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KEY PO INT S

l Two common AML
mutations, NPM1c and
FLT3-TKD, cooperate
to induce a rapid-onset
disease in mice.

l Mechanistically,
NPM1c alters FLT3-
TKD localization and
changes its signaling
properties, which
may be useful for
therapeutic
intervention.

Activatingmutations inFMS-like tyrosine kinase receptor-3 (FLT3) andNucleophosmin-1 (NPM1)
are most frequent alterations in acute myeloid leukemia (AML), and are often coincidental. The
mutational status of NPM1 has strong prognostic relevance to patients with point mutations of
the FLT3 tyrosine kinase domain (TKD), but the biological mechanism underlying this effect
remains unclear. In the present study, we investigated the effect of the coincidence of NPM1c
and FLT3-TKD. Although expression of FLT3-TKD is not sufficient to induce a disease in mice,
coexpressionwithNPM1c rapidly leads to an aggressivemyeloproliferative disease inmicewith
a latency of 31.5 days. Mechanistically, we could show that FLT3-TKD is able to activate the
downstream effector molecule signal transducer and activator of transcription 5 (STAT5) ex-
clusively in the presence ofmutatedNPM1c.Moreover, NPM1c alters the cellular localization of
FLT3-TKD from the cell surface to the endoplasmic reticulum, which might thereby lead to the
aberrant STAT5 activation. Importantly, aberrant STAT5 activation occurs not only in primary
murine cells but also inpatientswithAMLwith combinedFLT3-TKDandNPM1cmutations. Thus,
our data indicate a new mechanism, how NPM1c mislocalizes FLT3-TKD and changes its signal
transduction ability. (Blood. 2019;134(4):383-388)

Introduction
Acute myeloid leukemia (AML) is a heterogeneous disease ac-
counting for approximately 12% of all hematologic malignan-
cies.1 Whole-genome studies identified FMS-like tyrosine kinase
receptor-3 (FLT3) and Nucleophosmin-1 (NPM1) mutations as
the most common gene aberrations, which are frequently
cooccurring.2,3

Two types of FLT3 mutations are described in AML: tandem
duplication of the juxtamembraneous domain (ITD) in 20% to
27%, as the most prevalent one, and point mutations of the
tyrosine kinase domain (TKD) in 7%.4-6 Interestingly, in acute
lymphoblastic leukemia (ALL), FLT3-TKD mutations are present
in 3% of the patients,7-9 whereas FLT3-ITD mutations are rarely
found. Cytoplasmic NPM1 mutations (NPM1c) are present
in 35% of AML cases, but do not occur in lymphoblastic
neoplasms.2

Preclinical mouse models somehow reflect the clinical pheno-
type of thesemutations, as solely expression of bothmost prevalent
AML mutations (NPM1c and FLT3-ITD) induce a myeloproliferative

neoplasm (MPN) in murine models,10-12 whereas FLT3-TKD ex-
pression leads to a lymphoid disorder.13 Coexpression of NPM1c
and FLT3-ITD rapidly induces an AML inmice.14-16 Furthermore, it
has been shown that NPM1c leads to an overexpression of Hox
genes12 and alters the localization of several proteins such as
c-Myc or p19Arf.17

Recently, the presence of NPM1mutations in patients with FLT3-
TKD1 AML has been defined as a strong prognostic factor,18 but
the mechanistic role of NPM1c in AML induction remains un-
clear, andmouse models, which combine NPM1c and FLT3-TKD
mutations, are missing.

Here, we analyzed the cooperative effect of NPM1c mutations
and FLT3-TKD in murine transplantation assays, human AML cell
lines, and primary AML patient samples. Our results indicate that
NPM1c and FLT3-TKD mutations cooperate by altering critical
cellular signaling components, and may thereby explain the
different therapeutic response of NPM1 mutant vs NPM1 wt
FLT3-TKD1 AML.
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Figure 1. Coexpression ofNPM1c andFLT3-D835Y induces a STAT5-mediated rapid onsetMPN inmice. (A) Kaplan-Meier plots for survival of recipients of 25 000Npmflox cA/1

orNpm11/1 BM cells transduced with FLT3-D835Y, FLT3-ITD, or empty vector (MiG) showing the rapid onset of leukemic disease in Flt3-D835Y1Npm1c1mice. A total of 26 mice
(from 4 independent transplantations) are presented that received Flt3-D835Y1 Npm1flox cA/1 Mx1-Cre BM. Seven mice received Flt3-ITD1 Npm1flox cA/1 Mx1-Cre BM, 5 mice
Flt3-ITD1 Npm11/1 Mx1-Cre BM, 13 mice received Flt3-D835Y1 Npm1flox cA/1 BM in the absence of Mx1-Cre, 5 mice received Flt3-D835Y1 Npm11/1 Mx1Cre BM, and
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Study design
Detailed methodology is provided in supplemental Methods,
available on the Blood Web site.

