, flow cytometry analysis showed that CD13 knockout
abrogated the binding of Nb157 and Nb163 (Figure 4E) and
abolished the killing of target cells by Nb157 CAR T cells
(Figure 4F). CD13 knockout also diminished the killing of the
targets by Nb163 CAR T cells significantly, but not completely,
suggesting that possible off-CD13 antigen is recognized by
Nb163 (Figure 4F). Together, these results demonstrate that
Nb157 CAR T cells potently kill AML cells by specifically
targeting CD13.

Nb157 CAR T cells eradicate PD AML cells in NSG
mouse models
To determine whether Nb CAR T cells can also kill PD AML cells,
we found that Nb157 and Nb163 can bind PD AML cells by
recognizing CD13 (Figure 5A-B). PD AML cells were also po-
tently killed by Nb157 and Nb163 CAR T cells in the in vitro
cytotoxicity assays (Figure 5C-D). Thereafter, we sought to ex-
amine the therapeutic effect of the CAR T cells against PD AML
in vivo. To this end, NSG mice were transplanted with PD AML
cells, followed by treatment with UTD or Nb157 CAR T cells
2 weeks later. The Kaplan-Maier curve showed that all control
mice had died by 45 days after PD AML cell infusion; however,
Nb157 CAR T-cell infusion significantly prolonged the life of the
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Figure 2. All Nbs isolated by the STAR system empower CAR T cells to potently kill AML cells in vitro. (A) Schematic diagram of Nb CAR structure, including signal
peptide (SP), IgG4 mutant (IgG4m) hinge, CD8 transmembrane domain (TM), 4-1BB, and CD3z domain. (B-D) Nb CAR T cells showed potent and specific cytotoxicity
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treatedmice to.90 days, without obvious toxicity or weight loss
(Figure 5E; supplemental Figure 4A).

To investigate the dynamics of CAR T-cell treatment in vivo, we
monitored the change in AML and UTD/CAR T cells in the bone
marrow, spleen, and peripheral blood. In the first week after
T-cell treatment, few CD331 AML cells, but a large percentage
of CD31 T cells (.90% of human CD451), were detectable in
the bone marrow in both groups (Figure 5F-G). Notably, in
the second week after T-cell treatment, compared with UTD
T cells, Nb157 CAR T cells markedly reduced the accumulation
of CD331 AML cells in bone marrow (Figure 5H-I). Consistently,
CD331 AML cells decreased substantially following Nb157 CAR
T-cell treatment (supplemental Figure 4B), andmore T cells were
detected in the peripheral blood (supplemental Figure 4C).
However, CAR T cells in peripheral blood decreased by the third
week after CAR T-cell infusion (supplemental Figure 4C), likely
reflecting tumor regression and a decrease in the antitumor
response.

Furthermore, immunofluorescent staining of the mouse spleens
revealed a large number of CD331 AML cells in the UTD group
(Figure 5J). However, all CD331 AML cells were eradicated, with
a large number of CD31 T cells in the Nb157 CAR T-cell group
(Figure 5K). Consistently, flow cytometry also showed enrich-
ments for CAR T cells in the bone marrow and spleen were from
30% (day 0) to 70% (day 14 post T cell infusion) (supplemental

Figures 2B and 4D). CD81 T-cell percentage was also higher in
the Nb157 CAR T-cell group (59%) than in the UTD T-cell group
(33%) (supplemental Figure 4E). Meanwhile, Nb157 CAR can
induce persistent memory T-cell phenotypes, including cen-
tral memory and effector memory populations (supplemental
Figure 4F), which were correlated with complete remissions in
CAR T-cell clinical therapy.25,26 Together, these results indicate
that Nb157 CAR T cells effectively eliminate PD AML cells in the
bone marrow and spleen of recipient mice and significantly
prolong their survival.

