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KEY PO INT S

l MELK promotes EZH2
stability through
phosphorylation-
dependent loss of
ubiquitination.

l Overexpressed MELK
mediates sensitivity to
bortezomib through
modulating EZH2
stability in NKTL.

Oncogenic EZH2 is overexpressed and extensively involved in the pathophysiology
of different cancers including extranodal natural killer/T-cell lymphoma (NKTL). However,
the mechanisms regarding EZH2 upregulation is poorly understood, and it still remains
untargetable in NKTL. In this study, we examine EZH2 protein turnover in NKTL and
identify MELK kinase as a regulator of EZH2 ubiquitination and turnover. Using quanti-
tative mass spectrometry analysis, we observed a MELK-mediated increase of EZH2 S220
phosphorylation along with a concomitant loss of EZH2 K222 ubiquitination, suggesting
a phosphorylation-dependent regulation of EZH2 ubiquitination. MELK inhibition through
both chemical and genetic means led to ubiquitination and destabilization of EZH2 protein.
Importantly, we determine that MELK is upregulated in NKTL, and its expression corre-
lates with EZH2 protein expression as determined by tissue microarray derived fromNKTL
patients. FOXM1, which connected MELK to EZH2 signaling in glioma, was not involved in

mediating EZH2 ubiquitination. Furthermore, we identify USP36 as the deubiquitinating enzyme that deubiquitinates
EZH2 at K222. These findings uncover an important role of MELK and USP36 in mediating EZH2 stability in NKTL.
Moreover, MELK overexpression led to decreased sensitivity to bortezomib treatment in NKTL based on deprivation
of EZH2 ubiquitination. Therefore, modulation of EZH2 ubiquitination status by targeting MELK may be a new
therapeutic strategy for NKTL patients with poor bortezomib response. (Blood. 2019;134(23):2046-2058)

Introduction
EZH2 is the enzymatic subunit of the polycomb repressive com-
plex 2 (PRC2), which specifically methylates histone H3 at lysine
27 and thus mediates gene expression repression. As a histone
methyltransferase, EZH2 needs to assemble with other PRC2
components such as SUZ12 and EED to fulfill its catalytic activity.
EZH2 was found to be overexpressed in different cancer types,
including extranodal natural killer/T-cell lymphoma (NKTL),1 with
a well-established oncogenic role in these cancers. Overex-
pressed EZH2 associates with tumor initiation and progression as well
as poor clinical outcomes. And EZH2 overexpression also attenu-
ates sensitivity to chemotherapy regimens in different cancers.2-4

However, the mechanisms underlying EZH2 overexpression in
cancers are complicated, context-dependent, and multifaceted.
Studies in recent years suggest that transcriptional activation,

microRNA (miR) deregulation and deregulated proteolytic sys-
tem are the 3 main causes leading to its overexpression. EZH2 is
transactivated by HIF-1a under hypoxia in breast cancer-initiating
cells5 and by E2F1 in bladder cancer.6 Frequent loss of miR-101,
which transcriptionally repress EZH2 expression, was first iden-
tified in localized and metastatic prostate cancer7 and reported in
other tumors.8 EZH2 oncoprotein could be stabilized by aberrant
upregulation of SKP2, which inhibited TRAF6-mediated EZH2
ubiquitination,9 or through the deubiquitination of upregulated
USP2110 in urological cancers. In NKTL, our previous study
showed that the expression of miR-101 and miR-26a/b inversely
correlated with EZH2, and an attenuation of EZH2 expression was
observed with lentiviral transduction of these miRs.1

Most commonly, EZH2 exerts its tumorigenic function through
H3K27 trimethylation-dependent gene-silencing machineries.
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Whereas in a few malignant cancer contexts, such as NKTL1 and
triple-negative breast cancer,11 EZH2 may exhibit tumorigenicity as
a transcriptional activator that is PRC2- and H3K27 trimethylation-
independent. Since 2013, a series of small-molecule inhibitors as
well as peptide inhibitor of EZH2 have been developed. All these
inhibitors deplete H3K27 trimethylation level, leaving EZH2 protein
intact, and thus cannot effectively target oncogenic EZH2 that is
independent of its histonemodifying function inNKTL. Therefore, it
is important to look at other mechanisms that affect EZH2 protein
levels, including the turnover of EZH2 in NKTL.

