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In recent years, detection of circulating tumor plasma cells
(CTPC), tumor cell–derived deoxyribonucleic acid (DNA), RNA,
or protein markers in blood has gained interest for disease
monitoring in multiple myeloma (MM).1,2 This is mainly because
of (1) theminimally invasive nature of blood vs bonemarrow (BM)
analyses, (2) the possibility for more precise quantification of
absolute numbers of CTPC than BM minimal residual disease
(MRD) resulting from absence of potential hemodilution, and
(3) the (nonlinear) correlation observed between CTPC numbers
and BM disease burden at diagnosis.1,3 Recently, we have shown
by high-sensitivity next-generation flow (NGF) that CTPC are
systematically present in blood of MM at diagnosis, with an
adverse prognostic impact for higher counts.3 These results
highlight the relevance of greater levels of disease dissemination
via blood in conferring a malignant behavior to MM, suggesting
the presence of blood CTPC might be required for subsequent
disease progression of treated MM patients.

Based on this hypothesis, here we investigate for the first time
the prognostic impact of CTPC by NGF in blood of 137 newly
diagnosed MM patients after active treatment outside clinical
trials (supplemental Table 1 on the Blood Web site), in parallel
to BM MRD and serum immunofixation (sIF). Overall, a total of
328 samples were analyzed: 274 paired BM and blood samples,
plus 54 follow-up blood specimens. Following the EuroFlow-
NGFMMMRD approach,4 a median (range) of 6 mL (3-14 mL) of
blood and 1.8 mL (0.3-5 mL) of BM sample were lysed to (sys-
tematically) obtain $107 cells per sample. In parallel, sIF was
measured by the HYDRAGEL kit (HYDRASYS system, Sebia,
Barcelona, Spain).5 Statistical significancewas set at P values, .05
(supplemental Materials). All studies were approved by the in-
stitutional review board.

Following therapy, persistence of CTPC in blood was detected
in 26% of MM cases. This represents a 50% higher frequency

than previously reported by conventional flow cytometry
(18%-19%),6-8 reaching rates similar to those found with other
high-sensitivity techniques such as allele-specific oligonucleotide
polymerase chain reaction (25%-28.8%9,10) or next-generation se-
quencing (31%-34%2,11 for cell-free DNA and 40%2 for geno-
mic leukocyte DNA). This translated into even higher differences
among patients who reached complete response (CR)/stringent
CR (sCR): 17% CTPC1 cases in our series vs 0%12,13 to ,8%6,8 in
other previous conventional flow cytometry studies (supple-
mental Table 2).

Despite the greater sensitivity and rate of positivity for CTPC
reported here, a significant proportion of our MM cases that
were BM MRD1 or sIF1 still had undetectable CTPC in (paired)
blood samples: 55/137 (40%) and 41/137 (30%), respectively. In
contrast, 15/36 (42%) CTPC1 cases were also sIF2 (supplemental
Table 2). These findings indicate that CTPC is a less sensitive
MRDmarker in MM than BMMRD, complementary to sIF, in line
with previous observations.1 However, although BM MRD and
sIF mainly reflect persistence of resistant tumor14 and tumor
cell–derived immunoglobulins,15 they fail to provide insight on
the ability of these cells to support tumor regrowth and/or
dissemination, which ultimately determine disease progression.
In contrast, CTPC might not only reflect tumor load but, par-
ticularly, the ability of persisting tumor cells to disseminate the
disease and support tumor growth and progression at (multiple)
distant sites in BM and other tissues, as previously suggested16

based on their more immature and prominent stem cell-like
PC features compared with (paired) BM-derived tumor-plasma
cells (TPC).3

Despite all of this, every CTPC1 case in our cohort was BM
MRD1, suggesting that the presence of blood CTPC after
therapy might be a surrogate marker of persistent BM MRD in
guiding (eg, avoiding) subsequent (more invasive) BM aspiration
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procedures, particularly among sCR/CR patients. In contrast, a
significant fraction of our CTPC2 cases were BM MRD1 and/or
sIF1, supporting the notion that MM is a BM disease with greater
levels of infiltration by (usually) functional PC in BM vs PB. Pro-
longed half-life (;23 days) and complete clearance (;29 weeks)
of the M-protein for the most prevalent immunoglobulin G
subclass,17 in addition to persistence of extramedullary disease18

and/or the administration of monoclonal antibody-therapy (eg,
daratumumab)19 for MM patients, might also explain sIF positivity
in at least a subset of BM MRD2/sIF1 cases. Additionally, poor
BM sample quality (eg, from hemodilution) might also play a role
because abnormally low (#0.002%)4 mast cell counts were
detected here in 5/10 BM MRD2/sIF1 cases. In contrast, sIF
negativity among 4 of our non-sCR/CR patients could be related
to the appearance/persistence of plasmacytomas18 (2/4 cases),

and high free light chain ratio levels (.500) without measurable
M-component in serum and urine18 (1/4 cases), together with a
non-secretory TPC15 detectable here in another MM patient.

