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KEY PO INT S

l Extracellular ATP
activates NLRP3
inflammasomes,
resulting in MDSC
dysfunction.

l Preventing MDSC
inflammasome
activation and
conserving IL-1b
secretion decreases
GVHD lethality.

Myeloid-derived suppressor cells (MDSCs) can subdue inflammation. In mice with acute
graft-versus-host disease (GVHD), donor MDSC infusion enhances survival that is only
partial and transient because of MDSC inflammasome activation early posttransfer,
resulting in differentiation and loss of suppressor function. Here we demonstrate that
conditioning regimen–induced adenosine triphosphate (ATP) release is a primary driver of
MDSC dysfunction through ATP receptor (P2x7R) engagement and NLR pyrin family
domain 3 (NLRP3) inflammasome activation. P2x7R or NLRP3 knockout (KO) donor MDSCs
provided significantly higher survival than wild-type (WT) MDSCs. Although in vivo
pharmacologic targeting of NLRP3 or P2x7R promoted recipient survival, indicating in vivo
biologic effects, no synergistic survival advantage was seen when combined with MDSCs.
Because activated inflammasomes release mature interleukin-1b (IL-1b), we expected that
IL-1b KO donor MDSCs would be superior in subverting GVHD, but such MDSCs proved

inferior relative to WT. IL-1b release and IL-1 receptor expression was required for optimal MDSC function, and
exogenous IL-1b added to suppression assays that includedMDSCs increased suppressor potency. These data indicate
that prolonged systemic NLRP3 inflammasome inhibition and decreased IL-1b could diminish survival in GVHD.
However, loss of inflammasome activation and IL-1b release restricted to MDSCs rather than systemic inhibition
allowed non-MDSC IL-1b signaling, improving survival. Extracellular ATP catalysis with peritransplant apyrase ad-
ministered into the peritoneum, the ATP release site, synergized with WT MDSCs, as did regulatory T-cell infusion,
which we showed reduced but did not eliminate MDSC inflammasome activation, as assessed with a novel inflam-
masome reporter strain. These findings will inform future clinical using MDSCs to decrease alloresponses in
inflammatory environments. (Blood. 2019;134(19):1670-1682)

Introduction
Graft-versus-host disease (GVHD) remains a major source of
transplantation complications, with morbidity rates up to 15%,
limiting the efficacy of allogeneic hematopoietic stem cell
transplantation.1 GVHD prophylaxis consists primarily of globally
immune suppressive drugs that largely target T cells. In the
earliest phase of GVHD, T cells are primed by innate im-
mune mediators, including myeloid cells, that drive their ac-
tivation and expansion.2-4 Myeloid lineage cells, maintained in

a relatively quiescent state, act as sentinels; upon activation,
phenotype and motility changes occur to shape the T-cell
response. To balance inflammation, regulatory myeloid line-
age cell populations, such as myeloid-derived suppressor cells
(MDSCs), are present. MDSCs, comprising a heterogeneous
population of early myeloid progenitors defined by their func-
tional ability to suppress innate and adaptive immune activation,
have characteristics of immature granulocytes, macrophages, or
dendritic cells. MDSCs increase in number under conditions of
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distress (eg, chronic inflammation, tumor burden) to limit
pathology5-9.

MDSC elimination or forced differentiation into mature myeloid
cells has been used to subvert tumor-associated immune
suppression.10-12 Conversely, MDSC expansion or infusion has
been explored to buffer inflammation for therapeutic bene-
fit. We and others have shown short-term bone marrow (BM)
cultures with well-defined cytokine cocktails (eg, granulocyte-
macrophage colony-stimulating factor (GM-CSF) plus gran-
ulocyte colony-stimulating factor (G-CSF) produce immature
myeloid cells with suppressor function and the capacity to affect
GVHD survival and clinical outcomes.13-16 MDSCs are remarkably
malleable and employ multiple suppressor mechanisms de-
pendent upon environmental signals. Antigen-independent
suppression can occur via upregulation of coinhibitory li-
gands, soluble factor production, and essential amino acid
depletion. Arginase-1 (Arg1) or nitric oxide (Nos2) production
metabolizes extracellular L-arginine, which is essential for acti-
vated T-cell expansion.13,17,18 Interleukin-13 (IL-13) activation
supports an Ly6C1CD11b1Arg11 (MDSC-IL13) population,
promoting metabolic stress and T-cell dysfunction.13 Other re-
ported mechanisms include catabolic disruption through cys-
teine, tryptophan depletion, or induction of regulatory T cells
(Tregs).19,20