MELK is a highly conserved AMPK-family serine/threonine ki-
nase that mediates signals initiated by exogenous stimulus.
MELK is overexpressed in a wide panel of cancers that catalyzes
phosphorylation on oncogenic FOXM1.12 In this study, we dem-
onstrate that in NKTL, overexpressed MELK promotes the stability
of EZH2 protein through phosphorylation- and ubiquitination-
coupled machineries. MELK specifically phosphorylates EZH2 at
S220, resulting in decreased levels of K222 EZH2 ubiquitination.
These findings uncover a novel mechanism explaining EZH2 over-
expression in NKTL and identify MELK kinase upregulation as a
novel biomarker for response in NKTL patients receiving the first
therapeutic proteasome inhibitor bortezomib.

Materials and methods
Cell culture
The NKTL cell lines used included NKYS, KHYG-1, NK-S1,
HANK-1, SNK1, SNK6, and NK-92. NK-92 cells were cultured in
a-MEM without nucleotides (Thermo Fisher Scientific) supple-
mented with 12.5% fetal bovine serum (Biowest), 12.5% horse
serum (Biowest), 0.1 mM 2-mercaptoethanol, and 100U/mL of
interleukin-2 (Miltenyi). Culture conditions for all the other NKTL
cell lines used in this study have been described previously.13,14

Detailed characteristics of these NKTL cell lines were described
(supplemental Table 1 on the Blood Web site). Normal NK cells
were isolated from human peripheral blood of healthy donors
(from Dario Campana, National University of Singapore).15 Iso-
lated normal NK cells were cultured in CellGenix GMP SCGM
medium supplemented with 200 U/mL of interleukin-2 (Miltenyi).
HEK293 cells and HEK293T cells were both cultured in Dulbecco’s
modified Eagle medium (Biowest) supplemented with 10% fetal
bovine serum (Biowest).

Drugs and antibodies
See supplemental Methods for details.

Constructs, shRNA and siRNA transfection
For NKTL cell lines, transfections of overexpressing constructs,
short hairpin (shRNA) or small interfering RNA (siRNA) were
performed using the Neon Transfection system (Life Technol-
ogy) following the manufacturer’s protocols. For HEK293 cells or
HEK293T cells, the X-tremeGene HP DNA Transfection Reagent
(Roche 6366546001) was used for constructs or shRNA trans-
fections following the manufacturer’s protocol. Details of con-
structs, shRNA and siRNA used in this study are available in
supplemental Methods.

Cell survival assay
The cell survival was measured using the CellTiter-Glo lumi-
nescent cell viability assay kit (Promega G7573) according the
manufacturer’s indications.

Nuclear-cytoplasmic fractionation
TheNE-PERNuclear andCytoplasmic Extraction Reagents (Thermo
Fisher Scientific) were used for the fractionation based on the
manufacturer’s protocols. Both the cytoplasmic and nuclear
lysates, cytoplasm alone or nucleus alone were used for coim-
munoprecipitation (co-IP) or immunoblots.

Nucleoplasm and nucleolus extraction
Sequential cell lysis was used to obtain nucleoplasm and nu-
cleolus extracts. See supplemental Methods for details.

Co-IP and western blotting
For co-IP using HEK293T cells or NKTL cells, the cell lysates were
prepared using RIPA buffer plus protease inhibitor (Roche), and
were subject to sonication (Active motif Probe Sonicator; 30%
amplitude, 30-second on and 30-second off bursts, 2 cycles)
before pull-down. After clarification by centrifugation and pro-
tein concentration determination, antibodies were added in to
the lysate and the lysates were rotated at 4°C overnight. The
protein A/G beads (Thermo Fisher Scientific 10004G) were then
added (25 mL/10 million cells), followed by incubation at 4°C for
1 hour. After washing with lysis buffer, 23 Laemmli buffer (Bio-
Rad) with 5% b-mercaptoethanol were added to the beads,
which then were boiled at 95°C for 5 minutes. For western
blotting, the cell lysates were prepared using RIPA buffer plus
protease inhibitor (Roche), but were subject to sonication for
30-second on, 30-second off bursts (2 cycles) using Bioruptor
(Diagenode). Then the lysates were spun down and the protein
concentration was calculated. The supernatants were similarly
mixed with Laemmli buffer and boiled. The boiled sample were
resolved in sodium dodecyl sulfate-polyacrylamide gel elec-
trophoresis and immunoblotted with indicated antibodies.

