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KEY PO INT S

l Loss of the N terminus
of GATA1, associated
with DBA, alters gene
regulation through
differential chromatin
occupancy and
modifications.

l Erythropoiesis in
Gata1s mutant
embryos can be
rescued by
haploinsufficiency for
Gata2.

Mutations in GATA1, which lead to expression of the GATA1s isoform that lacks the
GATA1 N terminus, are seen in patients with Diamond-Blackfan anemia (DBA). In our
efforts to better understand the connection between GATA1s and DBA, we compre-
hensively studied erythropoiesis in Gata1s mice. Defects in yolks sac and fetal liver he-
matopoiesis included impaired terminal maturation and reduced numbers of erythroid
progenitors. RNA-sequencing revealed that both erythroid and megakaryocytic gene
expression patterns were altered by the loss of the N terminus, including aberrant
upregulation ofGata2 and Runx1. Dysregulation of global H3K27methylation was found in
the erythroid progenitors upon loss of N terminus of GATA1. Chromatin-binding assays
revealed that, despite similar occupancy of GATA1 and GATA1s, there was a striking
reduction of H3K27me3 at regulatory elements of the Gata2 and Runx1 genes. Consistent
with the observation that overexpression of GATA2 has been reported to impair eryth-
ropoiesis, we found that haploinsufficiency of Gata2 rescued the erythroid defects of
Gata1s fetuses. Together, our integrated genomic analysis of transcriptomic and epige-

netic signatures reveals that, Gata1 mice provide novel insights into the role of the N terminus of GATA1 in tran-
scriptional regulation and red blood cell maturation which may potentially be useful for DBA patients. (Blood. 2019;
134(19):1619-1631)

Introduction
Germline mutations in GATA1 are associated with several be-
nign hematopoietic disorders, including rare forms of dysery-
thropoietic anemia and thrombocytopenia as well as Diamond-
Blackfan anemia (DBA).1 Somatic GATA1 mutations are more
commonly seen in the myeloid disorders of Down syndrome,
including transient myeloproliferative disorder (TMD) and acute
megakaryocytic leukemia.1 The defects in GATA1 fall into
2 categories, including missense mutations that alter residues
in the N-terminal zinc finger that reduce DNA binding2,3 or
interaction with the essential cofactor FOG14,5 and indels or
missense mutations that prevent expression of the full-length
protein but allow for expression of shortened isoform named
GATA1s.6,7 This isoform lacks 83 amino acids of the N terminus,
which was initially described as a transcriptional activation

domain.8 These latter mutations are the type observed in DBA,
TMD, and Down syndrome-acute megakaryocytic leukemia.

Prior studies revealed that mice expressing only GATA1s develop
a transient expansion of megakaryocytes with impaired erythro-
poiesis during embryonic hematopoiesis, which resembles TMD.9,10

These studies, coupled with the features of patients with GATA1s
mutations, suggest that the N terminus of GATA1 is needed for
proper development of both erythroid cells and megakaryocytes.
Nevertheless, the specific defects in erythroid cells and the
mechanistic basis for the phenotype have been unclear.

To understand how the N terminus of GATA1 regulates
erythropoiesis and contributes to DBA, we performed an in-
depth analysis of Gata1s mutant mice. We also leveraged
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cleavage under targets and release using nuclease-sequencing
(CUT&RUN-seq), assay for transposase-accessible chromatin-
sequencing (ATAC-seq), and RNA-sequencing (RNA-seq) to
delve into the differences in transcriptional activity of GATA1
andGATA1s in erythroid progenitors.Wediscovered thatGATA1s
binds to many of the same sites as GATA1, but its binding is
associated with aberrant trimethylation of H3K27, which leads to
overexpression of genes that impair erythropoiesis such as Gata2
andRunx1.We demonstratedGATA2 involvement in the erythroid
defect as haploinsufficiencyofGata2 rescued the erythroiddefects
of Gata1s mice, indicating that the N terminus is required for
proper control of gene expression and maturation of developing
red blood cells.

Materials and methods
Animals
Gata1Dex2 mice (referred to as Gata1s or G1s here), which have
a deletion of exon 2 that results in unique expression of GATA1s,
and Gata2het mice, which are haploinsufficient for Gata2, were
provided by Stuart Orkin (Children’s Hospital, Boston, MA).9,11

Animal studies were approved by the Northwestern University
and Chaim Sheba Medical Center at Tel Hashomer Institutional
Animal Care and Use Committees.

