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Recurrent mutations in calreticulin are present in∼20% of patients withmyeloproliferative neoplasms (MPNs). Since its
discovery in 2013, we now have a more precise understanding of how mutant CALR, an endoplasmic reticulum
chaperone protein, activates the JAK/STAT signaling pathway via a pathogenic binding interaction with the thrombo-
poietin receptor MPL to induce MPNs. In this Spotlight article, we review the current understanding of the biology
underpinning mutant CALR-driven MPNs, discuss clinical implications, and highlight future therapeutic approaches.
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Learning objectives
Upon completion of this activity, participants will be able to:
1. Describe mechanistic and biochemical data regarding mutant CALR's role as a driver mutation in myeloproliferative neoplasms

(MPNs), according to a review
2. Determine clinical data regarding mutant CALR’s role as a driver mutation in MPNs, according to a review
3. Identify current treatment of MPNs with mutant CALR and therapeutic targeting of CALR, according to a review
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Introduction
Molecular understanding of myeloproliferative neoplasm (MPN)
pathogenesis was transformed with the finding that driver mu-
tations in JAK2 occur in essentially all cases of polycythemia
vera and ;50% of essential thrombocythemia (ET) and primary
myelofibrosis (PMF).1-4 Soon thereafter, activating mutations in
MPL, the gene encoding the thrombopoietin receptor were
identified in ;3% to 5% of ET patients and 5% to 10% of PMF
patients.5-8 The remaining molecular gap in MPN was filled in
2013 with the discovery that mutations in the gene encoding
calreticulin (CALR) occurred in the majority of non-JAK2/MPL–
mutated ET and PMF patients.9,10 The purpose of this Spotlight
is to summarize the mechanistic, biochemical, and clinical data
published on mutant CALR’s role as a driver mutation in MPN
and highlight how these findings can inform directions for future
therapeutic approaches.

Calreticulin structure and function
In 2013, 2 studies used whole-exome sequencing to identify
the presence of recurrent mutations in CALR in 70% to 80%
of ET and PMF patients without a JAK2 or MPL mutation.9,10

These mutations consist of insertions and/or deletions in exon 9,
resulting in the generation of a novel mutant-specific positively
charged amino acid sequence in the C terminus.9,10 The 2 most
common mutations are a 52-bp deletion (L367fs*46) and a 5-bp
insertion (K385fs*47), initially termed type 1 and type 2 muta-
tions, respectively.9 Type 1 mutations eliminate all of the neg-
atively charged amino acids in the CALR C terminus, whereas
type 2 mutations eliminate approximately half of the negatively
charged amino acids.11 All other mutations can be categorized
as type 1 like or type 2 like, depending on the extent of amino
acid deletion. Since the initial discovery of CALR mutations in
MPN,.50 mutations have been described; however type 1 and
type 2 mutations make up 80% of all mutations. Importantly, all
CALR mutations have a common effect in creating a 11-bp
frameshift in exon 9, resulting in the generation of a mutant-
specific C terminus that is shared across all CALR-mutant MPNs,
consistent with a gain of function.

CALR is an endoplasmic reticulum (ER) chaperone protein
with functions in protein folding quality control and calcium
homeostasis.12 Its protein structure has 3 domains: an amino
domain, which is essential for chaperone function via its lectin
binding sites and contains an ER signal peptide sequence; a
proline-rich P domain, which binds to calcium and has a chap-
erone lectin binding site; and a carboxyl domain, which also
functions in calcium binding and includes an ER-retention signal
(KDEL motif).13 CALR mutations result in loss of the KDEL motif
and the generation of a novel positively charged C terminus.
Mutations in CALR are typically heterozygous, although ho-
mozygous mutations can occur.14

Mechanism of mutant CALR-induced
oncogenesis
Mutations in CALR are present in the long-term hematopoietic
stem cell compartment of MPN patients, where they can be
found as the sole mutation, consistent with a disease-initiating
role for mutant CALR in MPN.10 Retroviral, transgenic, and
knock-in mutant CALR mouse models all engender an MPN

phenotype that closely recapitulates human MPN, further sup-
porting a disease-initiating role for mutant CALR.15-19 Further-
more, the ET-like phenotype in CALRdel52 knock-in mice is
transplantable, indicating a hematopoietic stem cell–intrinsic
effect of mutant CALR.17,19

It was not immediately apparent how recurrent mutations in CALR
induce disease. Subsequent investigation from several groups
has since established the biologic requirements for mutantCALR-
induced oncogenesis, which include expression of MPL and its
N-glycosylation sites,15,18,20-22 the mutant-specific C terminus of
mutant CALR and, in particular, its positive electrostatic charge,15,18

a physical interaction between mutant CALR and MPL,18,20 and
the lectin-dependent function of mutant CALR.21,23