Quantitative reverse-transcription PCR
Total RNA was extracted using RNeasy Mini Kit (Qiagen) and
reverse-transcribed using the iScript Reverse Transcription
Supermix for quantitative reverse transcription polymerase chain
reaction (PCR; Bio-Rad) (25°C 5 minutes; 42°C 30 minutes; 85°C
5 minutes). The reaction was performed on a QuantStudio Real-
Time PCR System (Thermo Fisher Scientific) using SYBR Green
Mix (Bio-Rad). Primers for the reactions are available in sup-
plemental Methods.

Immunofluorescence staining and analysis
NKTL patient biopsies were stained in tissue microarray format.
Refer to supplemental Methods for details of staining and analysis
procedures.

SILAC-based affinity purification for MS
For stable isotope labeling with amino acids in cell culture
(SILAC) labeling, HEK293T cells were incubated in DMEM (-Arg,
-Lys) medium containing 10% dialyzed fetal bovine serum
(Thermo Fisher Scientific) supplemented with 42 mg/L 13C6

15N4

L-arginine and 73 mg/L 13C6
15N2 L-lysine (Cambridge Isotope;

“heavy”) or the corresponding non-labeled amino acids (“light”),
respectively. Successful SILAC incorporationwas verifiedby in-gel
trypsin digestion and mass spectrometry (MS) analysis of heavy
input samples in parallel to IP samples to ensure adequate in-
corporation. The “light” population were transfected with all
lysine-mutated ubiquitin (K0-ub) plus EZH2 but without MELK,
and the “heavy” population were transfected with K0-ub plus
EZH2 and MELK (“forward” pull-down). A label-swap (“reverse”)
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Figure 1. Overexpressed MELK correlates with EZH2 expression in NKTL. (A) Gene expression profiling data showing MELK expression in NKTL cell lines and patient
samples of NKTL (extranodal) and EBV1 peripheral T-cell lymphoma (nodal) cases. (B) Expression of MELK and EZH2 in normal NK and a panel of NKTL cell lines. Densitometry
analysis was used to quantify average changes in 3 individual experiments. (C) IP showing MELK-EZH2 interaction. (D-E) EZH2 protein level change with MELK inhibitor
OTSSP167 treatment of 48 hours in NKYS (D, densitometry analysis was used to quantify average changes in 3 individual experiments) and (E) NK-S1. (F-G) EZH2 protein level
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replicating experiment was also performed. After 48 hours, cells
were harvested and lysed in RIPA buffer with protease inhibitor,
followed by co-IP with EZH2 antibody for pull-down. The protein
lysates were separated by sodiumdodecyl sulfate-polyacrylamide
gel electrophoresis, and then the gel was stained, excised, and
processed for MS analysis. Details of MS procedures and data
analysis are available in supplemental Methods and the MS data
has been deposited to the ProteomeXchange Consortium via
PRIDE16 (PXD015008).

Kinase assay coupled with MS
The 15-aa peptide E1 (RPPRKFPSDKIFEAI) and EZH2 S220
phosphorylation signal (p-E1)[RPPRKFPS(p)DKIFEAI] correspond-
ing to S220 phosphorylation site on EZH2 were designed and
synthesized (Bio basic). Both E1 andp-E1were preloaded to liquid
chromatography MS/MS system as standards before kinase assay.
Details of the kinase reaction and MS parameters are available in
the supplemental Methods.

Results
Overexpressed MELK interacts with and stabilizes
EZH2
As identified by gene expression profiling, MELK is one of the
significantly overexpressed genes in NKTL patient samples and
cell lines (Figure 1A). We then validated MELK overexpression in
a panel of NKTL cell lines. Compared with normal NK cells, all
NKTL cell lines tested displayed increased levels of MELK ex-
pression. And general expression correlation between MELK
and EZH2 was observed in NKTL cell lines (Figure 1B).

