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KEY PO INT S

l Unbiased CRISPR
screens revealed
a novel transcription
hub containing IRF4
and BATF3, which
directly control PD-L1
expression in
ALK1 ALCL.

l IRF4 and BATF3 are
tightly regulated by
a signaling network
downstream of the
nucleophosmin-ALK,
through STAT3 and
the GRB2/SOS1
signalosome.

The success of programmed cell death protein 1 (PD-1)/PD-L1-based immunotherapy
highlights the critical role played by PD-L1 in cancer progression and reveals an urgent
need to develop new approaches to attenuate PD-L1 function by gaining insight into how
its expression is controlled. Anaplastic lymphoma kinase (ALK)-positive anaplastic large-cell
lymphoma (ALK1 ALCL) expresses a high level of PD-L1 as a result of the constitutive
activation of multiple oncogenic signaling pathways downstream of ALK activity, making it
an excellent model in which to define the signaling processes responsible for PD-L1
upregulation in tumor cells. Here, using clustered regularly interspaced short palindromic
repeats (CRISPR)/Cas9 library screening, we sought a comprehensive understanding of the
molecular effectors required for PD-L1 regulation in ALK1 ALCL. Indeed, we determined
that PD-L1 induction is dependent on the nucleophosmin-ALK oncoprotein activation of
STAT3, as well as a signalosome containing GRB2/SOS1, which activates the MEK-ERK and
PI3K-AKT signaling pathways. These signaling networks, through STAT3 and the GRB2/
SOS1, ultimately induce PD-L1 expression through the action of transcription factors IRF4
and BATF3 on the enhancer region of the PD-L1 gene. IRF4 and BATF3 are essential for PD-
L1 upregulation, and IRF4 expression is correlated with PD-L1 levels in primary ALK1 ALCL

tissues. Targeting this oncogenic signaling pathway in ALK1ALCL largely inhibited the ability of PD-L1-mediated tumor
immune escape when cocultured with PD-1-positive T cells and natural killer cells. Thus, our identification of this
previously unrecognized regulatory hub not only accelerates our understanding of the molecular circuitry that drives
tumor immune escape but also provides novel opportunities to improve immunotherapeutic intervention strategies.
(Blood. 20192019;134(2):171-185)

Introduction
Immune checkpoint regulation mediated by programmed cell
death protein 1 (PD-1) and its ligand (PD-L1) has been exten-
sively studied in the age of immunotherapy,1 and targeting
PD-1/PD-L1 has demonstrated durable clinical benefit in wide
variety of human cancers.2,3 However, many patients with cancer
fail to respond to such treatment, and the underlying resistance
mechanisms are not fully understood.1,4,5 It has been suggested
that the PD-L1 expression levels in tumor cells could correlate
with the response to PD-1/PD-L1 blockade.6,7 Therefore, it is
important to thoroughly investigate the mechanisms controlling
PD-L1 induction in tumor cells to improve the clinical response
rate and efficacy of PD-1/PD-L1 blockade in patients with cancer.

In various tumors, PD-L1 can be induced in response to in-
flammatory signals (ie, interferon-g) that are produced by active
anti-tumor immune response or by the tumor microenvironment.
But in many others, PD-L1 is constitutively expressed by the
tumor cells even without obvious external stimulation. One of
the common mechanisms responsible for constitutive expres-
sion of PD-L1 is through oncogenic signaling pathways that are
intrinsically activated; for example, in anaplastic lymphoma
kinase-positive anaplastic large cell lymphoma (ALK1 ALCL). In
ALK1 ALCL, the presentation of a chimeric protein, generated
by chromosomal translocations affecting the ALK gene and
several different partners, most frequently the nucleophosmin
(NPM) gene, is the defining oncogenic event.8,9 The NPM/ALK
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chimeric protein in ALCL is constitutively activated through
autophosphorylation,9,10 and mediates the activation of multiple
oncogenic signaling pathways.11 These oncogenic pathways not
only are essential for promoting tumor cell proliferation but also
could maintain the expression of genes that modulate immune
escape (ie, PD-L1). Consistent with this possibility, PD-L1 ex-
pression in consistently elevated in most ALK1 ALCL cell lines
and primary cases.12

Unlike classical Hodgkin lymphoma and primary mediastinal
large cell lymphoma, in which copy gains of the 9p24.1 locus and
PD-L1/PD-L2 gene amplification were recurrently detected,13,14

the amplification of such a locus has not been found in ALK1

ALCL cells,15 suggesting that signaling events are likely to be
responsible for constitutive elevation of PD-L1 expression in
ALK1 ALCL. In support, the kinase activity of the NPM-ALK
chimeric protein is essential for elevated PD-L1 expression in
these cells, and it requires STAT3 signaling.12 However, the
MEK/ERK signaling pathway, which is also downstream of
NPM/ALK, could contribute to PD-L1 upregulation in ALK1

ALCL.16 Thus, a comprehensive understanding of the signaling
cascades is required.