Under inflammatory conditions, MDSC-IL13 efficacy is limited by
cell-intrinsic inflammasome activation, release of inflammatory
mediators, and myeloid differentiation.14 The inflammasome is
an intracellular multiprotein complex that forms in response to
pathogen- or danger-associated molecular patterns, consisting
of caspase-1 and adaptor protein apoptosis-associated speck-
like protein containing CARD (ASC), and is required for matu-
ration of proinflammatory IL-1b, IL-18, and pyroptosis-inducer
gasdermin-D.21-23 An initiating signal (signal 1), such as bacterial
lipopolysaccharide (LPS)–triggered TLR4, promotes NFkB ac-
tivity and caspase-1 activation. Canonical inflammasome acti-
vation requires a secondary stimulus to engage unique adaptor
proteins tailored to sense distinct danger signals. Absent in
melanoma 2 (AIM2) inflammasome activation by damaged or
foreign cytosolic DNA, NLR family CARD domain containing
4 (NLRC4) activation via bacterial flagellin, and NLR pyrin family
domain 3 (NLRP3 or cryopyrin) activation by stress or danger
signals (alum, urate, or ATP) all lead to cleavage of inactive
pro–caspase-1 into an active form, leading to pro–IL-1b pro-
cessing and secretion.21,23-25 Here we sought to interrogate in-
flammatory pathways linked to myeloid cell maturation and
define mediators of MDSC inflammasome-associated loss of
function to identify targets for enhancing MDSC potency.

Methods
Experimental animals
Female 8- to 12-week-old BALB/cAnNCr (H2d, catalog #555) and
C57BL/6NCr (B6, H2b, #556) mice were purchased from the
National Cancer Institute colony at Charles River; B6.129S7-
Il1r1tm1Imx/J (IL-1 receptor [IL-1R] knockout [KO], #003245) and
B6.129P2-P2rx7tm1Gab/J (P2x7R KO, #005576) mice were
purchased from The Jackson Laboratory. Myosin regulatory light
chain interacting protein (IDOL)–transgenic mice were bred
and maintained in house. Bones from MyD88 KO MyD88/TRIF

double KO (dKO) donors were provided by Samithamby Jeyaseelan
Jey (Louisiana State University); caspase-1/11 dKO, caspase-11
KO, IL-1b KO, AIM2 KO, NLRC4 KO, and NLRP3 KO bones were
provided by J.P.-Y.T. Unless otherwise noted, all KO and trans-
genic mice were maintained on a C57Bl/6 (B6) background. Mice
were housed in a specific pathogen-free facility in microisolator
cages under approved protocols by the University of Minnesota
Institutional Animal Care and Use Committee.

MDSC-IL13, inflammasome activation
and detection
Murine MDSC-IL13s were generated by culturing donor BM
with 100 ng/mL human granulocyte CSF (Neupogen; Amgen),
and 0.4 to 2.5 ng/mL of recombinant murine granulocyte-
macrophage CSF (415-ML), with recombinant murine IL-13 (413-
ML; R&D Systems) added on day 3 for arginase-1 induction.13

Trypsin/EDTA and light scraping on day 4 recovered .92%
CD11b1 cells, with expected enrichment of Ly6Chi monocytic
MDSCs, as seen previously.13 Where indicated, on day 4,
MDSC-IL13s were treated for 3 hours with LPS (0.2 mg/mL; LPS-
EK Ultrapure; Invivogen) and then for 1 hour with ATP (2 mM;
A7699; Sigma) before harvest. Where indicated, flagellin
(0.12 mg/mL; FLA-ST Ultrapure; Invivogen) in profect-P1 was de-
livered to engage NLRC4. In AIM2 inflammasome activation,
Lipofectamine 2000 was used to deliver poly(deoxyadenylic-
thymidylic) acid sodium salt (1.6 mg/mL; P0883; Sigma). The
FAM-FLICA Caspase-1 assay kit (#98; ImmunoChemistry
Technologies) for detection of active caspase-1 was used per
manufacturer instructions; active caspase-1 was detected by flow
cytometry.

GVHD and reagents
BALB/c recipients were lethally irradiated (700 cGy of total-body
irradiation by X-ray) on day21 and given B6 donor BM (1e7) and
purified CD25-depleted T cells (2e6; Stemcell Technologies
EasySep negative cell isolation system) on day 0 to induce acute
GVHD (aGVHD). Some cohorts were coinfused with B6 MDSC-
IL13s (6e6) and/or Tregs (2e6) on day 0. MDSC-IL13s from
KO donors were confirmed to have similar Ly6Chi cell surface
phenotypes, suppressive capacities, and growth characteristics
after culture. Clinical GVHD and daily survival monitoring were as
described previously.26MCC950 (20-50mg/kg; #5.38120; Sigma),27

3,5,7-trihydroxy-49-methoxy-8-(3-hydroxy-3-methylbutyl)-flavone
icariin derivative (ICTA; 30 mg/kg; provided by Dr Sheng Wei,
Moffitt Cancer Center),28 and A-438079 (16 mg/kg; A9736;
Sigma)29,30 were administered intraperitoneally on day 21 and
then daily or every other day for 1 to 4 weeks; apyrase (4 units;
A6237; Sigma) was administered daily from day 0 to 4.