To examine the potential association between MELK and EZH2,
we pulled down endogenous EZH2 in NKTL cells and found
EZH2 interacted with MELK under physiological conditions
(Figure 1C). Because several recent studies have uncovered
a role of MELK in regulating EZH2 level,17,18 we treated NKTL
cells with the MELK inhibitor OTSSP167 (OTS) to check whether
MELK also modulated EZH2 expression in NKTL. With OTS
treatment, a clear reduction in EZH2 protein levels could be seen
along with a reduction of FOXM1 and p-FOXM1 (Figure 1D-E).
Whereas overall EZH2 messenger RNA (mRNA) levels did not
decrease correspondingly (supplemental Figure 1A-B). Similarly,
knock-down of MELK resulted in a significant downregulation of
EZH2 protein but not EZH2 mRNA (Figure 1F-G; supplemental
Figure 1C-D). Interestingly, cytoplasmic and nuclear MELK
displayed a similar level of expression (supplemental Figure 2A)
with MELK interacting with EZH2 in both cytoplasm and nucleus
(supplemental Figure 2B). Next, we analyzed the expression of
MELK and EZH2 in tissue samples derived from NKTL patients
and observedMELK-EZH2 correlation (Figure 1H-I; N5 83 cores
from 52 NKTL patients; R50.4549; P,.0001). These data sug-
gest that MELK associates with EZH2 and promotes EZH2
protein stability in NKTL.

MELK upregulates EZH2 level by inhibiting its
ubiquitination
Given that MELK could stabilize EZH2 protein, we investigated
whether MELK participated in the regulation of EZH2 ubiquiti-
nation. We overexpressed MELK and observed a clear reduction
in EZH2 ubiquitination (Figure 2A). Conversely, MELK knock-
down or MELK inhibitor treatment resulted in a significant in-
crease in EZH2 ubiquitination (Figure 2B-C). These observations
suggest that MELK is involved in inhibiting EZH2 protein
ubiquitination.

Next, to confirm the role of MELK in EZH2 ubiquitination and to
identify the corresponding ubiquitination site(s) altered byMELK
expression, we immunoprecipitated EZH2 from SILAC-labeled
HEK293T cells cotransfected with all-lysine-mutated ubiquitin
(K0-ub), EZH2, and either MELK or an empty vector control. We
performed these experiments in a “forward” reaction with MELK
overexpressed in the “heavy” labeled cells and the empty
vector control used in “light” labeled cells, as well as a reciprocal
“reverse” reaction with exchanged SILAC labels (Figure 2D). The
MS analysis identified 2 possible sites of EZH2 ubiquitination:
K222 and K629 (supplemental Table 2).

K222 is the critical site of EZH2 ubiquitination
We generated ubiquitination-null mutants (EZH2 K222R, EZH2
K629R) to verify the site of EZH2 ubiquitination suggested by the
MS data. In NKTL cells, a stabilization of EZH2 level could be
observed with K222R but not K629R mutant compared with
EZH2 WT (Figure 2E). Moreover, both K222 and K629 mutants
showed attenuated interaction withMELK (Figure 2G), indicating
that these 2 sites are important for MELK-EZH2 association,
whereas only the K222R mutant displayed decreased level of
EZH2 ubiquitination (Figure 2F). Therefore, K222 is the critical
site of EZH2 ubiquitination affected by MELK.

MELK mediates EZH2 ubiquitination linked to
site-specific phosphorylation
Considering that MELK itself is a serine/threonine kinase, it is
probable that MELK mediates EZH2 ubiquitination following
phosphorylation on EZH2. Thus, we reanalyzed the SILAC-MS
data for all the potential sites of EZH2 phosphorylation, and
S220 phosphorylation was the only one that depended on MELK
activity.

Interestingly, the S220 phosphorylation site is very close to the
K222 ubiquitination site based on EZH2 3-dimensional structure,19

suggesting the phosphorylation may be a determinant for the
inhibition of ligase-mediated ubiquitination (Figure 3A). MELK-
mediated EZH2 S220 phosphorylation was further verified
through in vitro kinase assay (supplemental Figure 3). As indi-
cated, a clear peak corresponding to EZH2 S220 phosphorylation
signal (p-E1) was visualized when recombinant active MELK was
incubatedwith reactionmixture at 30°C for 60minutes. Almost no