Combinatory bispecific and split CAR T cells
targeting CD13 and TIM3 redirect T cells to
eradicate AML xenografts and AML PDXs in vivo
Because CAR T-cell therapy may cause on-target/off-tumor side
effects,27,28 it is ideal to reduce the toxicity by increasing the
specificity with multiple tumor markers. In this regard, novel
bispecific CAR T cells were developed to synergistically kill the
experimental tumor models by targeting .1 tumor-associated
antigen (TAA).29,30

One other potential TAA, TIM3, an immune-suppressing receptor,
is highly expressed in the majority of human AML LSCs31,32 but not
in HSCs. A combinatory bispecific and split CAR (BissCAR) T-cell
system was developed to effectively kill CD131TIM31 LSCs, while
maintaining a reduced impact on normal cells that only express
CD13 (Figure 6A). TIM3 expression was extremely low in normal
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Figure 3. Nb-redirected CAR T cells potently eradicate AML tumor in vivo. (A-B) Ten million THP-1 cells were transplanted into NSG mice subcutaneously. The tumor
reached 150 mm3 after ;14 days. Three million Nb157 T cells, Nb163 CAR T cells, or UTD T cells were injected IV into the mice separately (n 5 4). Tumor engraftment was
monitored every other day. Scale bar, 10 mm. (C) Hematoxylin and eosin–stained THP-1 xenografts after treatment with UTD T cells, Nb163 CAR T cells, or Nb157 CAR T cells.
Scale bars, 100 mm. (D) Threemillion Nb157 CAR T cells or UTD T cells were injected IV separately into NSGmice bearing HL60 tumors. Tumor engraftment was monitored every
other day (n 5 4). (E) Five million K562 cells were transplanted into NSG mice subcutaneously. The tumor reached 150 mm3 after ;10 days. Three million Nb157 CAR T cells,
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donor bone marrow but high in the LSC subset (CD341CD382

CD902) (Figure 6B, upper panels). In contrast, a high percentage
of TIM3 and CD13 double-positive cells was detected in the LSC-
enriched population (CD341CD382) from PD AML cells but not
normal donor bone marrow (Figure 6B), indicating the high
coexpression of CD13 and TIM3 in LSCs, which was consistent
with previous reports.31,32

NB4(CD131TIM32) and NB4-TIM3(CD131TIM31) cell lines were
generated to mimic the HSC and LSC models (supplemental
Figure 5A-B). Next, a conventional TIM3-BBz CAR was gener-
ated (supplemental Figure 5C), which guided the T cells to kill
NB4-TIM3 cells potently and specifically in vitro and suppressed
NB4-TIM3 tumor growth in vivo (supplemental Figure 5D-E).

We then constructed the BissCAR, in which Nb157 recogniz-
ing CD13 was linked to CD3z and anti-TIM3 scFv recognizing
TIM3 was linked to CD28 and 4-1BB costimulatory domains
(Figure 6A; supplemental Figure 5F). The resulting BissCAR
expression on the T cells was verified by flow cytometry (supple-
mental Figure 5G). An in vitro killing assay showed that BissCAR
T cells killed NB4 and NB4-TIM3 cells, because the CD13 rec-
ognition elicited CD3z signaling to induce target death in vitro
(supplemental Figure 5H).29 Moreover, compared with NB4 cells,

NB4-TIM3 cells increased the secretion of IFN-g and TNF-a
from BissCAR T cells (supplemental Figure 5I-J). The enhanced
cytokine secretion was also dependent on NB157-CD3z signaling,
because K562-TIM3(CD132TIM31) cells failed to induce the
BissCAR T cells to release the cytokines (supplemental Figure 5I-J).

In the NB4 xenograft models, BissCAR T cells only moderately
suppressed tumor growth compared with complete elimination
when using Nb157 CAR T-cell treatment (Figure 6C). However,
BissCAR T cells could eradicate the NB4-TIM3 tumor as potently
as Nb157 CAR T cells (Figure 6D). These results indicate that
BissCAR T cells are capable of completely shrinking the tumor
expressing CD13 and TIM3, but they spared the cells expressing
only CD13. Consistently, BissCAR T-cell number in peripheral
blood in NB4-TIM3 tumor-bearing mice was significantly higher
than in NB4 tumor-bearing mice (Figure 6E).