The newly established RNA-guided clustered regularly inter-
spaced short palindromic repeats (CRISPR)-associated nuclease
Cas9 provides a next-generation approach for genome-scale
functional screening.17,18 Hence, we decided to use the CRISPR
library screening technologies to investigate the complete mech-
anism of PD-L1 induction in ALK1 ALCL.

Methods
See supplemental Experimental procedures, available on the
Blood Web site, for details.

Experimental design
All experiments have been repeated and results reproduced.
Where possible, error bars or P values are shown to indicate
statistical significance. P , .05 was considered statistically
significant.

Cell culture and constructs
Methods for cell culture, plasmid transfection, retroviral trans-
duction, lentiviral production and transduction, and plasmid
constructs were described previously.19-21

Patient samples
All human samples were anonymously coded as stipulated by
the Declaration of Helsinki. Written informed consent was
obtained from the patients. All samples were studied according
to a protocol approved by the Institutional Review Board of Sun
Yat-sen University Cancer Center.

PD-L1 CRISPR library screen
See supplemental Experimental procedures for details. The PD-
L1low cells (10 million for each sort) were enriched by 3 rounds of
fluorescence-activated cell sorting at day 4, day 7, and day 10
after sgRNA library induction. Genomic DNA was extracted and
sgRNA sequences were amplified by 2 rounds of polymerase
chain reaction (PCR). The resulting libraries were sequenced with
single end read with dual-index 75 bp.

Results
CRISPR screen for genes required for PD-L1
expression in ALK1 ALCL
To gain a comprehensive understanding of the mechanisms
of PD-L1 regulation in ALK1 ALCL, we generated a unique
signaling-focused sgRNA library. This library contains 10
single-guide RNAs (sgRNAs) per target that are directed at
59 constitutive exons of ;600 genes in the human genome
(supplemental Table 1), including immune cell signaling com-
ponents in previously known oncogenic pathways required for
lymphoma pathogenesis.20

Cas9-inducible ALCL cell lines, DEL and Karpas299, which
displayed strong endogenous PDL1 expression (Figure 1A;
supplemental Figure 1A), were transduced with the CRISPR li-
brary, after which the PD-L1low cells were enriched by 3 rounds of
fluorescence-activated cell sorting. The sgRNA abundance in
both the PD-L1low and unsorted populations was determined by
sequencing, and the enrichment of sgRNAs in the PD-L1low

population was calculated and plotted (Figure 1B). STAT3,
a transcription factor known to regulate PD-L1 expression in
ALCL,12 was identified as a strong positive hit (Figure 1B),
demonstrating the validity of the screen setup. In addition to
STAT3 sgRNAs, we identified multiple sgRNAs that were highly
enriched in the DEL PD-L1low population, including sgRNAs
targeting IRF4, SOS1, and GRB2 (Figure 1B; supplemental
Figure 1B). Indeed, for the top 10 sgRNAs enriched in the PD-
L1low population in average of 2 repeats, 7 targeted IRF4, 2
targeted SOS1, and 1 targeted STAT3 (Figure 1C), suggesting
that they play critical roles in supporting PD-L1 expression in
ALK1 ALCL.

We then plotted the screen results for all the genes in the library,
ranked by enrichment in the PD-L1low populations (average of 10
sgRNAs), and analyzed all the positive hits responsible for PD-L1
upregulation in both the DEL and Karpas299 lines (Figure 1D-E;
supplemental Figure 1C). Notably, 4 genes (IRF4, STAT3, SOS1,
and GRB2) were common positive hits in both DEL and
Karpas299 lines, highlighting their essential roles in upregulating
PD-L1 in ALK1 ALCL cells (Figure 1E). In addition to these 4
genes, components of the RAS-MEK-ERK pathway (KRAS, RAF1,
SHP2, ERK, and MEK) were positive hits in DEL or Karpas299,
whereas components of the PI3K-AKT-MTOR pathway (PIK3CA,
MTOR, and RICTOR) were positive hits in Karpas299 (Figure 1E),
implicating the MEK-ERK and PI3K-AKT pathways as major
oncogenic signaling pathways required for PD-L1 expression in
ALK1 ALCL. These findings are consistent with previous results
implicating the NPM/ALK chimeric protein as the driving factor
for PD-L1 induction, as the JAK-STAT, RAS-MEK, and PI3K-AKT
pathways are all downstream of NPM/ALK in these cells11;
however, our screen also identified the transcription factor IRF4
as a novel gene responsible for PD-L1 regulation.