Figure 1 (continued) change with MELK knock-down using siRNA in (F) NKYS and (G) NK-S1. Cells were harvested for immunoblots 48 hours after knock-down. (H) Linear
correlation was obtained by comparing percentage of EZH2 positive staining (EZH21) to average percentage of cytoplasmic and nuclearMELK positive staining (MELK1) in NKTL
cells (CD31) for each core fromNKTL patient tissues. N5 83 cores from 52 NKTL patients were stained (R5 0.4549, P, .0001). (I) Representative images indicating expression of
EZH2 andMELK in NKTL tissuemicroarray sample (left) with corresponding segmented imagemasks (right). CD3marks tumor cells. A total of 80.8% of CD31 cells in sample 1 are
positive for nuclear expression of EZH2, whereas 38.27% CD31 cells in sample 2 are positive for EZH2. Seventy-three percent of CD31 cells in sample 1 are positive for MELK and
only 36.42% CD31 cells are positive for MELK in sample 2. All immunoblots were performed in at least 3 individual experiments; representative images are shown. Ig,
immunoglobulin
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S220 phosphorylation was observed without incubation (Figure
3B-C). These data show that MELK directly phosphorylates EZH2
at S220.

Next, we generated EZH2 phosphorylation-dead (S220A) and
double (S220A K222R: SAKR) mutants. Because EZH2 is onco-
genic in NKTL,1 any alteration of EZH2 stability will naturally
affect NKTL cell survival. As anticipated, the EZH2 K222Rmutant
could further promote cell survival compared with EZH2 wild-
type, and both the S220A and SAKR mutant compromised the
survival advantage conferred by EZH2 wild-type transfection
(Figure 3D-E). All of these EZH2 mutants displayed attenuated
interaction with MELK (Figure 3F). The similar effects displayed
by S220A and SAKR mutants also reinforce that S220 phos-
phorylation may prime EZH2 for K222 ubiquitination. Notably,
both EZH2 S220 and K222 are evolutionarily conserved sites
(Figure 3G).

Moreover, MELK-mediated EZH2 serine phosphorylation was
also validated in NKTL cells. When we treated NKTL cells with
MELK inhibitor OTS, we observed a decrease of EZH2 serine
phosphorylation (Figure 3H-I).

FOXM1 may not be engaged in modulating EZH2
ubiquitination
Because FOXM1 serves as a bridging mediator that connects
MELK to EZH2 signaling in glioma,12,17 it is necessary to in-
vestigate whether FOXM1 also plays a role in mediating EZH2
ubiquitination in NKTL. As shown in Figure 4A, FOXM1 is also
overexpressed in different NKTL cell lines; however, no in-
teraction was seen between FOXM1 and EZH2 (Figure 4B). Then
we sought to examine how could FOXM1 affect EZH2 in NKTL.
With FOXM1 knock-down, a decrease of EZH2 mRNA and
protein level was seen in NKYS cells, which has high FOXM1
expression among all NKTL cell lines (Figure 4C,E), whereas no
substantial change of EZH2 was observed in NK-S1 cells which
has relatively low FOXM1 expression (Figure 4D-E). These data
imply that FOXM1 is not an indispensable modulator of EZH2 in
NKTL malignancy, and FOXM1 only regulates EZH2 at tran-
scription level when it is highly overexpressed in some NKTL cell
lines. Moreover, no significant alteration of EZH2 ubiquitination
was seen when FOXM1 was knocked down (Figure 4F) or
overexpressed (Figure 4G), and FOXM1 overexpression could
not affect decrease of EZH2 ubiquitination mediated by MELK
(Figure 4H).

USP36 specifically deubiquitinates EZH2
Given the spatial proximity of S220 and K222, the resulting
phosphate and ubiquitin moieties may have to compete for
space within the binding pocket; therefore, we speculated that
K222 must be deubiquitinated to continuously balance S220
phosphorylation. As such, we sought to identify the deubiqui-
tinase responsible for removing EZH2 ubiquitination at K222 in

NKTL. USP36 and USP48 were 2 deubiquitinases that appear in
our previous MS data (unpublished) in which we meant to de-
termine proteins bound to EZH2 in NKYS cells. Using shRNA pools
targeting either USP36 and USP48 (supplemental Figure 4A), we
observed a decrease of EZH2 protein level (supplemental Figure
4B) as well as a corresponding increase of EZH2 total ubiquitination
(supplemental Figure 4C) with only USP36 knock-down but not
USP48 knock-down in HEK293T cells. Furthermore, diminished
expression of USP36 significantly enhanced K48-linked poly-
ubiquitination but not K63 polyubiquitination indicative of USP36
playing a role in EZH2 stability20,21 (supplemental Figure 4D).