Figure 1 illustrates the current understanding of the mechanism
of mutant CALR-induced oncogenesis. Mutant CALR entry into
the ER secretory pathway is required for MPL activation, and loss
of mutant CALR’s signal peptide abrogates STAT5 transcrip-
tional activity.24 Once outside the ER, mutant CALR forms stable
complexes with preprocessed forms of MPL containing imma-
ture N-glycosylation sites21,24; this interaction is dependent on
mutant CALR’s lectin-binding domain.23,24 The bound mutant
CALR-MPL complexes are present in the Golgi apparatus and
are then trafficked to the cell surface.24 The interaction with
mutant CALR allows thrombopoietin-independent dimerization
of MPL’s cytosolic tails, with cell surface localization leading to
full receptor activation.24 Interestingly, a recent study has shown
that the mutated C terminus allows the formation of mutant
CALR homo-multimers and has suggested it is this homo-
multimer structure that allows activation of MPL.25 The net re-
sult of the mutant CALR-MPL pathogenic binding interaction is
ligand-independent MPL-JAK/STAT signaling activation result-
ing in clonal expansion of long-term hematopoietic stem cells
and megakaryocytes. Activation of the unfolded protein re-
sponse has been demonstrated at the transcriptional level in
CALR-mutant MPN, in addition to upregulation of the NF-kB
pathway.26,27 Interestingly, mutant CALR has been shown to
have altered cellular localization because of loss of its C-terminal
KDEL sequence, resulting in new protein-binding interactions,
including in the nucleus.28

Intriguingly, mutant CALR protein is detectable in the plasma of
CALRdel52 knock-in mice19 and CALR-mutant MPN patients,29

findings that build on earlier work in experimental model sys-
tems indicating that mutant CALR is secreted.30,31 Although,
under experimental conditions, high concentrations of recombinant
mutant CALR protein were shown to stimulate MPL when it is
bound to mutant CALR on the cell surface, it is unclear how
relevant this finding is to MPL activation in MPN patients.29 Im-
portantly, cell surface expression of mutant CALR, albeit at a low
level, was recently demonstrated on CALR-mutant CD341 cells in
a small number of MPN patients.24 Of note, it was previously
demonstrated that cell surface mutant CALR does not induce
MPN through inhibition of phagocytosis.32

Clinical significance of mutant
calreticulin in MPNs
CALR-mutant ET and PMF patients have distinct clinical
characteristics and outcomes from JAK2- and MPL-mutant

MUTANT CALR IN MPN blood® 19 DECEMBER 2019 | VOLUME 134, NUMBER 25 2243

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/134/25/2242/1549264/bloodbld2019000622.pdf by guest on 08 June 2024



patients (Table 1). Compared with JAK2-mutant ET patients,
CALR-mutant ET patients tend to be younger with lower
hemoglobin, decreased leukocytosis, and higher platelet
counts, and there is a higher male preponderance.7,9,10,33,34

CALR-mutant ET patients have a higher male predominance
compared withMPL-mutant ET patients but otherwise display
similar laboratory values, including elevated platelet counts,
consistent with a shared phenotype of preferential mega-
karyocytic expansion.33,34 Similarly, CALR-mutant PMF pa-
tients are younger, with a lower incidence of anemia and
leukocytosis and higher platelet counts.8,34-36 Within PMF,
CALR-mutant patients have lower International Prognostic
Scoring System and Dynamic International Prognostic Scor-
ing System (DIPSS) scores. Absence of a CALR mutation has
been into incorporated into more recent PMF prognostic
scoring systems (eg, Myelofibrosis Secondary to PV and ET-
Prognostic Model [MYSEC-PM],37 Mutation-enhanced Interna-
tional Prognostic Scoring System for transplant-eligible patients
[MIPSS70],38 and Genetically Inspired Prognostic Scoring System
[GIPSS]39).

Since the initial discovery of CALR mutations in MPN, there
have been multiple studies investigating disease outcomes
in terms of thrombosis, myelofibrotic/leukemic transformation,
and overall survival (OS). There is robust evidence indicating
improved thrombosis-free survival in CALR-mutant ET, with a
twofold decreased risk for venous and arterial thrombosis
compared with JAK2 V617F patients.7,33,34,40-43 CALR-mutant ET
patients also appear to have improved thrombosis-free sur-
vival compared with MPL-mutant, but not triple-negative, ET
patients.33,34 The data are less clear in PMF, although studies
have also suggested a decreased risk for thrombosis.35,36 The risk
of transformation to post-ET myelofibrosis (MF) seems to be
similar between CALR-mutant and JAK2-mutant patients,7,33,34

although some studies have reported an increased risk for post-

ET progression to MF in CALR-mutant patients.10,44 Similarly, the
risk of blast transformation and leukemic progression in PMF
patients appears to be mixed, with studies showing improved
or similar leukemia-free survival in CALR-mutant patients.34-36,45