Cell line culture
G1-ER cells12 were cultured in Iscove modified Dulbecco me-
dium containing 15% (v/v) heat-inactivated fetal calf serum
(Gibco, 10438-026), erythropoietin (EPO) 2 U/mL (Janssen), and
kit-ligand conditioned medium. To induce activation of GATA1,
cells were cultured in the presence of 20 nM b-estradiol (Sigma,
E8875).

RNA-seq
Erythroblasts were sorted directly into TRIzol reagent (Invi-
trogen, 15596026), and RNA was extracted following manu-
facturer’s instructions. RNA quality was determined with the
Agilent Bioanalyzer 2100, accepting RNA integrity numbers .7
and quantified using Qubit. Directional messenger RNA (mRNA)
libraries were prepared using the Illumina TruSeqmRNA Sample
Preparation Kit. Briefly, polyadenylated mRNAs were captured
from total RNA using oligo-dT selection. Next, samples were
converted to complementary DNA (cDNA) by reverse tran-
scription, and each sample was ligated to Illumina sequencing
adapters containing unique barcode sequences. Barcoded
samples were then amplified by polymerase chain reaction (PCR)
and the resulting cDNA libraries were quantified using quanti-
tative PCR (qPCR). Last, equimolar concentrations of each cDNA
library were pooled and sequenced on the Illumina HiSeq2500.
Sequencing data were analyzed using the protocol by Anders
et al.13 Briefly, raw reads were aligned by TopHat214 to the
mouse reference genome UCSC mm10. Aligned reads were
counted by HTSeq.15 Data normalization and differential gene
expression were done by DESeq2.16 Clustering and principal
component analysis (PCA) were performed in MATLAB. Gene
set enrichment analysis (GSEA)17 was used to find groups of
enriched genes between different groups of samples.

CUT&RUN-seq
Experiments were performed as described.18 Details are pro-
vided in the supplemental Materials and methods, available on
the Blood Web site.

ATAC-seq
A total of 40 000 erythroblasts were sorted and ATAC-seq li-
braries were prepared as previously described.19,20 Details are
provided in the supplemental Materials and methods.

RT-qPCR
RNA was extracted using TRIzol reagent (Invitrogen, 15596026).
Reverse transcription was performed with SuperScript IV VILO
Master Mix with ezDNase Enzyme kit (Invitrogen, 11766050).
Real-time PCR was carried out with Perfecta SYBR green
SuperMix with low ROX (Quanta Biosciences, 95056-500) on
Applied Biosystems Fast 7500. Primers included Gata2 forward
59-CACCCCTAAGCAGAG AAGCAA-39, Gata2 reverse 59-TGG
CACCACAGTTGACACACT-39, Gapdh forward 59-GATGCC
CCCATGTTTGTGAT-39, andGapdh reverse 59-GGTCATGAGCCC
TTCCACAAT-39.

Colony-forming unit assays
For the assays in Figure 7, 10 000 E12.5 fetal liver cells were
cultured in methylcellulose-based medium M3334 (Stemcell
Technologies, 03334) supplemented with EPO. After 7 to
10 days of culture, BFU-E colonies were counted under micro-
scope based on morphology. Benzidine staining was performed
on E12.5 fetal liver cells and burst-forming unit-erythroid (BFU-E)
colonies as described in Huo et al.21 For the assay in supple-
mental Figure 1, fetal liver cells from E13.5 embryos were
suspended in sterile fluorescence-activated cell sorter buffer
(13 phosphate-buffered saline, 0.5% bovine serum albumin,
2 mM EDTA), stained with biotin conjugated Ter119 antibody
(eBioscience, 13-5921-85) for 15 minutes on ice. After washing
away unbound antibody, streptavidin magnetic beads (BD
Biosciences, 557812) were added and incubated for 15 minutes
on ice. Ter1192 cells were then collected from the supernatant.
A total of 30000 Ter1192 cells were cultured in methylcellulose-
based medium M3436 (Stemcell Technologies, 03436). After
7 days of culture, BFU-E colonies were counted under a micro-
scope based on morphology. For colony-forming unit erythroid
(CFU-E) assay, 20000 Ter1192 E13.5 fetal liver cells were cultured
in methylcellulose-based medium M3334 and CFU-E colonies
were counted under microscope based on morphology after
24 hours of culture.

