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KEY PO INT S

l We investigated all
3 subtypes of BL
by WGS and
transcriptome
sequencing.

l Experimental
validation through
CRISPR screening
and mouse models
provides a better
functional
understanding of BL
genetic drivers.

Burkitt lymphoma (BL) is an aggressive,MYC-driven lymphoma comprising 3 distinct clinical
subtypes: sporadic BLs that occurworldwide, endemic BLs that occur predominantly in sub-
Saharan Africa, and immunodeficiency-associated BLs that occur primarily in the setting of
HIV. In this study, we comprehensively delineated the genomic basis of BL through whole-
genome sequencing (WGS) of 101 tumors representing all 3 subtypes of BL to identify 72
driver genes. These data were additionally informed by CRISPR screens in BL cell lines to
functionally annotate the role of oncogenic drivers. Nearly every driver gene was found to
have both coding and non-coding mutations, highlighting the importance of WGS for
identifying driver events. Our data implicate coding and non-coding mutations in IGLL5,
BACH2, SIN3A, and DNMT1. Epstein-Barr virus (EBV) infection was associated with higher
mutation load, with type 1 EBV showing a higher mutational burden than type 2 EBV.
Although sporadic and immunodeficiency-associated BLs had similar genetic profiles,
endemic BLs manifested more frequent mutations in BCL7A and BCL6 and fewer genetic
alterations inDNMT1, SNTB2, andCTCF. Silencingmutations in ID3were a common feature

of all 3 subtypes of BL. In vitro, mass spectrometry–based proteomics demonstrated that the ID3 protein binds
primarily to TCF3 and TCF4. In vivo knockout of ID3 potentiated the effects ofMYC, leading to rapid tumorigenesis and
tumor phenotypes consistent with those observed in the human disease. (Blood. 2019;134(19):1598-1607)

Introduction
Burkitt lymphoma (BL) is one of the most rapidly proliferating
cancers that has been described so far and is characterized by
the translocation of theMYC gene to the immunoglobulin heavy
or light chain loci resulting in its overexpression. BL has 3 recognized
subtypes with distinct clinical presentations and geographic
prevalence: sporadic, endemic, and immunodeficiency-associated.
BLs were first described in Africa, and endemic BL remains themost

common pediatric malignancy in sub-Saharan Africa. Sporadic BL
occurs throughout the world, including in theWestern Hemisphere.
A third subtype occurs in immunodeficient patients, most com-
monly those with HIV infection.

Here, we applied whole-genome sequencing (WGS) and tran-
scriptome sequencing of 101 tumor-normal pairs to compre-
hensively investigate the genomic basis of all 3 subtypes of BL. In
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addition, the role of oncogenic drivers was functionally anno-
tated through CRISPR screens in BL cell lines. Several genes
were implicated as being involved in BL tumorigenesis, in-
cluding IGLL5, BACH2, SIN3A, and DNMT1. Similar genetic
profiles were observed in sporadic and immunodeficiency-
associated BL. In contrast, endemic BL manifested more fre-
quent mutations in BCL7A and BCL6 and less frequent genetic
alterations in DNMT1, SNTB2, and CTCF. Silencing mutations in
ID3 were a common feature of all 3 subtypes of BL, as observed
previously.1-4 Our in vitro and in vivo experiments confirm a role
for ID3 in potentiating the effects of MYC overexpression in
tumor proliferation.

Methods
Sample acquisition and processing
All samples were deidentified and processed in accordance
with a protocol approved by the Institutional Review Board at
Duke University. BL tumor and paired normal samples were
collected—60 sporadic, 32 endemic, and 9 HIV—totaling 101
samples, which were used in the study (supplemental Table 1,
available on the BloodWeb site). The pathology diagnosis of all
patients was confirmed by separate review by a panel of
qualified pathologists using current World Health Organization
criteria. WGS was performed on all tumor-normal pairs, and RNA
was available for 82 of the 101 patients.

DNA sequencing analysis
FASTQ files comprising reads from WGS were first tested for
quality using FastQC v.0.11.7 (www.bioinformatics.babraham.
ac.uk/projects/fastqc). Adaptor sequences and low-quality reads
were trimmed using Trimmomatic v.0.36.5 Next, alignment was
performed using BWA v.0.7.156 to map reads to the human
GRCh38 reference genome. Polymerase chain reaction (PCR)
duplicates were marked using Picard v.2.8.2 (http://broad-
institute.github.io/picard/).