From the prognostic point of view, our results based on real-
world MM show for the first time that the absence vs presence of
blood CTPC by NGF is a new powerful independent prognostic
marker for progression-free survival (PFS) measured from the
time of BM-MRD/CTPC assessment both among the entire MM
patient cohort (hazard ratio [HR], 5.1; 95% confidence interval
[CI], 2.9-8.9; P , .0001) (Figure 1A) and within sCR/CR cases
(HR, 7.4; 95% CI, 3.0-18.2; P, .0001; Figure 1B), complementary
to currently available prognostic tools such as sIF and BMMRD,
respectively (Table 1), and regardless of the treatment phase
BM-MRD/CTPC being assessed (supplemental Figure 1).
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Figure 1. Prognostic impact of blood CTPC by NGF (vs BM MRD and sIF) on PFS of MM patients according to patient response to therapy. (A-B) Effect of PB CTPC,
(D-E) BM MRD, (H) combination of both parameters, and (G) PB CTPC together with sIF status on PFS is displayed for (A, D, G) the entire MM cohort and (B, E, H) for sCR and
CR patients, respectively. PFS curves of MM patients grouped according to (C) their sequential PB CTPC (2/2 or 1/2 vs 2/1 and 1/1), (F) sIF status, or (I) a combination of
both, are shown. Overall, CTPC2 andMRD2was defined as the absence of TPC in PB or BM by NGF, respectively, with a limit of detection of,23 1026. CR, complete response;
NR, not reached; PB, peripheral blood.
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Based on those covariables that showed a (statistically) sig-
nificant effect on PFS in multivariate analysis (Table 1), a prog-
nostic score was built that allowed identification of a subgroup of
blood CTPC1 MM patients with a very poor outcome (score 2 in
the risk stratification models proposed here) with PFS rates at
2 years of only 1% for the entire patient cohort (Figure 1G) and of
33% for sCR/CR MM patients (Figure 1H), respectively.

These results, together with the demonstration that CTPC are
systematically detected in blood of MM at diagnosis3 and at
relapse,13 suggest that detection of blood CTPC rather than a
surrogate marker of response is a strongly reliable predictor of
impending (early) disease progression9 (Figure 1A-B). In con-
trast, BM MRD would be a better predictor of persistent disease
(Figures 1D-E) and longer term prognosis of MM undergoing
different therapies, as recurrently shown in the literature in the
settings of clinical trials, both for conventional20-22 and for high-
sensitivity NGF4,23 and next-generation sequencing24 approaches.
However, frequent BM sampling is hampered by the invasive
nature of BM aspiration procedures,1 whereas more frequent
follow-up of CTPC in blood is feasible. Thus, sequential monitoring
of blood CTPC was performed in a subset of 54 cases in parallel

to sIF. Our results showed that MM patients who were persis-
tently CTPC2 (CTPC2/2) or that became CTPC2 after being
CTPC1 (CTPC1/2) showed a significantly better outcome than
cases with a blood CTPC1 result in the last follow-up study
(CTPC1/1 or 2/1) (Figure 1C), independent of sIF status
(Figure 1F, I). However, this should be confirmed in larger series
of patients with longer monitoring because the limited number
of sIF1/1 or 2/1 (n 5 7) cases was observed for a paradoxically
(slightly) better outcome vs the sIF2/2 or 1/2 (n 5 34) MM
showing no CTPC in the last follow-up study (ie, CTPC2/2 or 1/2

cases) (Figure 1I). In spite of that, the former findings suggest
that blood CTCP might provide additional relevant prognostic
information to single time-point BM MRD assessment in pre-
dicting for longer term outcome in patients that either (per-
sistently) remain or turn CTPC2 in sequential follow-up studies,
in line with previous reports.9,25

In summary, we show here that blood CTPC is a novel inde-
pendent prognostic marker for PFS in real-world MM prone to
more frequent monitoring, which provides early indication of
impending disease progression, regardless of BM MRD and
sIF status. These results suggest that presence of blood CTPC