Statistical analysis
All statistical analysis was performed with GraphPad Prism.
For quantitative assays, different genotypes were reported as
mean6 standard deviation (SD) and compared using the unpaired
Student t test. P # .05 was considered statistically significant.

Results
The N terminus of GATA1 is required for murine
embryonic erythropoiesis
Gata1s (G1s) mice were engineered to express the short isoform
of GATA1 in place of the full-length protein.9 Differential ex-
pression was confirmed by western blot (Figure 1A). Next, we
performed a detailed characterization of embryonic hemato-
poiesis. We initially assayed yolk sac hematopoiesis, which is the
first site of blood formation during mouse ontogeny.22 Yolk sac
cells were isolated from E9.5 embryos, immunostained, and
analyzed by flow cytometry for c-kit and Ter119 expression,
an erythroid antigen expressed from early proerythroblasts to
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mature erythrocytes. Compared with wild-type (WT), the yolk
sacs of Gata1s embryos harbored very few Ter1191 erythroid
cells (Figure 1B-C). Because erythroid cells and megakaryocytes
are derived from a common progenitor23 and because GATA1
plays important roles in both lineages, we next analyzed
megakaryocyte lineage by staining for CD41, which is expressed
in embryos in megakaryocytes and early progenitors.24,25

This staining revealed a striking increase in the megakaryocyte
population but no significant change in erythro-myeloid pro-
genitors (EMPs)26 (Figure 1C-D). These results reveal that there is
a prominent defect in erythropoiesis at the yolk sack stage of
development.

We next compared fetal liver hematopoiesis at E12.5 between
WT and Gata1s embryos. Similar to published reports,9,10 we
observed several significant defects that include a general
reduction in the numbers of erythroblasts. Using CD71 and
Ter119 double-staining strategy to distinguish different stages
of erythroid differentiation,27 we observed a striking decrease
in maturing erythroid cells (R3-R5, CD71hi-negTer119hi) along
with an accumulation of less mature erythroid cells (R1 and
R2, CD71hiTer119neg-low) in Gata1s embryos (supplemental
Figure 1A-B). Moreover, the increase of CD411CD42neg-hi cells
was consistent with the observation of expansion of megakar-
yocyte lineage in the E9.5 yolk sac9 (supplemental Figure 1C). Of
note, erythropoiesis improved in Gata1s embryos by E13.5, but
nevertheless the changes remained significantly different from
WT fetal livers (supplemental Figure 1D-G). Although the per-
centage of R1-3 erythroblasts from Gata1s fetal liver was com-
parable to WT on E13.5, there were significantly fewer cells per
fetal liver as compared with WT (supplemental Figure 1F).
Furthermore, colony forming unit assays using Ter119-depleted
fetal liver cells from E13.5 embryos showed a modest decline in
BFU-E, and a significant decrease in CFU-E colonies (supple-
mental Figure 1H-I). Gata1s derived CFU-E colonies were also
smaller than WT (supplemental Figure 1J).

Comparison of transcriptomes of Gata1s and WT
embryonic erythroblasts reveals dysregulation
of erythroid lineage genes
GATA1 is a key regulator of erythroid and megakaryocytic gene
expression. To investigate the dysregulated genes of erythropoiesis
in Gata1s mice, we performed RNA-seq of purified embryonic
erythroid cell populations. We collected CD71hiTer119neg-low (R1/2,
less mature) and CD71hiTer119hi (R3, more mature) erythroblasts
from both E12.5 and E14.5 fetal livers and then purified mRNA for
next-generation sequencing. As seen by PCA, WT R1/2, WT R3,
G1s R1/2, and G1s R3 samples clustered separately from one
another (Figure 2A). Of note, however, within the groups, E12.5
and E14.5 samples were closely aligned. By GSEA analysis, we
made a number of observations. First, not surprisingly, the ab-
sence of the N terminus of GATA1 resulted in the dysregulation of
GATA1 target genes (WELCHGATA1 target gene set; Figure 2B).
The analysis also revealed that gene signatures associated with
heme metabolism and hematopoietic cell maturation negatively
correlated with the transcriptional signature of Gata1s cells
(Figure 2B).Moreover,Gata1s transcriptional signature is enriched
with megakaryocytic pathways (GNATENKO_Platelet signature;
Figure 2B). Consistent with these pathways, we observed reduced
expression of genes involved in red blood cell differentiation,
including Klf1, Zfpm1, Lmo2, and Ldb1, in R3 Gata1s erythroid
cells as compared with WT cells (Figure 2C). These findings reveal

that theN terminus of GATA1 is critical for erythroid differentiation
by precise regulation of transcription of erythroid lineage genes.