Flow cytometry, BLI, and suppression assay
Flow cytometric data were acquired on a BD LSRFortessa and
analyzed using FlowJo software. MDSC lineage (granulocytic vs
monocytic) was identified using the following antibodies: CD11b
eFlour450, M1/70; Ly6C PerCP-Cy5.5, AFS98; Ly6G APC, 1A8;
MHC class 2 APC-eFluor 780 M5/114.15.2; CD115 Alexa Fluor
488, AFS98 (eBioscience); and CD11c PE, N418 (Becton Dick-
enson), as previously reported.13 Bioluminescent imaging (BLI)
was performed using a Xenogen IVIS 200 (Caliper Life Sciences)
after injection with 3 mg of firefly luciferin substrate (122799;
PerkinElmer) administered intraperitoneally 5 minutes before
imaging. Whole-body images were captured, and the region of
interest was used to quantify radiance. After imaging, animals
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were euthanized, and organs were transferred to plates con-
taining 0.5 mg/mL of luciferin in phosphate-buffered saline for
explant imaging. For T-cell suppression, titrated MDSCs were
diluted in complete RPMI media containing 150 mMof L-arginine;
responding T cells (1e6 per mL) stained with 3.5 mM of carbox-
yfluorescein succinimidyl ester (CFSE; C34554, Thermo Fisher),
T cell–depleted splenocytes (0.5e6 per mL), and anti-CD3e
(0.25 mg/mL; 14-0031-86; Invitrogen) were added to 96-well
flat-bottom plates and incubated for 3 days before analysis
of total CD8 T-cell proliferation. Indicated inhibitors were
added 1 hour before ATP addition: glyburide (100 mM;
sc-200982a; Santa Cruz Biotechnology), MCC950 (10 mM;
5.38120; Sigma), ICTA (200 mg/mL; as in “GVHD and reagents”),
b-hydroxybutyrate (BHB; 200 mM; provided by Dr Vishwa Dixit),
A-438079 (25 mM; A9736; Sigma), and ruxolitinib (1 mM; S1378;
Selleck Chemicals).

ELISA and arginase assay
Culture supernatant murine IL-1b was quantified 1 hour after
ATP addition with the IL-1b/IL-1F2 DuoSet enzyme-linked im-
munosorbent assay (ELISA) kit (DY401; R&D Systems), and
cell-associated arginase-1 activity was determined using the
QuantiChrom Arginase assay kit (DARG-100; Bioassay Systems)
according to manufacturer instructions.

Statistics
Kaplan-Meier survival curves were analyzed by log-rank test and
in vitro data by Student t test or 2-way analysis of variance as
indicated (GraphPad Prism Software). Bar graphs represent mean
values and 1 standard deviation from the mean; statistical sig-
nificance was defined as P # .05.

Results
TLR-triggered MDSC loss of function
In GVHD mice, MDSC efficacy is rapidly compromised in part
because of inflammasome activation.14 To uncover druggable
targets, extrinsic inflammasome-activating factors were in-
vestigated. Conditioning-associated tissue damage promotes
bacteria-derived pathogen-associated molecular pattern re-
lease, including LPS from mucosal barrier disruption that pro-
motes GVHD.31,32 The TLR family of receptors specialize in
sensing environmental dangers (eg, TLR4-LPS), promoting im-
mune activation via 2 intracellular signaling adaptor proteins,
MyD88 and TRIF.33-36 In vitro LPS stimulation of MDSCs aug-
mented caspase-1 activity, measured by FLICA, a cell-permeable
fluorescent probe that binds active caspase-1 (Figure 1A). TLR4
downstream MyD88 signaling promotes pro–IL-1b transcription,
and TRIF signaling increases caspase-1 activity.37-39 LPS-stimulated
MyD88 KO and wild-type (WT) MDSC-IL13s had compara-
ble FLICA MFI (Figure 1A). In contrast, MyD88/TRIF dKO MDSC-
IL13s did not respond to LPS or LPS plus ATP, as evidenced by a
reduced FLICA MFI compared with MyD88 KO or WT MDSC-
IL13s. Supernatants from cultured MDSCs treated with LPS plus
ATP were assayed by ELISA for caspase-1–mediated IL-1b se-
cretion. Reflective of FLICA MFI, LPS plus ATP–stimulated
MyD88/TRIF dKO MDSC-IL13s had a reduction in IL-1b pro-
duction relative to WT (P 5 .0006) or MyD88 KO MDSCs
(P 5 .002; Figure 1B), consistent with resistance to LPS/ATP inflam-
masome induction. The lower IL-1b concentration in MyD88 KO
MDSC-IL13 supernatants was likely a result of defective MyD88

pro–IL-1b production; constitutive low-level IL-1b expression
could explain the modest IL-1b levels detected.37,39 Although
LPS-triggered TLR4 can induce myeloid maturation, LPS was
insufficient to compromise MDSC-IL13 suppressive function,
whereas LPS plus ATP caused almost complete loss in WT
MDSC and MyD88 KO but not MyD88/TRIF dKO MDSC-IL13
suppression (Figure 1C). To determine whether TLR signaling
facilitated myeloid maturation and inflammasome assembly,
leading to limited MDSC-IL13 function in GVHD suppression,
MyD88 KO, MyD88/TRIF dKO, and WT MDSC-IL13s were
compared. MyD88 KO MDSC-IL13s were unable to promote
survival over WT MDSCs (Figure 1D). Recipients of MyD88/
TRIF dKO MDSCs had improved survival compared with those
receiving MDSC-IL13s, which did not reach statistical significance
(Figure 1E; P 5 .056; mean survival time, 35 vs 60 days). These
findings show a role for TLR but suggest that inhibiting TLR
signaling alone is not sufficient to rescue MDSC-IL13s from loss
of suppression in a highly inflammatory setting. Future studies
using TRIF KOMDSC-IL13s will be needed to determine whether
TRIF single KO vs WT MDSC-IL13s have a demonstrable survival
benefit.