We further explored whether BissCAR T cells can suppress PD
AML cells. To this end, PD AML cells were transplanted into NSG
mice to induce leukemia, followed by treatment with BissCAR
or UTD T cells 2 weeks later (Figure 7A). The appearance of
CD331 AML cells or CD31 T cells in peripheral blood was
monitored weekly (Figure 7B-C). The results indicated that,
following the first week of injection, peripheral blood AML cells
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gradually decreased in the BissCAR T-cell group (Figure 7B),
consistent with heavy leukemic infiltration in the spleen in the later
stage (Figure 5H; supplemental Figure 4B). Notably, treatment
with BissCART cells, but notwith UTDT cells, increased peripheral
T-cell number 1 week after the T-cell injection, reflecting the quick
activation and proliferation of CAR T cells to kill AML cells
(Figure 7C). Consistently, BissCAR T-cell treatment significantly
prolonged survival of the mice compared with the UTD T-cell
group (Figure 7D). It has been reported that various immune-
suppressing factors weaken the immunotherapy for AML, such
as the PD-1, TIM3 immune checkpoint molecules, and regulatory
T cells (Tregs).33-35 Compared with UTD T cells, BissCAR T cells
have lower PD-1 and TIM3 expression in the bone marrow
(supplemental Figure 6A-F). BissCAR T cells and UTD T cells
have similar low PD-1 and TIM3 expression in the mouse spleen;
however, the PD-1/TIM3 levels were not correlated with re-
sistance to CAR T cells, because CAR T cells eradicated AML in
our xenograft and PDX models. Low percentages of Tregs were
consistently detected in the bone marrow and spleen of mice
injected with BissCAR T cells or UTD T cells (supplemental Figure
6G-K). We did not observe any T-cell suppression from Tregs,
because of the robust elimination of the leukemia. Therefore, the

results demonstrate that BissCAR T cells can effectively eradicate
the double-positive PD AML cells in this clinically relevant model.

Combinatory BissCAR T cells targeting CD13 and
TIM3 have reduced toxicity to HSCs in vivo
We also investigated the impact of BissCAR T cells on normal
human HSCs. Humanized immune system (HIS) mice were used
to assess hematopoietic toxicity of BissCAR T cells (Figure 7E).
NSG mice were conditioned with busulfan and engrafted with
bone marrow CD341 cells from a normal adult donor, followed
by treatment with BissCAR, Nb157 CAR, or UTD T cells 4 weeks
later. Bone marrow from these mice was collected for analysis
3 weeks after treatment. Nb157 CAR T cells almost completely
depleted CD341CD382 HSCs, CD341CD381 myeloid progen-
itors, and peripheral monocytes (Figure 7F-I). Notably, BissCAR
T cells significantly reduced the toxicity to HSCs, retaining;50%
of the human HSC-enriched population and the myeloid pro-
genitors of normal control mice (Figure 7F-H). Moreover,
BissCAR T cells significantly reduced the monocytes in pe-
ripheral blood and allowed the protection of part of the
monocytes in peripheral blood in BissCAR T-cell–injected mice
compared with Nb157 CAR T-cell–injected mice (Figure 7I).
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Together, these results indicate that BissCAR T cells effectively
eradicate PD AML cells (Figure 7B-D) and have much reduced
toxicity to sensitive human HSCs (Figure 7F-I), suggesting
BissCAR T cells as a valuable approach to treat human AMLwith
reduced and tolerable hematopoietic toxicity.

Discussion
Remarkable success in CAR T-cell therapy for B-cell malignancies
highlights an important and promising direction to improve
cancer immunotherapy. Here, we developed the STAR system to
generate antibodies to evaluate CAR T-cell efficacies in vitro
and in vivo, accelerating the pace of development of effective
immunotherapy. The STAR system can isolate numerous specific

CAR-compatible antibodies against various TAAs. The STAR ap-
proachmaymiss some low-expressed or low-immunogenic TAAs.
Human CD13 is overexpressed in AML. However, in our system,
we isolated 2 Nbs recognizing human CD13, which has .80%
homology with llama CD13, indicating that the STAR approach
has the power to generate Nbs for fairly homologous antigens.
Notably, all of the retrievedNbs, when assembled intoCART cells,
were capable of potently killing AML in vitro and in vivo. Together,
these findings highlight the fact that the STAR system can uncover
new mAbs and their targets for developing novel and effective
immunotherapy for AML and other types of cancers.