The N terminus of GATA1 is required for chromatin
occupancy and transcriptional regulation of
a subset of target genes
To further study the role of the N terminus of GATA1 in tran-
scription, we compared chromatin occupancy of GATA1s vs
GATA1 and evaluated chromatin accessibility in E13.5 R1/2 and
R3 WT and G1s erythroblasts by performing CUT&RUN-seq and
ATAC-seq, respectively.18,28 GATA1s had a similar occupancy on
79 910 sites genome-wide, whereas there were 3268 and 576
sites that lost or gainedGATA1s binding, respectively (Figure 3A).
Correspondingly, 329 sites (140 genes) gained GATA1s binding
and chromatin accessibility, and 1844 sites (791 genes) lost
GATA1s binding as well as chromatin accessibility compared with
WT erythroid cells (Figure 3B). The altered sites were seen largely
in gene body and intergenic regions (Figure 3C). DNA-binding
motif analysis of the differentially bound loci revealed that the
absence of the N terminus not only attenuated the binding to
GATA motifs, but led to a gain in occupancy on many sites as-
sociated with other transcription factors such as NF-E2 and
BACH1/2 (Figure 3D-E). This finding suggests that the differential
GATA1/1s bound genes may also be coregulated by those
transcriptional factors. The 140 gained genes were enriched
in Hallmark_MTORC1 Signaling,29,30 Hallmark_Hypoxia,31,32

Hallmark_IL2 STAT5_Signaling,33-35 Hallmark_UV Response DN,
and Reactome_Immune System (supplemental Figure 2). The
791 lost genes were enriched in Hallmark_Heme Metabolism,36,37

Hallmark_Mitotic Spindle, Hallmark_G2MCheckpoint, Reactome_Cell
Cycle Mitotic,38,39 and Reactome_Developmental Biology
(supplemental Figure 2). There was a strong overlap with the
GSEA results of the RNA-seq experiment (Figure 2B; supple-
mental Figure 3). Two megakaryocytic genes, Fli1 and Mef2c,
were among the genes that gained GATA1s occupancy and
chromatin accessibility (Figure 3B). On the other hand, 2 erythroid
genes, Lmo2 and Zfpm1, were deficient for GATA1s binding, and
they were downregulated as seen in the RNA-seq experiment
(Figures 2C and 3B). Together, the absence of the N terminus of
GATA1 results in the dysregulation of many megakaryocytic and
erythroid lineage genes during erythropoiesis.

Gata1s erythroid cells are characterized by
dysregulation of global H3K27 methylation
Given the striking differences in gene expression in Gata1s
erythroid cells, we next investigated whether there were global
differences in histone modifications in Gata1s vs WT cells. By
western blot, we observed a differentiation dependent decrease
of global trimethylation at histone H3 lysine 27 (H3K27), but
no change of trimethylation at lysine 9 (H3K9) (Figure 4A). The
downregulation of global H3K27me3 during maturation of red
blood cells was also confirmed in the system of b-estradiol-
induced G1-ER cell differentiation (Figure 4B).

We performed CUT&RUN-seq to compare the global trime-
thylation of H3K27 in erythroid cells from WT and Gata1s E13.5
embryos. We observed a much higher degree of H3K27me3
genome wide in both the R1/R2 and R3 populations fromGata1s
mice (Figure 4C). Next, using western blot analysis to compare
the levels of H3K27me3 in the fetal liver cells from WT and
Gata1s E13.5 embryos, we observed a striking increase in
H3K27me3 in the mutant cells (Figure 4D).
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Integrated analysis of changes in H3K27 trimethylation and
differences in gene expression between WT and Gata1s
erythroblasts returned a set of 123 overlapping genes. Gene
ontology analysis of these genes revealed that chromatin
modification and chromatin organization were among the most
significantly enriched pathways (supplemental Figure 4). Of
note, 75 of 123 genes belong to the chromatin modification
pathway, which further suggests that alterations in chromatin are
a major pathway involved in the Gata1s pathogenesis.