Inflammasome activation causes MDSC-IL13 loss
of function
We next sought to determine which downstream inflammasome
components and inciting signaling events were associated with
loss of function. Activation requires a combination of induc-
tion signals (ATP/double-stranded DNA), intrinsic molecu-
lar scaffolds to certain stimuli (NLRP3/AIM2/NLRC4), shared
adapters and effector enzymes (ASC, caspase-1), and/or cyto-
kines (IL-1b/IL-18) produced from conditioning regimen and
GVHD injury.40-42

To interrogate pathway contributions to loss of function in GVHD
mice, MDSC-IL13s were generated from AIM2, NLRP3, or
NLRC4 KO donors, and inflammasomes were activated with
relevant activation stimuli. When triggered by poly(dT), a mimic
for viral DNA, WT but not AIM2 KO MDSC-IL13s produced
copious amounts of IL-1b (Figure 2A). Flagellin-activated
WT but not NLRC4 KO MDSC-IL13s secreted IL-1b, whereas
NLRP3 KO MDSC-IL13s failed to respond to ATP, as expected
(Figure 2A).

ASC, a shared and critical adaptor for inflammasome assem-
bly, is essential for GVHD-associated MDSC-IL13 loss of
function.14,25,43 Under all tested conditions, ASC KOMDSC-IL13s
failed to support full inflammasome activation (Figure 2A).
Caspase-1 is a core component of the canonical inflammasome
that undergoes autocatalytic cleavage when active and is re-
quired to process pro–IL-1b, whereas caspase-11 is involved in
noncanonical inflammasome activation.44,45 We compared cas-
pase-1/-11 dKO MDSCs with caspase-11 KO MDSCs, because
recent reports have found the strain of origin for caspase-1 KO
mice to be deficient for both caspase-1 and -11.44,45 In vitro
activation with LPS and poly(dT), flagellin, or ATP stimulated WT
and caspase-11 KO MDSC-IL13s to produce similar IL-1b levels
(Figure 2A). In contrast, caspase-1/-11 dKO MDSC-IL13s were
resistant to IL-1b production. When KO MDSCs were applied
therapeutically, caspase-11 KO MDSCs failed to enhance sur-
vival relative to MDSC-IL13s, whereas caspase-1/-11 dKOMDSCs
provided a significant (P 5 .0389) survival advantage, supporting
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canonical inflammasome activation as key to limiting MDSC-IL13
suppressive activity in vivo (Figure 2B).

Although AIM2 and NLRC4 KO MDSC-IL13s both improved
aGVHD, neither provided additional protection compared with
WTMDSC-IL13s, indicating AIM2- andNLRC4-independent loss
of function (Figure 2C). In contrast, NRLP3 KO MDSC-IL13s
significantly increased survival (P5 .025 vsWTMDSCs; Figure 2D).
These data point to NLRP3 inflammasome activation as a
negative regulator of MDSC-IL13 suppressor function in vivo.

Targeting NLRP3 inflammasome activation
diminishes MDSC-IL13 loss of function
NLRP3 polymorphisms are associated with autoinflammatory dis-
eases referred to as cryopyrin-associated periodic syndromes.21

We tested small molecules MCC950 (diarylsuflonylurea-contain-
ing compound) and ICTA (derivative of icariin, the major herba
epimedii active ingredient), which specifically inhibit NLRP3
activation27,28,31,46,47; glyburide (glibenclamide), a sulfonylurea
drug that preserves pancreatic b-cell function in type 2
diabetes48,49; and BHB, a natural ketone metabolite elevated
during starvation, for efficacy in suppressing NLRP3 inflamma-
some activation of LPS plus ATP–treated MDSC-IL13s.50 Gly-
buride and MCC950 consistently demonstrated IL-1b inhibition
(Figure 3A), retained suppressor function (Figure 3B) and
arginase-1 activity (Figure 3C). ICTA showed more variable
inflammasome suppression despite varying doses and formu-
lations that promoted solubility, and BHB-nLG (nanolipogel
format to improve bioavailability) also failed to equal MCC950
or glyburide in preventing reduced suppressor capacity and
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arginase activity (Figure 3). Notably, BHB-nLGs at high 5- to 10-mM
concentrations lowered but did not eliminate IL-1 p17 by western
blot, suggesting suboptimal potency (data not shown).