IRF4 is essential for PD-L1 expression in ALK1 ALCL
Our unbiased PD-L1 CRISPR library screen (Figure 1) revealed
the transcription factor IRF4 as a novel regulator of PD-L1 ex-
pression in ALK1 ALCL. IRF4 was reported to have elevated
expression in the vast majority of primary ALCL cases,22-24 and
was found to be essential for ALCL survival.25-27 Consistent with
previous reports, depletion of IRF4 expression by 2 individual
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Figure 1. PD-L1 CRISPR library screen in ALK1ALCL. (A) Outline of the workflow of the PD-L1 CRISPR library screen in ALK1 ALCL. (B) Overview of the PD-L1 CRISPR library
screen results in ALK1 ALCL (2 repeats). Shown are results of all sgRNA enrichment in PD-L1low population [measured by log2(PD-L1low/unsorted)] in DEL line. (C) Shown are the
enrichment score [measured by log2(PD-L1low/unsorted)] of the top 10 sgRNAs identified in the PD-L1 CRISPR library screen of DEL line, in an average of 2 repeats. The sgCTRL
score represents the average of 100 negative control sgRNAs. (D) Shown are the ranking of all the genes (average of 10 sgRNAs of each gene) enriched in the PD-L1low population
of both DEL and Karpas299 lines. Y-axis indicates the distribution of standardized enrichment scores (Z-scores) of each gene enrichment. The dashed lines indicate P 5 .01. (E)
List of top 10 genes enriched in the PD-L1low population of both DEL and Karpas299 lines. Y-axis indicates the distribution of standardized enrichment scores (Z-scores) of each
gene enrichment. Green, genes common in both DEL and Karpas299 lines; red, genes in RAS-MEK-ERK pathway; blue, genes in the PI3K-AKT-mTOR pathway.
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Figure 2. IRF4 regulates PD-L1 expression in ALK1ALCL. (A) ALCL lines were transduced with IRF4 or Ctrl sgRNAs along with the green fluorescent protein (GFP). Surface PD-
L1 expression in transduced (GFP1) cells and sgRNA un-transduced (GFP2) cells were measured by flow cytometry. The relative PD-L1 MFI was normalized to the un-transduced
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sgRNAs was highly toxic to all the ALCL lines we tested (sup-
plemental Figure 2A), indicating the efficacy of these sgRNAs.

In a panel of ALK1 ALCL lines, 2 IRF4 sgRNAs significantly im-
paired surface PD-L1 expression (Figure 2A), verifying the
CRISPR library results. Similar results were obtained using a small
hairpin RNA (shRNA) targeting IRF4 in DEL and Karpas299 ALCL
lines (Figure 2B). Importantly, reexpression of an shRNA-resistant
IRF4 cDNA blocked the effect of an IRF4 shRNA on PD-L1 ex-
pression, confirming the specificity of this shRNA and indicating
that PD-L1 inhibition resulted from on-target suppression of IRF4
(Figure 2B; supplemental Figure 2B). In a time-course analysis,
IRF4 sgRNAs suppressed PD-L1 expression at as early as day 2,
when no cell growth inhibition was detected, suggesting that
IRF4 directly and specifically inhibits PD-L1 expression in these
cells (supplemental Figure 2C). Finally, the ability of IRF4 sgRNAs
to inhibit PD-L1 expression was confirmed by immunoblot
(Figure 2C) and real-time PCR (Figure 2D).

We then assessed IRF4 and PD-L1 protein expression, as well as
CD30 controls, by immunohistochemistry (IHC) in 14 primary
cases diagnosed with ALK1 ALCL (Table 1). Notably, PD-L1 and
IRF4 expression were detected in the majority of cases in this
cohort, and high PD-L1 expression was significantly more
common in IRF4-high cases (Figure 2E). PD-L1 IHC scores cor-
related well with IRF4 IHC scores (rs 5 0.64327; P 5 .01307;
Figure 2F), calculated by Spearman’s rank correlation methods.
We conclude that IRF4 is likely to regulate PD-L1 expression in
primary ALK1 ALCL tumors.

IRF4, together with its cotranscriptional factor
BATF3, bind to the enhancer region of the
PD-L1 gene
Because IRF4 ablation in ALK1 ALCL lines appears to diminish
PD-L1 expression at the mRNA level (Figure 2D), IRF4 is likely to
regulate PD-L1 transcription. To test, we generated an IRF4
DNA-binding mutant cDNA19 to test whether its DNA binding is
essential. As expected, ectopic expression of the wild-type IRF4
coding region rescued PD-L1 expression from the inhibition of
a 39UTR-directed IRF4 shRNA, whereas the IRF4 DNA-binding
mutant cDNA was incapable of doing so (Figure 3A; supple-
mental Figure 3A), demonstrating that the DNA binding ability
of IRF4 is essential in this context.