Somatic variant identification and filtering
Somatic variant calling was performed with Mutect27 from
GATK4 software using the default parameters. The obtained
variant call format files were merged and normalized using
bcftools and then annotated using Annovar v.2017Jul16.8 Next,
the variants were filtered by first considering only the PASS filter
in at least 1 sample. We excluded variants that had ,3 sup-
porting reads for the alternative allele in the tumor samples and 4
supporting reads for the reference allele in the control samples.
We removed variants found in the repetitive and low-complexity
regions reported in RepeatMasker and genomic Super Dups
databases, and we eliminated variants with a high population
allele frequency (.0.01) reported in ExAC, gnomAD exome, and
gnomAD genome databases. Finally, we filtered out variants
that had an average median base quality and average median
mapping quality lower than 10.

RNA-seq analysis
FASTQ files comprising reads from RNA sequencing (RNA-seq)
were first tested for quality using FastQC v.0.11.7. Adaptor
sequences and low-quality reads were trimmed using Trimmo-
matic v.0.36.5 We used STAR v.2.5.1a9 aligner to map reads to
the human transcriptome. PCR duplicates were marked using
Picard v.2.8.2. The transcript abundances were calculated using
RSEM v1.3.0.10 The final output was a matrix of fragments per

kilobase per million mapped reads units per transcript. Custom
scripts were used to perform differential analysis. Gene set enrich-
ment analysis (GSEA) was performed.5,6 All statistical analyses and
plots were generated using R v3.4.4.

CNV analysis
Copy number variation (CNV) analysis was performed on WGS
samples (n 5 101; tumor-normal pairs). We used the copy num-
ber workflow from the GATK4 toolkit (v4.0.1.1) to make CNV
calls as described on https://software.broadinstitute.org/gatk/
documentation/article?id511682. The tool uses a standardized
and denoised read-depth method to detect CNVs and produce
copy number ratios and a Gaussian-kernel binary-segmentation
algorithm to detect copy number segments for each sample.

Identification of clusters of genomic alterations
We implemented a custom Python script to identify genomic
clusters (ie, regions in the genome with at least 4 variants and
where the variants are at most 200 base pairs [bp] apart from
adjacent variants). For each identified genomic cluster, we
computed the number of unique samples that have variants in
the specific cluster. We manually curated the clusters by ana-
lyzing their location in the genome and the quality of the variants
involved, and we performed visual tests using IGV. Next, using
bedtools, we intersected the filtered cluster regions with loca-
tions of the genes and their promoters (2000 bps before the
gene) using data obtained from UCSC Table Browser.

Translocation identification
We identified translocations by using Delly211 and by querying
discordant reads (ie, read pairs that map to 2 different chro-
mosomes). We clustered the discordant reads on the basis of the
positions on both chromosomes. We considered translocations
that had a cluster of at least 2 pairs of discordant reads with good
mapping quality (.30).

EBV identification
We identified the presence of Epstein-Barr virus (EBV) using
Diamond v0.9.18.12 EBV subtype calls were made for EBV1

samples by determining the proportion of type 1 (B95-8) vs type
2 EBNA-2 (AG876) sequences among unmapped reads. All
patients were verified using in situ hybridization for EBER if
material was available.

CRISPR screening
Three BL cell lines (BJAB, BL41, and Jijoye) were subjected to a
CRISPR screen using the GeCKO v2.0 CRISPR library system,
which contains more than 120000 single guide RNAs (sgRNAs)
that target more than 19 000 genes. Infected cell lines were
harvested 3 days posttransduction (early) and 3 weeks post-
transduction (late); DNA was isolated, and targeted sequencing
of the sgRNAs was performed. More detailed protocols can be
found in the supplemental Methods.

ID3 and TCF4 cell line experiments
First, ID3 was tagged with a 3xFLAG amino acid sequence and
overexpressed in BL cell lines. Cells were expanded and then
harvested for mass spectrometry, with experiments conducted
as previously described13-15 with some modifications in sample
preparation. Next, we used CRISPR targeting ID3 and TCF4 to
silence protein function. Subsequent 5-bromo-29-deoxyuridine
(BrdU) analysis was performed on ID3 and TCF4 silenced cells
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and compared with wild-type (WT) cells. These methods are
described in more detail in the supplemental Methods.