As expected, ectopic expression of USP36 enhanced endoge-
nous (supplemental Figure 4E) and exogenously expressed
EZH2 levels (Figure 5A) as well as decreased EZH2 ubiquitination,
which can be partially rescued upon USP36 C131A (enzymatically
dead) mutant transfection (Figure 5B). In contrast, knock-down of
USP36 in NKTL cells decreased EZH2 expression (Figure 5C). In
line with these results, downregulation of USP36 led to a signifi-
cant increase in EZH2 repressive genes expression and decrease
of EZH2 activated genes expression, which we have characterized
previously14 (supplemental Figure 4F). Next, we sought to es-
tablish if USP36 could interact with EZH2. As shown, endogenous
EZH2 co-immunoprecipitated with GFP-USP36 (supplemental
Figure 4G). Both USP36 wild-type and C131A mutant could bind
to EZH2 (Figure 5D-E). Because deubiquitination effect requires
both protein-protein interaction and catalyzing, such results reveal
that the stabilization of EZH2 requires the enzymatic activity of
USP36 besides its interaction with EZH2, reinforcing that USP36
mediates EZH2 stability through catalyzing its deubiquitination. In
addition, compared with wild-type EZH2, USP36 displayed de-
creased interaction with EZH2 K222R (Figure 5F). Thus, our data
support the hypothesis that USP36 is the deubiquitinase that is
responsible for EZH2 K222 deubiquitination.

Because USP36 has previously been described as a nucleolar
deubiquitinase, it is probable that nucleolus is the main location
for USP36 to deubiquitinate EZH2. As illustrated, interaction
between USP36 and EZH2 was found in the nucleolus but not in
the nucleoplasm (supplemental Figure 5A-B). Furthermore, ec-
topic expression of USP36 decreased EZH2 ubiquitination in the
nucleolus (supplemental Figure 5C). Taken together, these data
suggest that nucleolus may be themajor site of USP36-mediated
EZH2 deubiquitination.

Stabilization of EZH2 modulates chemo-sensitivity
to bortezomib treatment
As the first-generation proteasome inhibitor, bortezomib has
already been clinically approved for the treatment of myeloma
and mantle cell lymphoma. In recent clinical trials, bortezomib
was used for NKTL treatment in combination of other chemo-
therapy agents or regimens, such as panobinostat22 or cyclo-
phosphamide, hydroxydaunorubicin, oncovin, and prednisone

Figure 2 (continued) 3 individual experiments. (D) Schematic protocol of SILAC-MS experiment. (E) Expression level of HA-tagged EZH2 wild-type and ubiquitination-
dead mutants in NKTL cell lines. The transfection was performed using electroporation. Cells were harvested for immunoblots 24 hours after transfection. (F) IP showing
the change of ubiquitination level for EZH2 wild-type or mutants in HEK293T cells. Before cell harvesting, MG132 was given at 5 mM for 6 hours of treatment 48 hours after
transfection. Densitometry analysis was used to quantify average changes in 3 individual experiments. (G) Change of interaction between MELK and EZH2 wild-type or its
mutants in HEK293T cells. Cells were harvested for co-IP 48 hours after transfection. All immunoblots were performed in at least 3 individual experiments and
representative images are shown. CON, control; EV, empty vector; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; HA, hemagglutinin; LC, liquid chromatog-
raphy; Ub, ubiquitination; WT, wild-type.
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(CHOP)23,24 regimen, and satisfactory synergistic effects were
observed in NKTL patients. Notably, EZH2 deregulation was
shown to contribute to loss of sensitivity in Bortezomib treatment
in multiple myeloma through the CDK-RB-E2F axis.25,26 There-
fore, we speculated that changes of EZH2 stability may also link
to bortezomib sensitivity in NKTL.