IRF4 binds only weakly to DNA unless it associates with other
transcriptional factors, such as the basic leucine zipper tran-
scription factor (ATF-like).28-30 A recent study in adult T-cell
leukemia/lymphoma demonstrated a key transcription factor
complex involving IRF4 and BATF3, which binds to AP1-IRF
composite (AICE) DNA motifs.31 Analyses of the PD-L1 gene

revealed a highly conserved AICE DNA motif in intron 2, ;9 kb
downstream from the transcription start site (Figure 3B). Of
note, this sequence contained a highly conserved IRF4 binding
motif (GAAA) and a weak AP-1 binding site (TGTTTCA). Previ-
ous chromatin immunoprecipitation-Seq analysis in adult T-cell
leukemia/lymphoma cells suggested that IRF4 and BATF3 bind
to this predicted PD-L1 AICE motif (supplemental Figure 3B).
Consistentwith this observation, our chromatin immunoprecipitation-
coupled real-time PCR experiments demonstrated that both IRF4
and BATF3 bound avidly to DNA fragments (;300 bp) containing
the candidate PD-L1 enhancer region in DEL and Karpas299 lines
(Figure 3B), supporting the hypothesis that IRF4/BATF3 complex
bound to the AICE motif in the PD-L1 enhancer.

To investigate the role of BATF3 in regulating PD-L1 expression,
we designed 2 sgRNAs against BATF3 and examined their ability
to inhibit PD-L1 expression in ALK1 ALCL. Similar to IRF4, ab-
lation of BATF3 using 2 distinct sgRNAs significantly attenuated
PD-L1 surface expression (Figure 3C), total protein expression
(Figure 3D), and mRNA transcription (Figure 3E). Similar results
were obtained using a shRNA targeting BATF3 in ALK1 ALCL
lines (Figure 3F-G). Thus, a transcription factor complex involving
IRF4 and BATF3 is a central regulatory hub controlling PD-L1
expression in ALK1 ALCL.

GRB2/SOS1 signalosome contributes to PD-L1
induction downstream of ALK-NPM in ALK1 ALCL
In addition to IRF4, 4 other genes were identified as common
positive hits from our PD-L1 CRISPR screen: GRB2, SOS1,
STAT3, and KRAS/RAF. Although the involvement of STAT3 in
PD-L1 regulation is known,12 our screens implicated the GRB2-
SOS1-RAF-RAS pathway as a novel mechanism of PD-L1 regu-
lation in ALK1 ALCL. To verify this, we designed sgRNAs
targeting GRB2, SOS1, and KRAS and tested their ability to
inhibit PD-L1 expression in DEL and Karpas299 cells. In addition
to STAT3, depletion of GRB2/SOS1/KRAS expression efficiently
reduced PD-L1 surface expression in both DEL and Karpas299
lines (Figure 4A), confirming our screening results. The role of
GRB2 and SOS1 sgRNAs in regulating PD-L1 expression was
further confirmed by immunoblot (Figure 4B) and by real-time
PCR (Figure 4C). All these sgRNAs effectively diminish the ex-
pression of their gene target (Figure 4B; supplemental Figure 3C).

Using sgRNAs, depletion of both GRB2 and SOS1 was highly
toxic to all ALK1 ALCL lines tested, but had little effect in ALK-
negative ALCL lines (supplemental Figure 4A), suggesting the
GRB2/SOS1complex plays an important role in transmitting
signals emanating from the NPM-ALK fusion. In support, GRB2
and SOS1 ablation had no effect on the PD-L1 expression in
ALK-negative ALCL lines, indicating that their role in regulating