The disparate results in PMF are likely a reflection of overall
smaller sample sizes and fewer events. In ET, OS is similar between
CALR and JAK2, MPL, and triple-negative patients.7,8,33,40,41,43

However, unlike in ET, CALR mutation status has consistently
emerged as an independent predictor of OS in PMF,8,34,35,40

which has also been borne out in meta-analyses.36 Indeed,
median OS is estimated to be ;17 years in CALR-mutant PMF
patients compared with 9 years in JAK2-mutant PMF patients
and 3 years in triple-negative PMF patients.35 This improved
prognosis also applies to CALR PMF patients who subsequently
receive hematopoietic stem cell transplantation,46,47 as well as in
post-ET MF patients specifically.37

In addition, there are significant clinical and prognostic differ-
ences depending on the type of CALR mutation (Table 2). Type
1–likemutations are significantly more common in PMF, whereas
type 2–like mutations are more common in ET.11,48 Phenotypic
differences are also borne out in mice, because type 1–like
engrafted mice display significantly more myelofibrosis than
type 2–like engrafted mice.15,49 Within ET, type 2–like CALR
patients have higher platelet counts; otherwise, both groups
of patients display similar outcomes, includingOS.48,50,51 The risk
of MF progression may be higher in type 1 patients,11 consis-
tent with its overall increased prevalence in PMF in general.
Within PMF, type 1–like patients have significantly improved
OS compared with type 2–like patients, with more similar
clinical presentations and prognosis between type 2–like pa-
tients and JAK2-mutant patients.11,48,51-54 The improved prog-
nosis of CALR in PMF may actually be restricted to type 1–like
CALR mutations.52 Phenotypic differences in type 1–like vs type
2–like MPN patients may be related to the differential strength
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Figure 1. Mechanism of mutant CALR-inducedMPN and approaches for therapeutic targeting. (A) A pathogenic binding interaction betweenMPL andmutant CALR leads
to activatedMPL-JAK/STAT signaling. 1. Mutant CALR traffics through the ER to bind to immature MPL. 2. Stabilized mutant calreticulin-MPL complex traffics to the cell surface.
3. Mutant CALR induces MPL-JAK/STAT signaling pathway activation. (B) Potential nodes for therapeutic intervention in mutant-CALR–driven MPN. (C) Strategies to induce
T-cell–directed immune therapy against mutant-CALR–driven MPN. APC, antigen-presenting cell; MPL, major histocompatibility complex; TCR, T-cell receptor.
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of MPL signaling activation and/or to the greater loss of calcium
binding sites seen with type 1–like mutations.11

Current treatment of CALR-mutant
MPN patients
There are no rationally designed treatments targeted toward the
CALRmutation. Standard cytoreductive therapies in MPNs, such
as hydroxyurea, interferon-a, and ruxolitinib, have shown similar
improvement in patients’ cell counts and symptoms, regard-
less of mutation status. Within PMF, a retrospective analysis of
the COMFORT-II study confirmed no significant differences in
response rates to ruxolitinib between mutant CALR-positive
andCALR-negative patients.55 Similar to JAK2-mutant patients,
treatment with ruxolitinib results in decreased spleen size and
symptom palliation, but without a reduction in mutant CALR
allele burden.55 CALR-mutant ET patients also demonstrate
clinical and molecular responses to interferon-a therapy.56 One
small retrospective study has suggested an inferior platelet

response to anagrelide in CALR-mutant ET patients compared
with JAK2-mutant ET patients; however, this finding needs to
be replicated.57

CALR mutations impact clinical risk stratification and, thus, ini-
tial treatment decisions.58,59 Within PMF, absence of CALR
type 1–like mutations confers higher-risk scores in MIPSS70
and GIPSS, which has implications for the timing of stem cell
transplantation.38,39,60 The JAK2 V617F mutation confers higher
thrombotic risk in the International Prognostic Score for Essential
Thrombocythemia system.61 In certain young CALR-mutant ET
patients, thrombotic risk may be sufficiently low such that these
patients can be managed with observation alone, without the
addition of aspirin. According to 1 retrospective study, aspirin
use was not shown to decrease thrombosis in these patients
and may even incur an increased risk for bleeding.62 Aspirin
should generally be avoided in patients with acquired von
Willebrand deficiency from extreme thrombocytosis, in which
case cytoreductive therapies are considered to reduce bleed-
ing risk.