Mouse breeding
In the first cohort, we crossed Em-Myc1 mice with standard Id3
knockout strain mice and tracked survival over 200 days. In the
second cohort, Em-Myc1 mice were crossed with the floxed Id3
conditional strain combined with the AID-Cre strain, restricting
deletion of Id3 to germinal center (GC) cells. Tumors that arose
were flash frozen for sectioning and disaggregated and then
filtered into single-cell suspensions for flow analysis. Sections
were stained with either hematoxylin and eosin or Ki-67 and
Hoechst33342.

Results
Somatic genomic alterations identified from WGS
of BL
We performedWGS of 101 BL tumor samples and their matched
controls. Of these 101 BL patients, 60 had sporadic, 9 had HIV-
associated, and 32 had endemic BL (supplemental Table 1).
These tumor-normal pairs were subjected to WGS, targeting a
mean genome-wide coverage of 753. In all, we identified more
than 2 million variants from these patients, including 228010
somatic variants7 that were further analyzed (supplemental
Table 2).

We developed an approach for identifying the genomic regions
that had a high density of somatic variants representing clusters
of alterations occurring anywhere in the BL genome. We
identified 220 such genomic clusters that included both exonic
and non-coding regions, which included at least 4 variants from
any disease subtype within 200 bp of each other and affected at
least 3 samples. We found 620 filtered somatic mutations
(26.87%) that were associated with AID activity (ie, mutation was
present within 3 bp of an AID recognition site WRCY). We in-
tegrated these findings into a model16 that we previously used 17

to identify genetic drivers.

Figure 1 shows a Circos diagram18 of the human genome with
chromosomes and their respective ideograms. Genomic clusters
are shown in the outer track as circles with the radius repre-
senting the number of affected samples. Notably, MYC, IGLL5,
BACH2, ID3, and BTG2 were identified as prominent genomic
clusters with multiple somatic events in both coding and non-
coding regions of these genes (supplemental Table 3). The
largest genomic cluster was identified in the oncogene MYC,
containing 242 somatic events from 59 tumor samples in a 4011-
bp window, consistent with the well-described role of MYC.

We also identified structural variations, including somatic re-
current copy number alterations (both amplifications and de-
letions; frequency in at least 3 samples), and chromosomal
translocations. Chromosomal translocations involving MYC
were also assessed in all patients as part of the clinical diag-
nosis. As expected, MYC translocations with IGH, IGK, or IGL
were observed in all patients (Figure 1). In addition, next-
generation sequencing identified a novel translocation between
MYC (chromosome 8q24) and ACTB (chromosome 7p22). This
translocation was confirmed using Sanger sequencing (supple-
mental Figure 1; supplemental Table 4). Somatic copy number

alterations were identified by comparing tumor samples to a
pool of normal samples taken from the same 101 patients. We
identified a high prevalence of copy number alterations in IGLL5
(deletions) and MCL1 (gains).

Landscape of driver genes and their association
with subtypes
In all, we identified a total of 72 driver genes in BL by using
approaches that we developed previously.17 The heatmap of
genetic alterations shows driver genes found in at least 15 BL
patients ordered by their subtype and mutational frequency
(Figure 2A; supplemental Table 5).

The patterns of mutations and structural alterations provided
important clues to the oncogenic behavior of these driver genes
(supplemental Figure 2). In addition to translocations, somatic
mutations also occurred commonly in MYC as missense alter-
ations sparing the helix-loop-helix (HLH) domain. BCL6 and
MCL1 show a similar enrichment of missense mutations and
amplifications consistent with a gain-of-function of these on-
cogenes. Conversely, DDX3X, ARID1A, and ID3 manifested
frequent truncating mutations and deletions consistent with a
loss-of-function of these tumor suppressors.

Non-coding mutations were a major feature of the mutational
landscape of BLs, with a majority of the driver genes showing
multiple non-coding events. More than 90% of the samples had
non-coding genetic alterations in the driver genes. The high
prevalence of non-coding mutations, even in known driver
genes, underscores the importance of WGS for characterizing
the driver events in BL. Interestingly, we observed that many
non-coding variants associated with driver genes occurred in the
promoter region or in the first intron. For 10 of the 72 driver
genes, specifically IGLL5, BACH2, BTG2, BCL6, BCL7A, TCL1A,
IRF8, CXCR4, ZFP36L1, and S1PR2, we identified patterns
consistent with somatic hypermutation.19

Separately, we examined the profile of driver events in the
context of WGS of diffuse large B-cell lymphoma (DLBCL)20 and
found strong overlap between both coding and non-coding
events in GC B-cell (GCB) DLBCL, including those affecting
BCL6, DNMT1, BCL7A, IRF8, and FOXO1 (P , .01, x2 test),
implicating shared lineage fromGCBs as a major influence in the
acquisition of driver events.21

EBV is known to be a critical contributor to the pathogenesis
of BLs. Not unexpectedly, EBV1 patients were significantly
enriched in the endemic subtype (81% EBV1; P , .001, x2 test).
Among the sporadic BL patients, 20% were EBV1 (Figure 2A).