Retention of GATA1s at the Runx1 promoter
correlates with elevated expression of RUNX1 in
erythroid cells
In addition to the impaired expression of erythroid genes, the
RNA-seq data showed that megakaryocyte lineage genes, such
as Itga2b, Fli1, and Runx1, were upregulated inGata1s erythroid

cells (Figure 5A). RUNX1 is notable because prior studies have
implicated it in balancing megakaryocyte and erythroid lineage
specification through 2 downstream transcriptional factors, FLI1
and KLF1.40 RUNX1 has been found to activate Fli1 in mega-
karyocytes, but also to repress Klf1 via recruitment of EZH2.40

Western blot and intracellular immunostaining followed by flow
cytometry confirmed the upregulation of RUNX1 at the protein
level in Gata1s erythroid cells (Figure 5B-C). Combined with
megakaryocyte or erythroid cell surface makers, we assayed the
dynamic changes in RUNX1 protein levels during megakaryocyte
or erythroid cell development. RUNX1 expression decreased
during erythropoiesis, but increased during megakaryocyte
maturation in the WT setting (Figure 5D-E). By contrast, RUNX1
was highly expressed throughout erythropoiesis in Gata1s mice.
This persistent expression was associated with increased chro-
matin accessibility and reduced H3K27me3 in the R3 population
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Figure 1. Impaired yolk sac erythropoiesis inGata1s embryos. (A) Western blot to detect the expression of GATA1 full length (GATA1) in WT embryos and the short isoform
(GATA1s) in Gata1s mutant embryos (G1s). Cell lysates were extracted from E13.5 total fetal liver cells. Heat shock protein family A member 8 (HSC70) is shown as a loading
control. (B) Flow cytometry assessment of the erythroid (Ery) population in E9.5 yolk sac (YS) using double-staining with antibodies against c-kit and Ter119. (C) Bar graph
depicting mean (6 SD) percentages of Ter119 positive, c-kit positive, EMP) and megakaryocyte (Mk) populations from yolk sacs of E9.5 WT and G1s as determined by flow
cytometry. N$ 3. (D) Representative flow cytometry plots of EMPs and Mk stained with antibodies against c-kit, CD16/32 (FcgRIII and II), Ter119, and CD41. *P# .05 (unpaired
Student t test).
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of erythroblasts (Figure 5F). This result is at odds with the in-
creased global methylation at H3K27, suggesting that there
are distinct mechanisms that regulate expression of Runx1
expression.

Impaired GATA switching in Gata1s erythroid cells
GATA2 expression is required for hematopoietic stem and
progenitor cells but is downregulated during terminal matura-
tion of erythroid cells. In our analysis of RNA-seq data, we noted
that Gata2 levels were substantially higher in Gata1s erythroid
cells than WT cells, especially in the R3 subset where GATA2
expression is typically very low (Figure 6A). We confirmed this
upregulation at the mRNA level by reverse transcriptase qPCR
(RT-qPCR), using fetal liver cells from E13.5 Gata1s and WT
embryos (Figure 6B).

Our finding that GATA2 levels persisted during maturation of
Gata1s erythroblasts led us to compare chromatin occupancy
of GATA1/GATA1s, chromatin accessibility, and H3K27me3 enrich-
ment along the Gata2 locus (Figure 6C). CUT&RUN-seq revealed
that GATA1s bound to the23.9 kb,22.8 kb,21.8 kb, and19.5 kb
sites to a similar degree as full-length GATA1. The 4 sites are well-
studied GATA1- and GATA2-bound regulatory sites within the
Gata2 locus. GATA2 occupies these regulatory elements in early
proliferating erythroid precursors, and is then displaced by GATA1
as erythropoiesis progresses.41,42 This GATA1-mediated displace-
ment of GATA2 from chromatin is termed “GATA switching” and
the GATA1- and GATA2-occupied sites are known as GATA switch
sites. Furthermore, consistent with the elevated level of expres-
sion, GATA switch site regions showed a greater degree of ac-
cessibility as assayed by ATAC-seq. This increased accessibility was
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Figure 2. Dysregulation of gene expression in Gata1s mutant erythroid cells. (A) PCA of global gene expression changes as determined by RNA-seq of R1/2- and
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accompanied by a decrease in the levels of H3K27 trimethylation.
Differences were less notable in the R1/2 cells.