As a proof of concept, we used subcutaneously formed tumor
from AML cells to isolate tumor-preferred CAR-compatible Nbs.
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Nb157 CAR T cells showed a marked ability to eradicate AML
cell xenografts and PDXs, the subcutaneous tumor model and
blood disseminated model, respectively. The target CD13 is
preferentially expressed on AML cells and LSCs24 and is mod-
erately expressed on monocytic leukemia cells.36,37 Anti-
CD13–based bispecific CAR T-cell engagers inhibited AML
cell colony formation in culture,38 and the anti-CD13mAbs could
inhibit the growth of AML cells.37,39 However, no further pre-
clinical evaluation was reported for the relevant CAR T-cell
system. There are several reasons for this. First, it is well known
that suitable antibodies are crucial for immunotherapy, and the
rarity of available mAbs against CD13 to be tested may ac-
count, in part, for the current status. Second, compared with
Nbs, it is harder for regular antibodies to penetrate tumor sites.
Third, the possible toxicity was caused by targeting only CD13;
in this regard, BissCAR T cells may increase the chance of
success. Our findings demonstrate that targeting CD13 by
CAR T cells is able to potently kill AML cells.

CD13 is also moderately expressed in a few nonleukemia cells,
such as colon epithelial cells and kidney tubular epithelial cells.36,40

TIM3 has a limited expression profile in exhausted T cells and
certain antigen-presenting cells.41-43 Targeting CD13 alone could
lead to CAR T-cell–mediated on-target/off-tumor toxicity toward
human HSCs and other normal cells. It appears that ;75% of the
PD-AML has CD131/TIM31 LSCs and 50% of the PD-AML has
CD131/TIM31 bulk blasts based on the cell surface protein ex-
pression, regardless of the cytogenetic or molecular subset.37,44

BissCAR, a dual CAR T-cell system, selectively kills CD13 and
TIM3–expressing leukemia cells. Because no known life-essential
cells express both CD13 and TIM3, it is likely that BissCAR T cells
are sufficient to eliminate the AML, with minimal or tolerable
damage to other normal tissues expressing only CD13.

Although the current TIM3 CAR T cells were unable to regress
the NB4-TIM3 tumor in vivo (supplemental Figure 5E), the TIM3-
28BB split CAR, which carried the costimulatory domains, was
sufficient to assist the BissCAR T cells to increase cytokine re-
lease in vitro (supplemental Figure 5I-J) and eradicate the NB4-
TIM3 tumor in vivo (Figures 6D and 7D). Although CD13 CAR
T cells led to elimination of HSCs, BissCAR T cells had reduced
toxicity to HSCs and progenitors, retaining ;50% of the cells
(Figure 7F-H). Nevertheless, the reduced, yet remaining, toxicity
of BissCAR T cells to HSCs makes it attractive to generate more
potent TIM3 antibodies and/or modify the combinations of the
antibodies in the BissCAR to enhance the synergistic killing of
the tumor cells while further reducing the toxicity.

In this respect, the BissCAR T cells that we developed showed
greater specificity for eradicating CD13 and TIM3 double-
positive cancer cells (Figure 6C-D). Moreover, BissCAR T cells
are also potent in eliminating AML PDXs in vivo, and they reduce
the killing of human HSCs, retaining ;50% of human HSCs and
the progenitor population in vivo compared with CD13 CAR
T cells (Figure 7). BissCAR exhibited an antileukemia efficacy
equivalent to conventional Nb157 CAR (Figures 3A, 5E, 6D, and
D7D) but with reduced toxicity. Together, these findings indicate
that BissCAR T cells specifically killed CD131 TIM31 double
positive tumors, but with reduced and likely acceptable toxicity
to HSCs and other normal cells with only CD13 expression. Thus,
BissCAR T cells may be valuable assets for the development
of other treatments for human AML. To expedite the process

of getting CAR T cells into AML patients, it is conceivable to
produce them, using an off-the-shelf CAR T-cell approach, from
allogeneic T cells with modified TCRs or MHCs.45

In summary, the current study establishes a technical platform,
the STAR system, which simultaneously isolates multiple tumor-
select and CAR-compatible Nbs, and demonstrates that the
isolated Nb redirected BissCAR T cells specifically to eradicate
human AML expressing CD13 and TIM3, with reduced toxicity
to HSCs, thus expediting the development of effective CAR
T-cell–mediated immunotherapy.
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