Figure 3. IRF4 and BATF3 directly regulate PD-L1 transcription in ALK1ALCL. (A) DEL cells transduced with WT or DNA binding mutant IRF4, or with a control vector, were
induced to express control or IRF4 shRNAs along with GFP. Surface PD-L1 expression in uninfected (GFP2) cells and shRNA-infected (GFP1) cells were measured by flow
cytometry. IRF4 expression (right) wasmeasured by intracellular flow cytometry. Error bars denote SEMof triplicates. **P, .01. (B) Diagrammatic representation of the AICEmotif
in PD-L1 predicted enhancer region (up). Chromatin immunoprecipitation from indicated antibodies was subjected to real-time PCR analysis for the PD-L1 enhancer region in
DEL and Karpas299 lines (low). Error bars denote SEM of triplicates. (C) ALCL lines were infected with BATF3 or Ctrl sgRNAs, along with GFP. Surface PD-L1 expression in
uninfected (GFP2) cells and sgRNA infected (GFP1) cells was measured by flow cytometry. The relative PD-L1 MFI was normalized to the uninfected (GFP2) cells. Error bars
denote SEM of 4 repeats. P , .05 for all the data. (D) ALCL lines were infected with BATF3 or Ctrl sgRNAs, selected and induced to expression. Lysates were analyzed by
immunoblotting for the indicated proteins. (E) ALCL lines were infected with BATF3 or Ctrl sgRNAs, selected and induced to expression; PD-L1 gene expression was measured
by real-time PCR. Error bars denote SEM of triplicates. (F) ALCL lines were infected with BATF3 or Ctrl shRNAs along with GFP. Surface PD-L1 expression in uninfected (GFP2)
cells and shRNA-infected (GFP1) cells was measured by flow cytometry. The relative PD-L1 MFI was normalized to the uninfected (GFP2) cells. Error bars denote SEM of
triplicates. P , .05 for all the data. One of the represented histogram is shown (right). (G) ALCL lines were infected with BATF3 or Ctrl shRNAs, selected and induced to
expression. Lysates were analyzed by immunoblotting for the indicated proteins.
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PD-L1 expression is ALK-dependent (supplemental Figure 4B-
C). In fact, in ALK1 lines, GRB2 and SOS1 bound constitutively to
NPM-ALK (Figure 4D), in line with previous studies.32,33 Fur-
thermore, this association was highly dependent on ALK kinase
activity, as the ALK kinase small molecular inhibitor crizotinib
markedly diminished the interaction between ALK and GRB2
and SOS1 (Figure 4E). ALK kinase inhibition using crizotinib also
strongly inhibited PD-L1 surface expression and mRNA tran-
scription in ALK1 ALCL lines (Figure 4F; supplemental Figure 5A).
In addition, ectopic expression of ALKWTcDNA in lymphoma cell
line L428 strongly induced PD-L1 expression, whereas the kinase
dead mutant cDNA (K210R) was incapable of doing so (sup-
plemental Figure 5B, left), consistent with the crizotinib results.
Similar to Figure 4E, the kinase dead ALK mutant also lost the
ability of binding to SOS1 (supplemental Figure 5B, right),
suggesting that the interaction of ALK to SOS1/GRB2 signal-
osome is critical. Together, these data suggest that the sig-
nalosome complex containing GRB2 and SOS1 is an essential
mediator regulating PD-L1 expression ALK1 ALCL, downstream
of NPM-ALK.

GRB2, SOS1, and STAT3 contribute to IRF4/BATF3
expression in ALK1 ALCL
Given that IRF4, BATF3, GRB2, SOS1, and STAT3 are all re-
quired to maintain the elevated PD-L1 expression in ALK1 ALCL,
we sought to understand the epistatic relationships between
these key factors. Previous work suggested that NPM-ALK sig-
naling promotes IRF4 expression.25,34 In our studies, treatment
of a panel of ALK1 ALCL lines with crizotinib significantly down-
regulated IRF4 expression measured by intracellular flow cyto-
metry and immunoblot (Figure 5A; supplemental Figure 5C).
Similarly, crizotinib treatment also considerably downregulated
BATF3 expression in all the ALK1 ALCL lines tested (Figure 5B).
Consistently, 2 specific ALK shRNAs also significantly inhibited
PD-L1 surface expression, as well as IRF4 and BATF3 expression
in ALK1ALCL lines (supplemental Figure 5D-E). Notably, ectopic
expression of both IRF4 and BATF3 coding region significantly
rescued PD-L1 expression in crizotinib treated cells (supple-
mental Figure 6A). Furthermore, the binding of both IRF4 and
BATF3 to the PD-L1 enhancer region was markedly reduced by
crizotinib treatment of Karpas299 cells (Figure 5C). Together,
these data suggest that crizotinib downregulates PD-L1 ex-
pression at least partially as a result of suppression of IRF4 and
BATF3 in ALK1 ALCL.

We next investigated the mechanism by which the NPM-ALK
oncoprotein regulates IRF4 and BATF3 expression in ALK1

ALCL. STAT3 has been shown to upregulate IRF4 protein ex-
pression in ALCL.27,34 However, in addition to STAT3, the GRB2/
SOS1 signalosome complex is also downstream of NPM-ALK,

and could contribute to IRF4 expression. To address these
possibilities, we assessed the effect on IRF4 expression by in-
tracellular flow cytometry in GRB2, SOS1, or STAT3 sgRNAs
transduced ALK1 ALCL lines (Figure 5D). STAT3 depletion
downregulated IRF4 expression in 2 of the lines (SUDHL1 and
SR-786), but not in the other 3 (DEL, Karpas299, and L-82). In
contrast, depletion of GRB2 or SOS1 significantly impaired IRF4
expression in DEL, Karpas299, L-82, and SUDHL1, but not in
SR786 cells (Figure 5D). The ability of GRB2 and SOS1 sgRNAs to
inhibit IRF4 expression was further confirmed by immunoblot
and real-time PCR analysis in DEL and Karpas299 lines (Figure 5E;
supplemental Figure 6B). Therefore, although STAT3 regulates
IRF4 expression in some lines, the NPM-ALK-dependent GRB2/
SOS1 signalosome contributes to IRF4 expression in a majority of
ALK1 ALCL lines.