We further analyzed the association between somatic mutation
load and EBV status. We found that EBV1 patients had a sig-
nificantly higher mutation load compared with EBV– patients
(P , 1025, Wilcoxon test). This association was also observed
when we stratified the patients by BL subtype, indicating a
strong nexus between EBV infection and downstream genetic
events. We further examined the effects of EBV subtype and
found that patients with type 1 EBV1 had a significantly higher
mutation load compared with those who had type 2 EBV1 tu-
mors (Figure 2B; P 5 .0002, analysis of variance).
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The observed high mutational burden led us to examine the
relationship between AID-associated mutations and EBV sub-
types. EBV1 BLs were associated with a higher proportion of
AID-associated mutations compared with EBV– BLs (Figure 2C;
P 5 .027, analysis of variance).

We analyzed the mutational spectrum that contributed to the
somatic mutations (supplemental Figure 3) and identified 3
mutational signatures that are broadly associated with BLs.
We compared these mutational signatures to the database of
published signatures.22 EBV– endemic BLs were associated with
a strand bias for C.T mutations, whereas EBV1 endemic BLs
were associated with dysregulation of AID activity during so-
matic hypermutation. Conversely, somatic mutations in sporadic
and HIV BL samples resembled a signature correlated with a
transcriptional strand bias for C.A mutations.22 We further
identified genetic alterations that were associated with 1 or more
BL clinical subtypes or EBV status (Figure 2D; supplemental
Table 6). We found that BCL7A and BCL6 genetic events were
enriched in the endemic subtype, whereasDNMT1, SNTB2, and

CTCF mutations occurred more frequently in HIV and sporadic
patients (P , .05). SNTB2 mutations were associated with EBV–

patients, and IGLL5 and BACH2mutations were associated with
EBV1 patients (P , .05).

Expression patterns associated with driver
mutations in BL
We examined the downstream changes in gene expression
associated with the driver mutations. To identify differentially ex-
pressed genes and pathways associated with genetic alterations in
each of the driver genes, we performed logistic regression modeling
by using BL subtype as a covariate to account for the differences
between the subtypes. We next performed gene set enrichment
(GSE) using described gene ontologies23,24 with odds ratios (logistic
regression coefficients) as the ranked metric for enrichment
analysis (Figure 3A; supplemental Tables 7 and 8).

The normalized enrichment scores from GSE were then visual-
ized as a heatmap for each of the driver genes (Figure 3B). We
found that the gene sets clustered into 2 main groups involving
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signaling and metabolic pathways and DNA repair. Signaling
pathways, including G-protein–mediated events, were enriched
inGNA13 driver mutations. Mutations inDNMT1 and BCL6were
associated with DNA repair pathways.

Comparison of genetic alterations and gene
expression of BL and DLBCL
BL and DLBCL are both aggressive B-cell lymphomas with over-
lapping morphology, immunophenotypes, and genetics. This
overlap can make distinguishing between BL and DLBCL chal-
lenging. Given the vast differences in treatment for BL and

DLBCL, the distinction is clinically important. We therefore com-
pared the genetic alterations andgene expression of BL andDLBCL
by using publicly available data from 1001 patients with DLBCL.17

We first compared the mutational profiles of BL and DLBCL.
The overlap of the driver genes is shown as a Venn diagram
(Figure 4A) and as a bar plot showing mutational frequencies for
the top driver genes in BL and DLBCL (Figure 4B). Roughly 40%
of the BL driver genes (31 of 72) are shared with DLBCL, and the
remaining 60% are altered predominantly in BL, suggesting
divergence in mutational patterns for these 2 lymphomas.
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We further compared the expression profiles of BLs and DLBCLs.
We first identified differential genes for each of the BL subtypes
and compared these to the cell-of-origin–based DLBCL sub-
types, activated B-cell-like (ABC DLBCL) and GCB-like (GCB
DLBCL). We identified a total of 2563 differentially expressed
genes that distinguished at least 2 BL subtypes from DLBCL
(Figure 4C; supplemental Table 9). In general, we observed
that the gene expression patterns of DLBCL were more hetero-
geneous than those of BLs, even when BL subtype differences
were taken into account. As expected, GCBDLBCLs were closer in
gene expression to BLs compared with ABC DLBCLs.