In NKTL cells, overexpression of EZH2 resulted in attenuated
sensitivity to bortezomib treatment (Figure 6A-B). And in con-
trast, when EZH2 was knocked down, sensitized response to
bortezomib treatment was seen (Figure 6C-D). As anticipated,
MELK overexpression diminished bortezomib sensitivity in NKTL
cells compared with vector, and this could be rescued by MELK
T167A (attenuated enzymatic activity) transfection (Figure 6E-F).
In line with these results, knock-down or chemical inhibition of
MELK sensitized NKTL cells to bortezomib (Figure 6G-H; sup-
plemental Figure 6), and synergistic effects between bortezomib
andMELK inhibitor OTSSP167 were seen. Notably, EZH2 S220A
mutant sensitized the NKTL cells to bortezomib treatment
compared with EZH2 wild-type (Figure 6I-J). In comparison,
manipulation of MELK expression in NKTL cells could not affect
sensitivity to a different proteasome inhibitor, carfilzomib, which
has not yet been approved for any NKTL trial (supplemental
Figure 7). Collectively, these data suggest that MELK, partly
through the regulation of EZH2 ubiquitination, may to some
extent attenuate sensitivity to bortezomib treatment in NKTL.

Discussion
In NKTL, the mechanism of EZH2 overexpression is not thor-
oughly defined and all the commercialized small-molecule or
peptide inhibitors do not target the enzymatically independent
oncogenic activity of EZH2, it is important to better understand
the biological turnover of EZH2 protein in this malignancy. In this
study, we demonstrate that the serine/threonine kinase MELK
directly phosphorylates EZH2 at S220, resulting in a corre-
sponding downregulation of EZH2 ubiquitination at K222. Our
findings identify a previous undescribed mechanism of EZH2
protein stabilization mediated through MELK phosphorylation,
and EZH2-associated loss of sensitivity to bortezomib may be
further exacerbated by MELK overexpression in NKTL through
the stabilization of EZH2.

In a majority of contexts, EZH2’s tumorigenic effect is mediated
through its enzymatic function of catalyzing H3K27 trimethyla-
tion. In these cases, oncogenic EZH2 can be suppressed by
small-molecule enzymatic inhibitors, whereas in a few cancers,
including NKTL, the tumorigenic role of overexpressed EZH2 is
independent of its catalytic function and the PRC2 complex.1,11,27

Accordingly, enzymatic inhibition or PRC2 disruption is inef-
fective against EZH2-mediated oncogenesis in NKTL. In addi-
tion, we have demonstrated previously that JAK3 functionally
switches the role of EZH2 to a gene activator and mediates
tumorigenicity through EZH2 Y244 phosphorylation in NKTL.14

JAK3 inhibition effectively blocks EZH2 oncogenesis by dis-
rupting oncogenic phosphorylation of EZH2,14 yet the basal level
of EZH2 protein remains intact. And the possibility that the
Y244-unphosphorylated EZH2 still favors NKTL cells cannot be
ruled out.

Besides the direct conferment of survival advantages, EZH2
overexpression also plays a role in chemo-resistance in a variety

of cancers. Bortezomib is clinically approved for the treatment
of multiple myeloma and mantle cell lymphoma. It demon-
strated therapeutic effects for NKTL treatment in clinical trials
in combination with other chemotherapy regimens.22 In mul-
tiple myeloma, EZH2 deregulation exposes the myeloma cells
to a loss of sensitivity to bortezomib treatment through the
CDK-RB-E2F axis.25,26 In our study, we find that stabilization of
EZH2 by MELK results in enhanced resistance to bortezomib
treatment in NKTL, and this relies on the S220-specific phos-
phorylation of EZH2. Enzymatic defection of MELK or phospho-
dead mutation of EZH2 may compromise EZH2-mediated
bortezomib resistance. This might be linked to the reversible
effect28 of bortezomib on proteasome as sensitivity to the
advanced and irreversible28 proteasome inhibitor carfilzomib,
which might also mediate the CDK pathway,26 was not affected
by MELK expression in NKTL cells. The mechanisms under-
scoring these differences will need to be examined in future
studies.