To further investigate whether GRB2/SOS1 regulates PD-L1
expression by upregulating IRF4, we examined the ability of
ectopic expression of the IRF4 coding region to rescue PD-L1
expression in GRB2, SOS1, or STAT3 depleted cells (Figure 5F;
supplemental Figure 6C). In both DEL and Karpas299 cells,
ectopic expression of IRF4 partially rescued PD-L1 expression in
GRB2 and SOS1 knockout cells, but not in STAT3 knockout cells
(Figure 5F). Therefore, IRF4 is functional downstream, and is at
least partially responsible for GRB2/SOS1-mediated PD-L1
upregulation in these lines.

Although GRB2/SOS1 regulates IRF4 expression in DEL and
Karpas299 cells, BATF3 expression is unaffected (Figure 5E).
However, knockout of STAT3 by sgRNAs largely impaired
BATF3 expression in these cells (Figure 5G), revealing a novel
consequence of STAT3 activation.

GRB2/SOS1 mediates ERK and AKT activation,
which leads to IRF4 expression in ALK1 ALCL
Among the signaling pathways enriched in our PD-L1 CRISPR
library screening, the RAS-MEK-ERK and PI3K-AKT-MTOR
pathways were the most significant (Figure 1E). Indeed, in
RTK pathways, SOS1/GRB2 signalosome is able to activate
RAS-ERK and AKT pathways.35 In ALK1 ALCL lines, ablation of
GRB2 or SOS1 strongly inhibited both ERK and AKT activation
(Figure 6A), raising the possibility that both of these pathways
were contributing to PD-L1 and IRF4 expression. Indeed,
a highly specific MEK inhibitor, PD0325901, inhibited PD-L1
expression in all ALK1 ALCL lines tested (Figure 6B, left). In
a similar manner, the PI3K/mTOR dual-inhibitor BEZ235 inhibited
PD-L1 expression in most of the ALK1 ALCL lines, but had only
a limited effect of PD-L1 expression in DEL (Figure 6B, right),
consistent with the results of our CSRIPR library screen (Figure 1E).
Similar results were achieved by assessing PD-L1 mRNA expression

Figure 6. PD-L1/ IRF4 expression are dependent on ERK and AKT signaling. (A) DEL and Karpas299 lines were infected with GRB2, SOSO1, or Ctrl sgRNAs, selected and
induced to expression. Lysates were analyzed by immunoblotting for the indicated proteins. (B) IndicatedALCL cell lines were treated withMEK inhibitor PD0325901 (10mM), and
PI3K/mTOR dual inhibitor BEZ235 (10 nM) for 24 hours, surface PD-L1 expression was measured by flow cytometry. Error bars denote SEM of triplicates. (C) DEL and Karpas299
cells were treated with MEK inhibitor PD0325901 and PI3K/mTOR dual inhibitor BEZ235 at indicated concentrations for 48 hours. Lysates were analyzed by immunoblotting for
the indicated proteins. (D) DEL and Karpas299 cells were treated with MEK inhibitor PD0325901 and PI3K/mTOR dual inhibitor BEZ235 at indicated concentrations for 48 hours.
IRF4 expression was measured by intracellular flow cytometry and normalized to DMSO controls. Error bars denote SEM of triplicates. (E) DEL and Karpas299 cells were treated
with MEK inhibitor PD0325901 (1 mM) for 4 hours. IRF4 gene expression was measured by real-time PCR. Error bars denote SEM of triplicates. (F) DEL and Karpas299 cells
transduced withWT IRF4 or with a control vector were treated withMEK inhibitor PD0325901 at indicated concentrations for 24 and 48 hours. Surface PD-L1 expression in treated
and untreated (DMSO) cells weremeasured by flow cytometry. The relative PD-L1MFI was normalized to untreated (DMSO) cells. Error bars denote SEMof triplicates. **P, .01. (G)
Karpas299 cellswere induced to expressMTORorCtrl sgRNAs alongwithGFP. Intracellular IRF4 and surface PD-L1expression in uninfected (GFP2) cells and sgRNA infected (GFP1)
cells were measured by flow cytometry. The relative PD-L1 and IRF4 MFI was normalized to the uninfected (GFP2) cells. Error bars denote SEM of 4 repeats. P, .05 for all the data.
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(supplemental Figure 7A). Therefore, both ERK and AKT activity
contribute to PD-L1 expression in ALK1 ALCL, and are engaged
by the GRB2/SOS1 signalosome downstream of NPM-ALK.

We next investigated whether ERK or AKT activity are required
for IRF4 expression in ALK1 ALCL. Of note, the MEK inhibitor
PD0325901 significantly suppressed IRF4 expression in both
DEL and Karpas299 cells, measured by IRF4 immunoblot and
intracellular flow cytometry staining (Figure 6C-D, left). These
results were confirmed by real-time PCR analysis (Figure 6E).
Notably, ectopic expression of IRF4 coding region significantly
rescued PD-L1 expression in PD0325901-treated cells (Figure 6F).
Thus, MEK-ERK pathway regulates PD-L1 expression by upreg-
ulating IRF4.