Table 1. Multivariate analysis of prognostic factors For PFS In MM

Univariate analysis Multivariate analysis

Median PFS (mo) P HR (95% CI) P

Prognostic factors for entire MM series
Age

,65 y 28 .3 — — —

$65 y 36
Cytogenetic profile by FISH

Standard-risk 36 .07 — — —

High-risk 16
Serum IF

Negative 41 .001 — — —

Positive 18 2.4 (1.3-4.4) .004
BM MRD status by NGF

Negative 46 ,.0001 — — —

Positive 25
PB CTPC status by NGF

Negative 46 ,.0001 — — —

Positive 9 5.1 (2.9-8.9) ,.0001

Prognostic factors for sCR/CR cases
Age

,65 y 50 .5 — — —

$65 y 41
Cytogenetic profile by FISH

Standard-risk 50 .09 — — —

High-risk 28
BM MRD status by NGF

Negative 50 ,.0001 — — —

Positive 25 6.1 (1.5-24.4) .01
PB CTPC status by NGF

Negative 46 ,.0001 — — —

Positive 9 7.4 (3.0-18.2) ,.0001

High-risk cytogenetics was defined as presence at diagnosis of t(4;14); t(11;14); t(14;16); 1q amplification, deletion 13q, and/or deletion 17p. Standard-risk cytogenetics includes all other
cases. (Data available in 96/137 cases.)

FISH, fluorescent in situ hybridization; IF, immunofixation.
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of MM after therapy probably reflects a unique distinct tumor
biology (eg, tumor dissemination capacity) at a given time point
after therapy with important clinical consequences. Further
studies in larger series of MM patients outside and inside clinical
trials are required to confirm our findings.
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TO THE EDITOR:

Clinical utility of targeted next-generation
sequencing–based screening of peripheral blood in the
evaluation of cytopenias
Vignesh Shanmugam,1 Aric Parnes,2 Rajeshwari Kalyanaraman,3 Elizabeth A. Morgan,1,* and Annette S. Kim1,*

1Department of Pathology, 2Division of Hematology, and 3Department of Obstetrics and Gynecology, Brigham and Women’s Hospital, Boston, MA

One of the most common reasons for hematology consultation
is the evaluation of cytopenia(s). The workup of patients who
present with cytopenia(s) can be extensive, given the wide dif-
ferential diagnosis.1 Although only a minority of patients are
ultimately diagnosed with a hematologic malignancy, a key entity
to exclude in this differential is myelodysplastic syndrome (MDS),2

which requires bone marrow morphology and cytogenetics for
diagnosis. There is a clinical need for the development of mini-
mally invasive ancillary tests to enhance conventional hematologic
workup (eg, complete blood count with differential, B12/folate
testing, iron-related studies, and serumprotein electrophoresis) in the
identification of patients who are at a low risk of having an under-
lying hematologic malignancy as the cause of cytopenia(s), there-
by avoiding a costly and invasive bone marrow biopsy (BMBx).

Mutation profiling of peripheral blood (PB) using next-generation
sequencing (NGS) is an attractive solution to this problem be-
cause of its potential application as a minimally invasive screen.
Recent large-scale genome-sequencing studies using bone mar-
row samples have demonstrated that most cases of MDS and
other related neoplasms, such as acute myeloid leukemia and

myelodysplastic/myeloproliferative neoplasm overlap syndromes,
harbor pathogenic somatic mutations in diverse myeloid cancer
driver genes.2-6 Moreover, some or all of these mutations can be
detected in PB granulocytes inmost patients withMDS and related
neoplasms (Phillip D. Michaels, Dahai Wang, A.S.K., manuscript
in preparation).7,8

Despite these advances and the widespread use of NGS testing,
there are limited data on the clinical use of NGS testing in the
early evaluation of patients with cytopenia(s). We hypothesize
that targeted PB NGS using a myeloid cancer gene panel can
be a valuable minimally invasive, ancillary tool in identifying
patients with an underlying myeloid neoplasm as the cause of
cytopenia(s). Herein, we report the clinical utility of PB screening
by targeted NGS testing in a large institutional cohort of patients
with cytopenia(s).

After institutional review board approval, we retrospectively
identified all patients presenting with PB cytopenia(s) over a
30-month period (January 2015 through June 2017) to the
Hematology Clinic at the Dana-Farber/Brigham and Women’s
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