Results and discussion
Coexpression of NPM1c and FLT3-D835Y induces
a STAT5-mediated rapid-onset MPN in mice
To investigate the effect of NPM1c and FLT3-D835Y cooccur-
rence, we chose a model combining conditionalNpm1c knockin
mice12 with retroviral Flt3-TKD transduction. Mice transplanted
with Flt3-D835Y1Npm1flox-cA/1Mx1-Cre1 bonemarrow (BM; n5 26;
hereafter referred to as Flt3-D835Y1 Npm1c1 mice) succumbed of
a leukemic disorder after a median latency of 31.5 days. In contrast,
mice transplanted with Flt3-D835Y1 Npm1flox cA/1 BM without Mx1-
Cre (referred to as Flt3-D835Y1 Npm1 wt; n 5 13), Flt3-D835Y1

Npm11/1 Mx1-Cre1 BM (n 5 5), or Npm1flox cA/1 Mx1-Cre BM
infected with empty vector (n 5 5) did not develop leukemia
(Figure 1A). Moribund animals demonstrated significantly increased
leukemic burden, as well as a profound splenomegaly in Flt3-D835Y1

Npm1c1mice comparedwithFlt3-D835Y1Npm1wt animals (Figure
1B-D; supplemental Figure 1A). Flow cytometric analysis showed
that 88.5% (23/26) of Flt3-D835Y1 Npm1c1 mice succumbed of an
immunophenotypicMPN,whichwas serially transplantable, whereas
control mice did not (Figure 1E; supplemental Figures 1B, 2, and 3;
supplemental Table 1). Our study thereby supports several
other publications showing differences in disease phenotype
and latency in dependence of cooperating oncogenes,14-16,19

and reinforces the two-hit model of leukemogenesis.20

As activation of signal transducer and activator of transcrip-
tion 5 (STAT5) was proposed to be crucial for MPN induction
by FLT3-ITD,21 we investigated activation of STAT molecules
and mitogen-activated protein kinase pathways and detected
a profound STAT5, but not STAT3, activation in Flt3-D835Y1

Npm1c1 splenocytes. In contrast, Flt3-D835Y1 Npm1 wt cells
show negligible STAT5 activation but high pSTAT3 levels (Figure
1F-K), whereas mitogen-activated protein kinase signaling was
not altered between Flt3-D835Y1Npm1c1 and Flt3-D835Y1Npm1
wt cells (Figure 1J). Consistent with our results, previous studies
showed marginal STAT5 activation by FLT3-D835Y, which was
comparable to FLT3 wt.22 Sole expression of NPM1c did not
activate STAT5 (supplemental Figure 4A-C).

Presence of NPM1c shifts FLT3-D835Y localization
to the endoplasmic reticulum
Mislocalization of oncogenic receptor tyrosine kinases is a fre-
quent phenomenon and leads to aberrant downstream signaling.

For FLT3-ITD, it has been shown that its ability to activate
STAT5 is dependent on a mislocalization to the endoplasmic
reticulum (ER).23,24 Interestingly, flow cytometry analysis
demonstrated a significant reduction of FLT3 surface ex-
pression in Flt3-D835Y1 Npm1c1 BM cells compared with
Flt3-D835Y1 Npm1 wt control cells (Figure 2A-B). In addition,
colocalization of FLT3-TKD and the ER marker Calnexin was
shown in NPM1c1 cells, but not in NPM1 wt cells (Figure 2C).
This result was confirmed in human AML cell lines, where
NPM1c-positive OCI-AML3 cells show more colocalization of
FLT3 and PDI (ER marker) compared with NPM1 wt HL-60 cells
(Figure 2D). Using a colocalization-specific algorithm analysis,
we could detect significantly increased colocalization of FLT3
and ER markers in both murine and human cells (Figure 2E-F).
Overexpression of murine FLT3-D835Y revealed a reduction
of surface mFLT3 in NPM1c1 OCI-AML3 in comparison with
NPM1 wt HL-60 cells (supplemental Figure 5A). Further
experiments in different human cell lines verified these
results: ectopic expression of FLT3-D835Y in NPM1c1 AML
cells (OCI-AML3) led to an intracellular 130-kDa form,
whereas a highly glycosylated, membrane-associated 150-
kDa form of FLT3-D835Y could be found in NPM1 wt AML
cells (HL-60; Figure 2G; supplemental Figure 5B-E), in-
dicating differential FLT3-D835Y localization in the presence
of NPM1c.