These findings indicate that glyburide and the selective
inflammasome inhibitor MCC950 maintain MDSC-IL13 in vitro
suppressor function and arginase-1 activity. Glyburide was not
well tolerated in GVHD mice (data not shown), possibly com-
plicated by increased stress from hypoglycemia. MCC950 has
shown efficacy in experimental autoimmune encephalomyelitis,
multiple sclerosis, and cryopyrin-associated periodic syndrome
models.27 Although MCC950 was well tolerated and improved

aGVHD survival overall, despite dose escalations and varied
treatment regimens, we were unable to demonstrate the
expected synergistic effect of combining MCC950 and MDSC-
IL13s (Figure 3D). The same trend was observed for ICTA
treatment with MDSC-IL13s, showing modestly improved sur-
vival when administered alone but no advantage when com-
bined with MDSC-IL13s (Figure 3E). In contrast with the
previously published results for ASC KO14 or from caspase-1/-11
KO and NLRP3 KO MDSC-IL13s, pharmacologically inhibiting
NLRP3 (MCC950) was not additive to MDSC-IL13s in promoting
survival, although targeting inflammasomes globally improved
outcomes in GVHD modestly. As shown in Figure 2A, AIM2 KO
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MDSCs produced very little IL-1b in response to poly(dT), a
mimic for viral DNA. Because AIM2 is a downstream target
of the gain-of-function Jak2V617F mutation in polycythemia
vera,51 ruxolitinib, a potent JAK1/2 inhibitor that inhibits in-
flammation and interferon-g–driven MHC class 2 upregulation
on myeloid cells, was also tested.3,52 Consistent with the results
of AIM2 KO MDSC-IL13s as being comparable to WT MDSC-
IL13s for aGVHD protection, ruxolitinib was largely ineffective
(IL-1b) or at best modestly effective (arginase-1; suppression) in

preventing inflammasome activation in vitro and therefore was
not further pursued.

Extracellular ATP regulates MDSC-IL13
inflammasome-associated loss of function
Tissue damage associated with aGVHD can lead to necrotic
cell death and bacterial product translocation, resulting in
innate immune activation via MyD88/TRIF-mediated TLR
signaling.46 Cell death increases extracellular ATP, stimulates
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Figure 3. NLRP3 inflammasome inhibition protects function of MDSC-IL13s. Cultured WT MDSC-IL13s were treated as indicated with reagents to inhibit inflammasome
induction ormyeloidmaturation 1 hour before LPS plus ATP inflammasome induction: glyburide (100mM),MCC950 (10mM), ICTA2 (200mg/ml), BHB (200mM), A-438079 (25mM),
and ruxolitinib (1 mM). One hour after ATP stimulation, cultures were assayed as indicated. (A) Culture supernatants were assessed for IL-1b. (B) HarvestedMDSCs were counted
and plated for CFSE suppression assay at a 1:1 ratio with responding CD25-depleted whole T cells (WTCs); data represent frequency of CD81 T cells undergoing $1 division.
(C) MDSCs were washed, counted, and assayed for cell-associated arginase-1 activity. (A-C) In vitro data represent 3 replicates per condition and 2 independent experiments.
(D) Kaplan-Meier survival curve for B6 . Balb/c GVHD animals given MDSC-IL13s (M13) and/or the NLRP3-specific inhibitor MCC950 (MCC) (50 mg/kg intraperitoneally) every
other day starting at day21 for 3 weeks. WTCs vs M13, P, .001; WTCs vs MCC, P5 .0055; WTCs vs M13 plus MCC, P, .0001; M13 vs MCC, P5 .0152; M13 vs M13 plus MCC,
P 5 .4291; MCC vs MCC plus M13, P 5 .1226. Data represent combination of 3 independent experiments, n 5 30 per group. (E) Kaplan-Meier survival curve for B6 . Balb/c
GVHD animals givenMDSC-IL13 (M13) and/or the NLRP3-specific inhibitor ICTA. WTCs vs M13, P5 .0028; WTCs vs ICTA2, P5 .0128; WTCs vs M13 plus ICTA, P5 .0001; M13 or
ICTA vs M13 plus ICTA, P 5 not significant. Data represent a single experiment, n 5 10 per group. **P , .01, ****P , .0001.
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innate and adaptive immunity,29,53,54 and is implicated in GVHD
pathogenesis.31,55,56 Extracellular ATP is a leading indicator of
system stress, rendering purinergic receptors (eg, P2x7R/P2y2R)
especially attuned to sensing noninfectious damage55; GvHD
upregulates P2x7R.56 Compared with nonirradiated controls,
radiation-induced peritoneal extracellular ATP peaked at 3 to
4 days after irradiation (Figure 4A). The ATP diphosphohydrolase
apyrase, administered 2.5 hours prelavage, abrogated high