We plotted the gene set enrichment analysis (GSEA) results
separately for differentially expressed genes associated with
ABC DLBCL and GCB DLBCL, and by the direction of the effect

(upregulated or downregulated). These significantly enriched
gene sets are shown in Figure 4D (supplementary Table 10). As
expected, MYC target genes were more strongly associated
with BL compared with DLBCL. In addition, cell cycle andMTORC1
signaling had higher expression in BL compared with DLBCL,
whereas apoptosis and JAK-STAT pathways were more highly
expressed in DLBCL.

CRISPR screening to functionally annotate BL
driver genes
To better understand the functional effects of the identified
driver genes, we used a genome-wide human sgRNA library
containing more than 120000 sgRNAs targeting 19 050 protein
coding genes in 3 BL cell lines (BJAB, BL41, Jijoye)25 and compared
it to 3 DLBCL cell lines (SUDHL4, Ly3, HBL1). We transduced
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3 replicate populations fromeach cell linewith the complete sgRNA
library and sequenced replicate populations at 2 time points (1 and
14 population doublings posttransduction) to observe changes in
sgRNA frequency over time.

Genes whose knockout led to depletion at the late time point
were deemed to be essential genes similar to those described
previously.26 Broadly, BL-essential genes were observed to be
enriched for cancer-related functions, including MYC targets, cell

cycle and DNA repair, and other critical cellular processes, in-
cluding ribosome biosynthesis, translation, and the metabolism of
RNA and messenger RNA (supplemental Figure 4; supplemental
Table 11). We noted that 15 BL driver genes were among these
essential genes. Essential genes shared among BL and DLBCL
includedMYC,BCL6, andARID1A (Figure 4E).Weobserved fewer
BL-specific essential genes than DLBCL-specific genes, likely
owing to the greater genetic heterogeneity of DLBCLs com-
pared with BL.
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Defining the biological effects of ID3
ID3 continued to stand out as one of the most recurrently silenced
genes across all 3 BL subtypes, with mutations clustered within the
HLH region (Figure 5A). Because ID3 lacks a DNA-binding domain,
we reasoned that the effects of WT ID3 are largely exercised
through HLH domain interactions at the protein level. We
engineered the BJAB BL cell line to overexpress ID3 coupled to a
FLAG epitope and performed co-immunoprecipitation followed by
mass spectrometry–based proteomics to identify other proteins
that were bound to ID3 in BL cells. Interestingly, we found that, in
addition to the previously described interactions with TCF3,27 ID3
also binds the E2F proteins TCF4 and TCF12, accounting for
85% of all peptides detected, with TCF3 and TCF4 represented in
roughly equal fractions (Figure 5B). No mutations were observed in
TCF4 or TCF12, although both genes are highly expressed in BL.

We further investigated the downstream effects of ID3 inter-
actions using a CRISPR-based genetic engineering approach to
introduce frameshift deletion events within the HLH region
(oligos used are listed in supplemental Table 12). The deletion
events induced by Cas9/sgRNA were confirmed by Sanger
sequencing (supplemental Figure 5A) and the reduced gene
expression was observed (Figure 5C). We then performed
transcriptome sequencing (RNA-seq) on WT and corresponding
ID3 knockout cell lines and found 96 genes to be differentially
expressed between the 2 groups (Figure 5D). GSEA strongly
implicated cell cycle as the main biological process affected by
ID3 silencing (Figure 5E; q5 0.1, GSEA). We then validated these
findings experimentally by performing cell cycle analysis by mea-
suring BrdU incorporation in WT and ID3 knockout cells. Compared
with WT cell lines, ID3 knockout cells had significantly more BrdU
incorporation (Figure 5F;P, .05), indicating that ID3 knockout serves
to accelerate cell cycle progression, even in established BL cells.