Together, although GATA1s binds as well as GATA1 at most
of binding sites, the lack of the N terminus alters H3K27

methylation and chromatin accessibility at many loci. Of
note, in contrast to the global increase in H3K27m3 seen in
Gata1s cells (Figure 4C-D), the Gata2 locus, like that of Runx1
(Figure 5F), showed a striking loss in this repressive mark
(Figure 6C).
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Haploinsufficiency of Gata2 rescues the defect of
fetal erythropoiesis in Gata1s mice
Given that overexpression of GATA2 can block the late differ-
entiation of red blood cells and the increased accessibility of
GATA2 locus in G1s erythroid cells at this stage (Figure 6C), we
investigated whether downregulation of GATA2 in the Gata1s
background could improve erythropoiesis. To test the effect of
reduced expression of GATA2 on Gata1s erythropoiesis defect,
we crossed Gata1s knock-in mice expressing only GATA1s with
Gata2 heterozygous knockout mice (supplemental Figure 5).

The number and functionality of erythroid cells was measured in
fetal liver cells from E12.5 male embryos of the 4 genotypes by
flow cytometry (Figure 7A-C) and by erythroid colony formation
(Figure 7D). Flow cytometry using the erythroid marker Ter119
showed a marked increase in Ter119-expressing cells in Gata1s/
Gata2het fetal livers compared with Gata1s/Gata2 (45% com-
pared with 24%, respectively) (Figure 7A-B). Moreover, the ratio
of early/late erythrocytes, as measured by the combined ex-
pression of Ter119 and CD71, was reduced by twofold from
3.8 in Gata1s/Gata2 to 1.9 in Gata1s/Gata2het fetal liver cells,
demonstrating a partial rescue of the erythroid differentiation
block (Figure 7C). Furthermore, cells were harvested and cul-
tured in methylcellulose supplemented with EPO. On average,
150 BFU-E colonies were observed in cultures of Gata1s/
Gata2het fetal liver cells, compared with 31 from Gata1s/Gata2,
demonstrating a fivefold increase in colony number and com-
plete rescue of the erythroid colony formation defect
(Figure 7D). To mark hemoglobin-expressing erythroid cells,
colonies and fetal liver cells were stained with benzidine. No-
tably, .40% of fetal liver cells from Gata1s/Gata2het mice were
positive for benzidine, whereas ,10% of fetal liver cells from
Gata1s/Gata2 mice were stained (Figure 7E). Similarly, colonies
generated from fetal liver cells showed a rescue phenotype, with

significantly more benzidine-stained colonies from Gata1s/Gata2het

cultured cells compared withGata1s/Gata2 (21% compared with
3%, respectively) (Figure 7F). Taken together, reduced expres-
sion of GATA2 in Gata1s embryos improved the defect of fetal
erythropoiesis by promoting the proliferation of BFU-E pro-
genitors and the maturation of erythroblasts.

Discussion
The human GATA1 gene has 2 natural products, full-length
GATA1 and GATA1s, the latter of which results from alterna-
tive splicing and alternative translation. GATA1 mutations that
lead to exclusive production of the GATA1s isoform have been
modeled in mice.9 This mouse displays transient expansion of
themegakaryocytic lineage and perturbed erythropoiesis during
gestation, but no distinguishable phenotypes were reported
after birth.9,10 We performed a number of molecular studies to
characterize the mechanism by which this Gata1 alteration
impairs erythropoiesis. We found that both erythroid and
megakaryocytic lineage genes are dysregulated in the absence
of N terminus of GATA1. Of note, a critical defect of Gata1s
mutant erythroid cells is aberrant upregulation of GATA2. We
observed phenotypic rescue of erythropoiesis by reducing the
dosage of GATA2 to heterozygosity in G1s embryos. Consistent
with this rescue, a number of prior studies have shown that
increased GATA2 blocks erythropoiesis. Although GATA2 is
dispensable for terminal differentiation of erythroid cells,43

overexpression of GATA2 maintains erythroblasts in a self-
renewing state and blocks erythroid differentiation in a dose-
dependent manner.44,45