Meanwhile, the PI3K/mTOR dual-inhibitor BEZ235 inhibited
IRF4 expression as well, but only in the Karpas299 line (Figure
6C-D, right), which is also consistent with our CRISPR screen
results in which PD-L1 expression is uniquely dependent on
PI3K-AKT signaling in the Karpas299 line (Figures 1E and 6B). To
further confirm, we designed 2 mTOR sgRNAs to probe the
pathway function genetically (supplemental Figure 7B). Knock-
ing out mTOR inhibited PD-L1 expression in Karpas299 cells
(Figure 6G), and importantly, IRF4 expression was also de-
creased inmTOR-depleted cells (Figure 6G), in line with our drug
studies.

IRF4, GRB2, and SOS1 regulate
immunosuppression and immune escape in
ALK1 ALCL
The success of anti PD-1 or PD-L1 checkpoint therapies relies on
their ability to promote anti-tumor T-cell immunity.36 Therefore,
we established a Jurkat T-cell line constitutively expressing the
PD-L1 receptor PD-1 in the surface (supplemental Figure 7C)
and used coculture experiments with ALK1 ALCL cells to
evaluate the effects of IRF4, GRB2, and SOS1 depletion on
T-cell activation and proliferation. Coculture of PD-1-expressing
Jurkat T cells with DEL cells inhibited induction of the T-cell
activation marker CD69 (Figure 7A), as expected. When we
deleted PD-L1 expression using sgRNAs in the tumor cells, or
treated the culture with the clinically employed anti-PD1 an-
tibody nivolumab, T-cell activation was restored (Figure 7B).
Importantly, the tumor cells depleted of IRF4, GRB2, or SOS1
failed to inhibit T-cell activation to a similar degree as with PD-L1
depletion or the presence of nivolumab (Fig. 7A and B). Similar
effects were also observed in Karpas299 cells (supplemental
Figure 7D).

The PD-1/PD-L1 pathway inhibits T-cell proliferation by reducing
interleukin-2 production and restricting T-cell cycle progression.37

We therefore used the carboxyfluorescein diacetate succinimidyl

ester (CFSE)-based T-cell proliferation assay to examine the effect
of IRF4, GRB2, and SOS1 depletion on T-cell proliferation. When
cocultured with PD1-expressing Jurkat T cells, both DEL and
Karpas299 cells reduced T-cell proliferation, but depletion of
IRF4, GRB2, or SOS1 in the ALCL cells significantly prevented this
inhibition (Figure 7C-D). Consistent with these results, DEL or
Karpas299 depleted of IRF4, GRB2, or SOS1 failed to inhibit
interleukin-2 secretion by PD1-expressing Jurkat cells (Figure 7E;
supplemental Figure 7E).

Finally, we investigated the effect of natural killer (NK) cell-
mediated killing in the coculture system. The PD1-positive NK
cell line YT1 was cocultured with DEL cells, and the YT1 cell
cytotoxicity was determine by counting the remaining live ALCL
cells. As expected, depletion of PD-L1 in DEL cells restored NK
cell cytotoxicity (Figure 7F). Importantly, depletion of GRB2,
SOS1, IRF4, or BATF3 permitted NK cell cytotoxicity to a degree
similar to that of PD-L1 knockout cells (Figure 7F).

Discussion
We used an unbiased high-throughput CRISPR library screening
technology to uncover the novel mechanisms of PD-L1 regu-
lation in ALK1 ALCL. This effort provided a comprehensive
understanding of the major oncogenic signaling processes
supporting PD-L1 expression in these tumor cells and revealed
a novel role for the transcription factor IRF4 in PD-L1 upregu-
lation of ALK1 ALCL, acting together with its transcriptional co-
factor BATF3. Interestingly, this transcription hub is tightly
regulated by a signaling network downstream of the NPM-ALK
oncoprotein, including STAT3 and the GRB2/SOS1 signal-
osome, which engages the MEK-ERK and PI3K-AKT pathways
(supplemental Figure 8). Targeting this oncogenic signaling
cascade significantly attenuated the capacity of ALK1 ALCL cells
to suppress the function of PD-1-positive T cells and NK cells
through PD-L1. Together, our findings provide for the first time
a broad understanding of the oncogenic signaling cascade re-
sponsible for upregulation of PD-L1 in ALK1 ALCL and suggest
new strategies to improve immunotherapy efficacy.