Given the identified proteomic interaction with TCF4, we also
investigated the effects of TCF4 loss on cell cycle progression.
We used the CRISPR method to introduce early frameshift de-
letions in the HLH domain of the TCF4 gene in Burkitt cell lines.
Deletion events were confirmed by Sanger sequencing (sup-
plemental Figure 5B), and subsequent reduced expression was
observed through quantitative PCR (qPCR) analysis (Figure 5G).
Cell cycle analysis on WT and knockout cells revealed that TCF4
knockout cells displayed reduced BrdU incorporation compared
with WT cells (Figure 5H; P , .05), indicating reduced cell cycle
progression. Thus, ID3 has pro-proliferative effects in BL, and its
effects seem to oppose those of its binding partner TCF4,
consistent with an inhibitory role for ID3 on both TCF3 and TCF4.

In vivo effects of ID3 loss
We sought to characterize the effect of ID3 loss in vivo using
mouse models. Interestingly, Id3 knockout mice do not develop
B-cell lymphomas and have relatively preserved lifespans. We
therefore explored the possibility that ID3 loss collaborates with
MYC gain of function in vivo. First, we crossed Id31/1 or Id31/2

mice onto the Em-Myc background. Em-Myc;Id31/2 mice man-
ifested large abdominal tumors similar to the clinical presentation of
BL tumors in patients who live in theWestern Hemisphere. Em-Myc;
Id31/2 mice also demonstrated greatly reduced latency to tumor
development compared with Em-Myc;Id31/1 littermates (median
survival, 70.5 days vs 114.0 days, respectively; Figure 5I)manifesting
early B-cell phenotypes similar to those reported previously.28

Because BL is a GC-derived tumor, we also investigated the

effect of Id3 loss specifically in theGC compartment. We crossed
mice expressing a floxed version of Id3with mice expressing Em-
Myc and a Cre transgene driven by activation-induced cytidine
deaminase (Aidca [AID-Cre]). Mice aged 3 months were injected
with sheep red blood cells to simulate antigen exposure and the
induction of GCBs. These mice also developed tumors, albeit at
a later age (average, 5.9 months). The tumors in these mice
exhibited a B2201IgM1IgDlow phenotype (Figure 5J). In addition,
B-cell tumors that arose in these mice had a starry sky appearance
(Figure 5K) and were almost uniformly Ki-671 (Figure 5L), con-
sistent with BL characteristics. Together, these data provide the
first in vivo confirmation of the role of ID3 loss in potentiating the
effects of MYC in BL pathogenesis.

Discussion
The 3 subtypes of BL have distinct clinical presentations. Through
WGS and transcriptome sequencing of all 3 subtypes, we identified
72 driver genes in all 3 subtypes, with both coding and non-coding
mutations. Interestingly, the sporadic and HIV subtypes were much
more closely related to each other at both the genetic and tran-
scriptional level than the endemic subtype. Notably, WGS identi-
fied a number of non-coding mutations in nearly all genetic drivers
in BL, indicating that WGS greatly expands our understanding of
genetic events that converge in BL subtypes.

CRISPR screening in BL cell lines indicated both oncogenes and
tumor suppressor genes that have a role in cell proliferation. ID3
is one of the most commonly silenced genes in all 3 BL subtypes.
Our in vitro and in vivo approaches indicated a role for ID3 in
regulating cell proliferation through deregulation of TCF3 and
TCF4 in BL cells. Interestingly, BL cell lines are known to be
among the most proliferative of all cancer cell lines. Even in that
setting, loss of ID3 and TCF4 hadmeasurable effects in cell cycle
progression. Our data suggest that TCF4 can potentially com-
pensate for the loss of TCF3 function. The in vivo studies provide
the first models, suggesting that synergy between ID3 and MYC
emulates the pathogenesis of BL in B cells.

Our data have several clinical implications. First, the genomic
landscape of BL identifies expression and genetic markers that
enable the sometimes challenging but clinically important task of
distinguishing BL fromDLBCL. Evolving technologies might enable
their direct measurement through DNA-seq and RNA-seq, obvi-
ating the need for several of the individual markers currently
needed to distinguish DLBCLs in clinical pathology. Second, our
data indicate that the clinically distinct BL subgroups arise from
highly shared genetic origins. Thus, therapeutic approaches and
clinical trials that are relevant to one subgroup are relevant to the
other subgroups. For instance, a clinical trial conducted in sporadic
BL in theWestern Hemisphere is relevant to HIV patients with BL as
well as BL patients in sub-Saharan Africa, even though the latter
groupsmaybe logistically difficult to enroll in a trial. Finally, our data
support the continued evaluation of EBV status in BL patients. Our
study thus provides a comprehensive examination of the genomic
alterations in BL subtypes and provides a rich starting point for
viable models of the disease and understanding its biology.
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