EZH2 phosphorylation is one of the key posttranslational events
that modulates the activity and stability of EZH2 and exerts
various biological influences. S21 phosphorylation of EZH2 by
AKT, which has been found in multiple cellular context, impairs
its histone methyltransferase activity and is functionally impor-
tant for EZH2-associated signaling pathways.29 It is critical for
EZH2 to mediate carcinogenesis or chemo-sensitivity in glioma,30

hepatocellular carcinoma31 and multiple myeloma32 through dif-
ferent mechanisms. This phosphorylation is also indispensable
for the PRC2-independent role of EZH2 in castration-resistant
prostate cancer.27 Moreover, CDK-mediated EZH2 phosphory-
lation at several sites inhibits H3K27 trimethylation and regulates
embryonic stem cell divisions.33-35 As mentioned previously, our
previous study reveals that EZH2 Y244 phosphorylation by JAK3
converts EZH2 from an epigenetic silencer to a transcriptional
activator in NKTL.14 In this study, we have identifiedMELK kinase,
which co-overexpresses with EZH2, phosphorylates EZH2 at
S220, and promotes USP36-mediated K222 deubiquitination in
the same malignancy. These 2 phosphorylation sites, though
both identified in NKTL, are functionally and spatially different.
The Y244 phosphorylation renders EZH2 to get rid of the PRC2
complex and bind to POL II, therefore switching to an activating
effector. The basal protein level of EZH2 is not affected. In
comparison, S220 phosphorylation associates with proteasomal
degradation of EZH2. On the other hand, as POL II mainly
facilitates transcription in the nucleoplasm, by binding to POL II
the Y244-phosphorylated EZH2 coactivates transcription within
the same region, whereas USP36 mainly locates in the nucleolus;
thus, the localization of EZH2 K222 deubiquitination may be
within the nucleolus.

The MELK-EZH2 axis has been reported before. In glioma stem
cells, MELK could phosphorylate and activate FOXM1, which
then binds and transactivates EZH2 expression, resulting in fa-
vored survival and radioresistance.12,17 Colocation and interaction
between MELK and EZH2 were also observed in medulloblas-
toma.18 Our study uncovers a new mechanistic link between
MELK and EZH2 that MELK phosphorylates EZH2 and directs
EZH2 to escapeproteasomal degradation. Unlike glioma, FOXM1
is not an essential mediator of EZH2 in NKTL malignancy.

Several previous studies have revealed that EZH2 protein sta-
bility could be modulated by the ubiquitin-proteasome system.
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Figure 4. FOXM1 may not be an upstream mediator of EZH2 ubiquitination. (A) Expression level of FOXM1 in normal NK and NKTL cell lines. (B) IP showing absence of
interaction between EZH2 and FOXM1 in NKYS andNK-S1. (C-D) Quantitative reverse transcription PCR assay in (C) NKYS or (D) NK-S1 cells upon FOXM1 knock-down. Data are
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A few E3 ligases of EZH2, such as Praja1,36 TRAF6,9 and
b-TrCP,37 have been identified and functionally clarified in these
years. Very recently, ZRANB1 was reported as a deubiquitinase
of EZH2 in triple-negative breast cancer.38 In NKTL, this study
has identified USP36 as the deubiquitinase that mediates EZH2
K222 deubiquitination. As a nucleolar deubiquitinase, the reg-
ulation of USP36 on EZH2 hints at the nucleolus localization of
EZH2. This correlates to the findings that EZH2 interacts with

a variety of ribonucleoproteins, ribosome components, and
other nucleolar proteins which have been identified by several
high throughput affinity-captured MS analysis.39-41

In summary, we demonstrate in this study for the first time that in
NKTL, overexpressed MELK specifically phosphorylates EZH2 at
S220 and mediates stabilization of EZH2 with the assistance of
USP36.

Figure 4 (continued) upon FOXM1 knock-down in NKYS and NK-S1 cells. NKTL cells were harvested for immunoblots 48 hours after transfection. (F) Level of EZH2
ubiquitination upon knock-down of FOXM1 in NKYS cells. MG132 was given at 1 mM for 6 hours of treatment 48 hours after transfection. (G-H) Level of EZH2 ubiquitination
upon overexpression of indicated proteins in HEK293T cells. MG132 was given at 10 mM for 6 hours of treatment 48 hours after transfection. (F-H) Densitometry analysis
was used to quantify average changes in 3 individual experiments. All immunoblots were performed in at least 3 individual experiments and representative images are
shown. SD, standard deviation.
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