extracellular ATP levels. Further supporting ATP as the primary
driver of inflammasome-associated loss of function, survival was
improved, with MDSCs rendered nonresponsive to ATP via P2x7
receptor deficiency, demonstrating enhanced survival relative
to WT MDSCs (Figure 4B). In vitro, the highly selective P2x7R
inhibitor A-438079 also reduced inflammasome activation
(Figure 3A), preserved suppressive capacity (Figure 3B), and
maintained arginase-1 levels (Figure 3C). However, similar toNLRP3
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Figure 4. Extracellular ATP associated with MDSC loss of function. Balb/c mice were lethally irradiated then euthanized on the day indicated, injected intraperitoneally with
1 mL of cold RPMI. Animals marked X-ray plus apyrase received a single intraperitoneal injection of 10 units of apyrase 2.5 hours before euthanization. (A) Fluid was recovered
from the peritoneal space to prechilled tubes and assayed for extracellular ATP. Data are representative of 2 independent experiments, n5 5 per group. (B) Kaplan-Meier survival
curve of Balb/c-recipient GVHD animals receiving MDSC-IL13s (M13) or P2x7R KOMDSC-IL13s. Whole T cells (WTCs) vs M13, P5 .0052; WTCs vs P2x7R KO, P, .0001; M13 vs
P2x7R KO, P 5 .0158. Data are representative of 2 independent pooled experiments, n 5 20 per group. (C) Kaplan-Meier survival of Balb/c GVHD mice treated with A-438079
(80 mg/kg intraperitoneally daily from day 0 to14) with or without MDSC-IL13s as indicated. WTCs vs M13, P5 .0028; WTCs vs A438079, P5 .0002; WTCs vs A438079 plus M13,
P5 .0012; M13 vs A438079 or A438079 plus M13, P5 not significant. Data shown represent a single experiment, n5 10 per group. (D) Kaplan-Meier survival curve of GVHDmice
treated with apyrase (4 U intraperitoneally daily from day 0 to 4) or MDSC-IL13 plus apyrase, as indicated. WTCs vs M13, apyrase, or M13 plus apyrase, P, .0001; M13 vs apyrase,
P 5 not significant; M13 vs apyrase plus M13, P 5 .0063; apyrase vs M13 plus apyrase, P 5 .0164. Data represent 5 combined independent experiments, n 5 50 per group.
(E) Animals were treated as in panel D using IDOL-transgenic donors and then on day 3 posttransfer assayed for whole-body bioluminescent imaging 5 minutes after D-luciferin
injection. (F) Summary data are from a single experiment, n 5 12 to 14 mice per group, and are representative of 2 independent experiments. *P , .05, ****P , .0001. txt,
treatment.
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pharmacologic targeting, A-438079 promoted survival of GVHD
mice but was not additive with WT MDSC-IL13s (Figure 4C).

Together, these data (Figures 3 and 4) point to MDSC-intrinsic
targeting rather than systemic inflammasome targeting to aug-
ment MDSC-IL13 survival effects. Because gastrointestinal
GVHD is associated with higher morbidity and mortality, we
sought to target extracellular ATP directly in the peritoneal
space. Mice given MDSC-IL13s with apyrase intraperitoneally
on days 0 to 4 had significantly higher survival than those re-
ceiving either individual treatment (Figure 4D). To confirm apyrase
intraperitoneal injections limited MDSC-IL13 inflammasome
conversion locally, MDSC-IL13s were generated from a novel
reporter-transgenic donor strain, IDOL-tg, which has IL-1b
promoter–driven luciferase expression in which IL-1b transcription
and caspase-1 enzymatic processing are both required to yield a
luminescent signal, whereas under noninflammasome conditions,
IDOL proteasomal degradation prevents luminescence.57 Under
GVHD conditions, IDOL-MDSC-IL13s exhibited a robust signal,
which was reduced by apyrase (Figure 4E). On days 3, 5, and 7,
MDSC-IL13 inflammasome activation was diminished by apyrase
treatment (Figure 4E-F). Together, reduced peritoneal extracel-
lular ATP and MDSC-IL13 inflammasome activation suggest early
posttransplantation ATP targeting better maintains suppressor
function in vivo.

Optimal in vitro and in vivo MDSC-IL13 suppression
supported by IL-1R expression after
inflammasome activation
IL-1b is at the center of local and systemic inflammation, and as
a hallmark of inflammasome activation produced by myeloid
cells, IL-1b is tightly controlled.21,40,58 IL-1b, linked to GVHD, is
highly enriched in murine GVHD organs56 and, in some studies,
correlates with GVHD severity in patients.59 IL-1R antagonists
(IL-1RA) neutralize IL-1b and IL-1a to reduce murine GVHD.60,61

Furthermore, IL-1RA and soluble IL-1R clinical efficacy was seen
in steroid-resistant GVHD.62,63 However, in the peri–BM trans-
plantation period, IL-1RA (days 24 to 110) was ineffective,
consistent with IL-1b operating later post–BM transplantation.64,65

To determine whether donor MDSC-IL13 inflammasome-
generated IL-1b directly contributes to loss-of-suppressor func-
tion, IL-1b KO donors were used to generate MDSC-IL13s.
Activated inflammasome-mediatedMDSC-IL13maturation would
be unchanged (ie, ariginase-1 loss) as core inflammasome com-
ponents remained intact, thereby isolating effects to MDSC-
secreted IL-1b. Interestingly, although IL-1b KO MDSC-IL13s
improved survival compared with no MDSCs (Figure 5A;
P5 .0434), we found that IL-1b KOMDSC-IL13s were inferior to
WT MDSC-IL13s (P 5 .0027). This suggests MDSC IL-1b se-
cretion is not directly driving inflammasome-mediated graft
loss as expected.