Several transcription factors that directly regulate PD-L1 tran-
scription have been identified, including MYC,38 HIF-1a/HIF-
2a,39,40 STAT3,12,15,41 the NF-kB subunit RELA,42-44 and the AP-1
family members cJUN and JUNB.45 Here we report a critical role
for a novel transcription factor complex comprising IRF4 and
BATF3 that can directly regulate PD-L1 transcription in T lym-
phoma. Although other TFs bind to the PD-L1 promotor region,
IRF4 and BATF3 bind the AICE motif, which is located in the
second intron (19082 to 19092) of the PD-L1 gene, suggesting
that region harbors a PD-L1 transcriptional enhancer. Moreover,
in a recent study in melanoma, manipulation of IRF4 levels

Figure 7. GRB2, SOS1, and IRF4 are required for ALK1ALCL immunosuppression. (A) ALCL line DEL was infected with GRB2, SOSO1, IRF4, or Ctrl sgRNAs along with GFP,
selected and induced to expression, after coculture with PD-1 expressing Jurkat T cells (GFP2; tumor: T cell ratio 5 3:1) for 24 hours. T-cell activation was measured by CD69
expression. Shown are the percentage of CD69-positive T cells (GFP2) in each coculture condition. (B) PD-1-expressed Jurkat T cells were cocultured with ALCL cells (DEL) in the
presence of indicated concentration of PD1 antibody nivolumab or with DEL infected with PD-L1, GRB2, SOSO1, IRF4, or Ctrl sgRNAs for 24 hours. Relative CD69 expression was
measured by flow cytometry and normalized to the activated T-cell-only controls. Tumor: T-cell ratio 5 3:1. (C-D) ALCL lines DEL and Karppas299 were infected with indicated
sgRNAs, selected and induced to expression, after coculture with PD-1-expressed Jurkat T cells for 4 days. T-cell proliferation was measured by CFSE level. Shown are the CFSE
staining histogram (C) and the relative CFSEMFI normalized to the activated T-cell-only controls (D). Tumor: T-cell ratio5 3:1. (E) ALCL lines DEL and Karppas299were infectedwith
indicated sgRNAs, selected and induced to expression, after being cocultured with PD-1 expressed Jurkat T cells. The IL-2 section was measured by ELISA and normalized to
activated T-cell-only controls. Tumor: T-cell ratio5 3:1. (F) DEL line was infected with indicated sgRNAs, selected and induced to expression, after coculture with PD-1-positive NK
cell line YT1 at the indicated ratio. The relative viable tumor cells remaining was shown. All error bars denote SEM of triplicates in panels B, D, and E, and SEM of duplicates in panel F.
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followedby interferon g stimulation regulates PD-L1 expression.46

Thus, it is conceivable that this IRF4/BATF3 complexmay cooperate
with transcription factors such as STAT3 that are bound to the PD-L1
promoter, to achieve optimal and full expression of PD-L1.

Despite the essential oncogenic role, the molecular mechanisms
leading to IRF4 upregulation in lymphoma remain incompletely
understood. STAT3 certainly played a crucial role in supporting
IRF4 expression in ALCL,27,34 as suggested by previous studies27,34

and our results. In addition, our analysis also revealed a novel
mechanism of IRF4 regulation in ALK1 ALCL mediated by the
ALK/GRB2/SOS1 signalosome, which engages downstream
the MEK-ERK and PI3K-AKT signaling pathways. Nevertheless,
STAT3 was identified as playing a key role in regulating PD-L1
expression in both cell lines employed in our CRISPR screen. This
may result from its capacity to sustain the cofactor of IRF4,
BATF3 (Figure 5). Therefore, STAT3 regulation of PD-L1 ex-
pression in ALK1 ALCL could be mediated by distinctive
mechanisms: either through direct transcriptional regulation or
indirectly through the IRF4-BATF3 complex. Similarly, a recent
study also suggested that IRF4 is downstream of NF-kB in some
ALCL lines.24 Nevertheless, the NF-kB subunits were not hits in
our PD-L1 CRISPR library screens (Figure 1), although this could
also be a result of redundancy of the NF-kB factors. This pre-
sumably also occurs because ALK-mediated signaling is suffi-
cient to induce IRF4 even in the absence of contributions from
NF-kB. Future work should explicate the intricate mechanisms
that regulate the key transcription factor IRF4 and assess the
relative importance of this collection of potential signaling
pathways in maintaining IRF4 expression.

PD-1/PD-L1blockade are currently being examined in multiple
non-Hodgkin lymphoma subtypes, including T-cell lymphoma. A
recent phase 1 study using the anti-PD-1 monoclonal antibody
nivolumab provided encouraging evidence.47 From this per-
spective, targeting the signaling pathways identified in this study
that control IRF4 and BATF3 would be an attractive strategy to
improve immunotherapy efficacy. Of note, ALK gene rear-
rangements also occur in approximately 5% of patients with
nonsmall cell lung cancer, commonly in an EML4-ALK fusion.
Interestingly, EML4-ALK oncoprotein promotes PD-L1 induction
in a MEK-ERK- and PI3K-AKT-dependent manner, similar to
NPM-ALK. Therefore, it is reasonable to predict that IRF4 might
play an essential role in this context as well. In this regard, al-
though direct IRF4 inhibitors are not currently clinically available,
drugs targeting ALK or ERK activity could effectively cooperate
with clinically used PD-1/PD-L1blockade in a IRF4-dependent
manner for patients suffering from ALK1 diseases.
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