GATA1 acts as both activator and suppressor depending on its
cofactors (eg, NuRD, MeCP1, and PCR2 complexes),46-51 sug-
gesting that lineage-specific GATA1 cofactor associations by
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N terminus of GATA1 are essential for epigenetic programming,
transcriptional regulation, and differentiation. We discovered
that the absence of theN terminus of GATA1 reduced its binding
at erythroid genes (eg, Lmo2 and Zfpm1), but enhanced its
binding activity at some megakaryocytic genes (eg, Fli1 and
Mef2c). Of note, 2 prior studies compared the chromatin oc-
cupancy of GATA1 and GATA1s in the G1ME cell line,52 which
can differentiate into erythroid cells or megakaryocytes. These
studies concluded that GATA1s occupancy was reduced at
a number of erythroid specific genes but not altered at mega-
karyocytic genes.53,54 This impaired chromatin occupancy was
then implicated in the dysregulation of erythroid gene expres-
sion and suppression of erythropoiesis. Our results extend the
results to primary cells and confirm that there is some degree
of differential chromatin occupancy, although the primary de-
ficiency is in the inability of GATA1s to properly control meth-
ylation of H3K27 at certain sites.

There have been many reports that describe GATA1 chromatin
occupancy in erythroid cells.50,55-57 Among these publications,
several have correlated GATA1 binding with epigenetic mod-
ifications. For example, Papadopoulos et al reported that
GATA1 associates with changes in specific modifications, such
as H3K27 acetylation and H3K4 dimethylation.58 By contrast,
Cheng et al reported that GATA1 bound target genes tended to
have high levels of H3K4 monomethylation and low levels of

H3K27 trimethylation, regardless of the expression levels of the
genes.57 This latter study is consistent with our global histone
modification analysis, which showed that there was a substantial
decrease in H3K27 trimethylation in the more differentiated
subset of erythroid genes.

A number of elegant studies have described the GATA switch,
which is defined as the exchange of GATA2 and GATA1 on
regulatory elements of genes that control erythropoiesis, in-
cluding GATA2 itself.42,59-61 The switch allows GATA1 to repress
a number of target genes, such as GATA2. Our CUT&RUN-seq
results suggest that the GATA switch is active in Gata1s mutant
erythroblasts because we observed that GATA1s bound to
Gata2 switch sites to a similar extent as the full-length protein.
Nevertheless, the shorter isoform is unable to repress GATA2,
which is the most well-studied GATA switch-dependent gene.
This persistent GATA2 expression is associated with a reduced
degree of trimethylation of H3K27 and gained chromatin ac-
cessibility in Gata1s mutant cells compared with WT. One ex-
planation for whyGATA2 expression is not downregulated could
be that there is impaired recruitment of PRC2 to the Gata2 locus
caused by the loss of the GATA1 N terminus. This would be
consistent with the previous report that GATA1 binds compo-
nents of the PRC2 complex46,50 and might explain why the
N terminus is critical. However, we failed to detect an interaction
between GATA1 and EZH2 or SUZ12 in extracts from erythroid
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cell lines. Thus, our observations suggest that the N terminus is
involved in other mechanisms that drive recruitment of PRC2 to
chromatin. For example, differential binding of PRC2 associated
RNAs or noncore subunits may be one possibility.62

Therefore, an important question that remains is what features of
GATA1’s N terminus are critical for the differential gene regu-
lation that results from its deletion. A recent paper by Liang et al
showed that the deubiquitinase USP7 stabilizes GATA1 by re-
moving K48-linked polyubiquitin chains and regulates human
terminal erythroid differentiation.63 GATA1s lacks the substrate
site of USP7, which suggests that GATA1s may be differentially
regulated during erythropoiesis. With respect to protein part-
ners, few factors that bind to the N terminus have been de-
scribed. One report showed that Rb interacts with GATA1 at the
LNCME motif within the N terminus.64 Loss of the interaction
'with Rb may partially explain the impaired erythropoiesis
in Gata1s embryos, but does not inform about differences in
chromatin occupancy or histone modifications. Therefore, further
identification of factors whose binding depends on theN terminus
of GATA1 or residues in the N terminus whose modification
regulate GATA1 function will shed further light on themechanism
by which GATA1 mutations cause hematologic diseases.
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