To discern IL-1b alloresponse effects, CFSE-labeled responder
T cells, T cell–depleted splenocyte stimulators, and anti-CD3e
were admixed with or without exogenous IL-1b and MDSC-
IL13s. To isolate the effects of exogenous IL-1b to MDSC-
IL13s, IL-1R KO responder T cells and stimulators were used.
At 1:3 MDSC/T cell ratios, MDSC-IL13 suppression began
showing reduced efficacy in fully inhibiting proliferation
(Figure 5B). Pretreating MDSC-IL13s with LPS plus ATP further
reduced suppression in an ASC-dependent manner (Figure 5Bi
vs 5Biv; Figure 5Biv vs 5Bv). Interestingly, activating NLRP3

inflammasomes in IL-1R KOMDSCs showed still further reduced
suppression vs WT (Figure 5Biv vs 5Bvi), suggesting inflamma-
some activation–induced IL-1b production promotes suppres-
sion even with reduced arginase-1–mediated suppression
resulting fromMDSC-IL13maturation.14Conversely, inflammasome-
activated MDSC-IL13 cocultures required IL-1R expression for
increased suppression by exogenous IL-1b (Figure 5Bi vs 5Bvii;
Figure 5Biv vs 5Bx; Figure 5Bx vs 5Bxii); even without inflam-
masome activation, at MDSC/T cell ratios of 1:9, IL-1b sup-
plementation increased suppression (Figure 5Bxiii vs 5Bxvi) in
an IL-1R–dependent manner (Figure 5Bxvi vs 5Bxviii). These
findings are summarized for the 1:3 (Figure 5C) and 1:9 ratios (Figure
5D) and may help explain why global inflammasome inhibition
combined with MDSC-IL13s is not additive, because reduced
systemic IL-1b production may limit T-cell suppression in GVHD.

Suppression of inflammasome-mediated MDSC
conversion by Tregs
Our GVHD model deliberately segregated MDSC from Treg
function by depleting Tregs from the donor T-cell graft. It
has been reported that MDSCs support Treg expansion
through CD40-CD40L triggering and release of Treg-supporting
cytokines.66 Because Tregs can reduce inflammation, and
MDSC-IL13s and Tregs can suppress alloresponses via different
mechanisms, we reasoned that adding Tregs to MDSC-IL13
therapy might be additive or synergistic by supporting MDSC
function as well. Although each cell type prolonged survival
compared with T cells alone, a marked increase in overall survival
was seen with cotransfer ofMDSCs and Tregs (P, .0065;MDSC-
IL13s or Tregs vs both; Figure 6A). To determine if MDSC-IL13
and Treg coinfusion inhibited inflammasome-associated con-
version of MDSCs, MDSC-IL13 inflammasome activation was
assessed using IDOL-transgenic MDSC-IL13s. Indeed, Tregs
inhibited MDSC-IL13 inflammasome activation, as evidenced
by reduced BLI signal (Figure 6B); the effect was transient,
peaking day 5, when MDSC conversion was maximal (Figure 6C;
IDOL vs IDOL plus Tregs; P5 .0022).Whole-organ explants from
IDOL-MDSC-IL13 GVHD mice indicated that at day 5, the large
and small intestine are primary inflammasome activation sites
and are protected when Tregs are present (Figure 6D-E). These
findings support Tregs acting to protect MDSC function in a
mutually beneficial manner, resulting in a synergistic survival
advantage.

Discussion
Although MDSC therapy is effective at prolonging survival in a
robust aGVHD model, the functionally effective window is
relatively narrow because of the harsh postconditioning envi-
ronment that results in MDSC differentiation away from im-
mature suppressive myeloid lineage cells.14 Here we identify
radiation conditioning–induced peritoneal extracellular ATP as
a primary driver of inflammasome activation. Acute GVHD
injury increases LPS67-69 and ATP,46,56 and we show here that
prohibiting ATP binding to its receptor (P2x7R) or targeting
downstream NLRP3-associated inflammasome activation on
transferred MDSCs better maintains functional activity and
hence recipient survival. Of the other well-characterized
inflammasome pathways tested, MDSC-IL13s from AIM2 or
NLRC4 KO donors ameliorated in vitro MDSC-IL13 loss of
function upon exposure to their unique inciting stimuli (poly[dT]
and flagellin, respectively) but did not improve in vivo survival.
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These data suggest there are insufficient stimuli (DNA/flagellin)
under these in vivo conditions in specific pathogen-free mice to
trigger AIM2 or NLRC4 inflammasome activation in MDSC-IL13s.

To begin to define mechanisms leading to MDSC dysfunc-
tion, we focused initially on MDSC-intrinsic pathways. NLRP3
inflammasome activation by LPS plus ATP required MyD88
and TRIF for full caspase-1 activation, IL-1b secretion, and
MDSC-IL13 loss of function. The dual requirement for deleting
MyD88/TRIF to abrogate in vitro NLRP3 inflammasome activation
is consistent with the known signaling of TLR4 and MyD88