Table 1. Summary of clinical features and outcomes of CALR-mutant ET and MF

CALR vs JAK2 CALR vs MPL CALR vs triple negative

ET
Clinical Younger, male predominance, lower

WBC count, lower Hg/Hct, higher
platelets

Male predominance, otherwise similar Male predominance, higher platelets

Thrombosis Decreased risk Decreased risk Similar
Post-ET MF Similar to increased Similar Similar
Overall prognosis Similar Similar Similar

PMF
Clinical Younger, lower WBC count, higher Hg/

Hct, higher platelets
Younger, higher Hg/Hct, higher

platelets
Younger, higher Hg/Hct, higher

platelets
Thrombosis Similar, possibly decreased risk Similar Similar
Leukemic

transformation
Similar Similar Improved

Overall prognosis Improved* Similar Improved

Hct, hematocrit; Hg, hemoglobin; MF, myelofibrosis; WBC, white blood cell.

*Improved overall survival may be restricted to type 1–like mutations.

Table 2. Summary of clinical features and outcomes of type 1–like vs type 2–like CALR mutations

Type 1–like CALR Type 2–like CALR

Most common mutation 52-bp deletion (L367fs*46) 5-bp insertion (K385fs*47)

Prevalence More common in MF More common in ET

Clinical (ET) Similar; lower platelet counts vs type 2 like Similar; higher platelet counts vs type 1 like

Clinical (MF) Less splenomegaly, leukocytosis, anemia, and
circulating blasts; lower DIPSS score; higher platelets
(all vs type 2 like)

More splenomegaly, leukocytosis, anemia, and
circulating blasts; higher DIPSS score; lower
platelets (all vs type 1 like). More similar to JAK2
V617F

Post-ET MF Similar to/increased vs type 2 like Similar to/decreased vs type 1 like

Overall prognosis (ET) Similar to type 2 like Similar to type 1 like

Overall prognosis (MF) Improved vs type 2 like and JAK2 V617F Worsened vs type 1 like; more similar to JAK2 V617F
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Toward therapeutic targeting of
mutant CALR
Insights into the mechanistic basis of mutant CALR-induced
MPN reveal several potential novel therapeutic approaches
(Figure 1). In particular, the mutant-specific C terminus of mutant
CALR is attractive for immunological targeting. The presence of
cell surface mutant CALR expression has highlighted the po-
tential for a mutant-specific anti-CALR therapeutic antibody that
could disrupt MPL activation.19,24 A second immunologic strat-
egy is through targeting neoepitopes in the novel mutant CALR
C terminus in the context of T-cell activation or engineered T-cell
receptor–mediated immune therapy. This approach is compli-
cated by the issue of HLA restriction and a current lack of evi-
dence for natural major histocompatibility complex (MHC)
processing and presentation of mutant CALR neoepitopes.63

CALR has a role inMHC class I (MHC-I) assembly; in experimental
systems in which mutant CALR is overexpressed, impaired
peptide loading in MHC-I antigen presentation occurs, resulting
in downregulation and decreased stability of MHC-I on the cell
surface.64 Consistent with this, stimulated CD81 T-cell responses
against mutant CALR epitopes are lacking in CALR-mutant
patient samples.63,65 However, mutant CALR-specific CD41

memory T-cell responses have been demonstrated in healthy
individuals, suggesting that mutant CALR is immunogenic and
immune escape occurs in patients with mutant CALR-driven
MPN.66 A CD41 T-cell clone with specific cytotoxicity against
autologous CALR-mutant cells has been generated,65 and these
results have formed the basis of a phase 1 vaccination study in
Denmark with a CALR exon 9 peptide vaccine (NCT03566446).
More recent evidence indicates that T cells from MPN patients
express immune checkpoint molecules indicative of a T-cell
exhaustion phenotype.67 Ex vivo treatment with an anti–PD-1
antibody rendered these T cells more responsive to mutant
CALR peptide stimulation, suggesting that it may be possible to
activate autologous T cells from CALR-mutant MPN patients to
recognize and target mutant CALR neoepitopes.67 Additional
immunological studies are required to determine whether mu-
tant CALR neoepitopes are processed and presented by MHC,
and clinical studies are needed to determine whether T cells can
recognize and target these neoepitopes in vivo.

Other novel therapeutic approaches under consideration in-
clude a synthetic peptide to competitively inhibit mutant CALR-
MPL binding, which has demonstrated some in vitro efficacy and
synergy with JAK2 inhibitors.28 Further preclinical studies to
optimize therapeutic delivery of such a peptide are necessary,
especially because mutant CALR-MPL binding occurs inside

the cell. Crystal structures of mutant CALR and the extracellular
domain of MPL are also currently lacking, which hinders precise
knowledge regarding their physical interaction.

Conclusions
In the almost 6 years since the identification of CALR mutations
the field has progressed rapidly. We now have a more detailed
understanding of how a mutated chaperone protein can result in
MPN pathogenesis. Novel therapeutic approaches exploiting
this mechanistic understanding are currently in development
and will continue to expand as investigation into mutant CALR
advances.
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