Evidence accumulates that cytoplasmic NPM1 alters the lo-
calization of signaling molecules by direct interaction.17 In
FLT3 coimmunoprecipitations, we demonstrate interaction
of FLT3-TKD with NPM1c, but not with NPM1 wt (Figure 2H;
supplemental Figure 6A), which may explain the altered
localization of FLT3-TKD and differences in downstream
signaling. To identify the essential domains/residues for the
FLT3-D835Y-NPM1c interaction, we generated different
mutants and were able to show that the c-terminal part of
the FLT3 kinase domain is indispensable for NPM1c binding
(supplemental Figure 6B-C). Interestingly, we could show that
phosphorylation of FLT3 at amino acid 835 is crucial for NPM1c
interaction by creating phospho-mimic (D835F) and phospho-
deficient mutants (D835E) of FLT3 (supplemental Figure 6D-E). In
conclusion, phosphorylated FLT3-835 interacts with NPM1c,
thereby leading to its intracellular localization and activation of
STAT5.

To analyze the clinical significance of our results, we expanded
our analysis to primary AML BM samples with either FLT3-TKD
mutation alone or in combination with NPM1c. For detailed
patient characteristics, see supplemental Table 2. Consistent
with the murine data, FLT3-TKD1 NPM1c1 patient samples

Figure 1 (continued) 5 mice receivedMiGNpm1flox cA/1Mx1-CreBM. (B) Percentage of PB EGFP1 cells at indicated times demonstrating increased leukemic burden in Flt3-D835Y1

Npm1c1mice comparedwithFlt3-D835Y1Npm1wtmice (21 days posttransplant: n5 28 [NPM1c], n5 17 [NPM1wt]; 33days posttransplant: n5 12 [NPM1c], n5 7 [NPM1wt]; 48days
posttransplant: n 5 7 [NPM1c], n 5 15 [NPM1 wt]). (C) Fold induction of BM EGFP1 cells shows a significantly enhanced leukemic burden in Flt3-D835Y1 Npm1c1 moribund mice
(n5 22) comparedwithFlt3-D835Y1Npm1wtmice (n5 7; sacrificed aftermore than 130 days). (D) Increased spleenweights ofFlt3-D835Y1Npm1c1moribundmice (n5 22) compared
with Flt3-D835Y1 Npm1 wt group; (n 5 6; sacrificed after more than 130 days). (E) CD451 BM cells from a representative mouse were stained for Gr-1, B220, or Thy1.2 and analyzed
by flow cytometry. Numbers indicate percentage of cells in the respective quadrant gate. Flt3-D835Y1Npm1c1Mx1-Cremicedisplay a phenotypic shift to amyeloproliferative disease
with elevated numbers of EGFP1/Gr-11 cells. Phenotype distributions are shown in supplemental Table 1 and supplemental Figure 1. (F) Immunofluorescence staining of pSTAT5 in
EGFP1 BM cells from moribund mice showing STAT5 activation only in Flt3-D835Y1 Npm1c1 cells. (G) Quantification of the percentage of positive cells in n5 9 (NPM1c) and n5 4
(NPM1 wt) pictures. (H) Immunofluorescence staining of pSTAT3 in EGFP1 BM cells. pSTAT3 is exclusively present in Flt3-D835Y1Npm1wt cells. (I) Quantification of the percentage of
positive cells in n 5 7 (NPM1c) and n 5 4 (NPM1 wt) pictures. (J) Splenocytes from moribund mice were analyzed for STAT5, STAT3, and ERK1/2 signaling by immunoblotting.
Flt3-D835Y1 Npm1c1 cells display a strong induction of STAT5 signaling and little STAT3 activation. Flt3-D835Y1 Npm1 wt cells show no STAT5 activation, but activation of STAT3. (K)
Flow cytometric analysis of pSTAT5 and pSTAT3 in EGFP1 BM cells from moribund mice confirming the activation of STAT5 in Flt3-D835Y1 Npm1c1 cells, but not in Flt3-D835Y1

Npm1 wt cells. *P , .05, **P , .01, and ***P , .001, by unpaired, 2-tailed Student t test (panels B-D, G, and I) or logrank test (panel A).
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showed a significantly increased pSTAT5 signal compared with
FLT3-TKD1 NPM1 wt samples by intracellular flow cytometry
(Figure 2I; supplemental Figure 7A) and immunohistochemical
stainings (Figure 2J). Furthermore, FLT3-TKD1 NPM1c1 AML
patient blasts showed a reduction in FLT3 surface levels as well
as increased ER localization of FLT3 compared with FLT3-TKD1

NPM1 wt blasts (Figure 2K; supplemental Figure 7B-C). Inter-
estingly, recent human studies suggest that presence of NPM1c
significantly changes the prognosis of FLT3-TKD-positive patients,18

thereby emphasizing the need for elucidating mechanistic links

between FLT3-TKD andNPM1c inmolecular andmurine model
studies.

In conclusion, we demonstrate that FLT3-TKD and NPM1c co-
operate to induce a myeloid disease with short latency. Further-
more, we describe a novel role for NPM1c influencing the signaling
properties of FLT3-TKD by its retention at the ER. Analysis of
human AML cells resembled the results from the FLT3-TKD1

NPM1c mouse model, which might be a useful tool for diagnostics
and therapeutic improvements of this defined AML subgroup.
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