upregulation by P2x7R signaling.70 Consistent with these data,
MDSC-IL13s deficient in ASC, caspase-1, NLRP3, or P2x7R each
improved survival relative to WT MDSC-IL13s. Although phar-
macologic inhibitors targeting these pathways provided varying
efficacy, our finding that ATP/NLRP3 inflammasome disruption
resulted in maintained MDSC function despite inflammasome-
activating conditions in vitro was largely validated. Despite drug-
dose escalations and varied schedules, combining these inhibitors
with MDSC-IL13 transfer fundamentally failed to phenocopy the
additive effects seen with MDSC-IL13s generated from inflam-
masome KO donors.
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Figure 5. IL-1b plays a protective role by suppressing T cells. (A) Kaplan-Meier survival curve of Balb/c-recipient GVHD mice receiving MDSC-IL13s (M13) from WT or
IL-1b–deficient donors. Whole T cells (WTCs) vs M13, P , .0001; WTCs vs IL-1b KO, P 5 .0434; M13 vs IL-1b KO, P 5 .0027. Data represent 2 independent pooled experiments,
n5 20 per group. (B) Cultured MDSC-IL13s fromWT or IL-1R KO donors were plated in a suppression assay at a 1:3 or 1:9 ratio as indicated with CFSE-labeled naı̈ve responder
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3 days after coculture and are coded for clarity with text. Summary data for the 1:3 (C) and 1:9 ratios, representing 3 independent cultures per group, representative of
3 independent experiments. *P , .05, **P , .01. ns, not significant.
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IL-1 cytokine family literature is rich and varied, with pro- and
anti-inflammatory properties, decoy receptors, and differential
expression patterns all suggesting a tightly regulated and highly
conserved system for governing immune regulation.71 Findings
supporting IL-1RA as a treatment approach for chronic condi-
tions suggest IL-1R signaling is proinflammatory31; however,
confounding data exist in the acute setting, where recovery
from tissue damage and immune pathology, especially at the
intestinal barrier, a primary GVHD organ, depends on IL-1
responsiveness.72-74 IL-1R signaling shares the intracellular
adaptor MyD88 with TLRs,71 which could enlighten the under-
lying causes of limited MyD88 KO MDSC-IL13 efficacy. Despite
an inability to signal via IL-1R, the trend toward survival extension
with MyD88/TRIF dKO MDSC-IL13s may be due to better
maintained suppressive function seen with dual adapter protein
deficiency.

Extracellular ATP, a known NLRP3 inflammasome trigger, was
increased in the peritoneal cavity from conditioning regimen
injury and GVHD56 and was susceptible to catabolic hydrolysis
with the ATP diphosphohydrolase apyrase. The resulting re-
duced MDSC-associated inflammasome activation as measured
by BLI of IDOL-transgenic MDSC-IL13s and improved survival
conferred byMDSC-IL13s support the notion that danger signals
such as ATP and LPS initiate the early GVHD events that ma-
ture MDSC-IL13s,14 circumventing suppressor function and only
transiently inhibiting GVHD lethality. Peri–BM transplantation
apyrase administration in the peritoneal cavity focused catabolic
activity to the peak time of ATP production in a critical GVHD
organ, the gut. Our presumption that IL-1b contributed directly
to MDSC-associated loss of function and reduced survival
proved incorrect, because IL-1b KO MDSC-IL13s showed con-
sistently reduced in vitro suppression and in vivo decreased
survival relative toWTMDSC-IL13s in GVHDmice. Indeed, IL-1b
production by MDSC-IL13s and IL-1b binding to IL-1R actually
promoted suppressor function, as assayed in vitro and in vivo,
consistent with data shown in Figure 5. As such, the failure of
drug-basedNLRP3 inflammasome inhibition to add to the in vivo
MDSC-IL13 protective effect seems to be a function of pro-
longed, systemic IL-1b inhibition in concert with MDSC dys-
function rather than incomplete penetrance, because survival
benefits were seen with the inhibitors alone, as similarly reported
elsewhere.56 Findings are suggestive of a more complex dy-
namic between MDSC inflammasome activation and IL-1b se-
cretion in tempering MDSC-IL13 therapeutic benefits. Although
beyond the scope of this study, it will be of interest to elucidate
the divergent roles of inflammasome activation and IL-1b sig-
naling. Intriguingly, Tregs cotransferred with MDSC-IL13s
cooperated to improve survival over either therapy alone. Us-
ing IDOL-MDSC imaging, we demonstrated reduced inflam-
masome activation when Tregs were present. Alternatively,
blunting caspase-1 cleavage of intracellular pro–IL-18, particu-
larly in the absence of IL-1b, could mitigate the known IL-18
benefits in augmenting murine survival in CD4 T cell–dominated
GVHD systems,75-77 but this will require further study.

In summary, the transient MDSC-IL13 improvement in GVHD
recipient survival is caused, at least in part, by extracellular ATP
triggering of P2x7R in conjunction with NLRP3 inflammasome
activation. IL-1R signaling of MDSC-IL13s and IL-1b production

by activated inflammasomes reducesGVHD lethality. Collectively,
these results suggest that MDSC-IL13s genetically modified to
selectively delete P2x7R (or other purinergic receptors), NLRP3,
or the shared ASC inflammasome component or local control of
ATP levels in the peritoneal cavity warrant further consideration
for human studies in light of the known susceptibility of human
MDSCs to loss-of-suppression function with inflammasome
activation.14
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