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KEY PO INT S

l Suz12 inactivation
cooperates with JAK3
mutant signaling to
drive T-ALL
development.

l JAK3/Suz12 mutant
leukemia cells show
increased sensitivity
to PI3K/mTOR, VEGF
receptor, and HSP90
inhibitors.

The polycomb repressive complex 2, with core components EZH2, SUZ12, and EED, is re-
sponsible for writing histone 3 lysine 27 trimethylation histone marks associated with gene
repression. Analysis of sequence data from 419 T-cell acute lymphoblastic leukemia (T-ALL)
cases demonstrated a significant association between SUZ12 and JAK3 mutations. Here we
show that CRISPR/Cas9-mediated inactivation of Suz12 cooperateswithmutant JAK3 to drive
T-cell transformation and T-ALL development. Gene expression profiling integrated with
ChIP-seq and ATAC-seq data established that inactivation of Suz12 led to increased PI3K/
mammalian target of rapamycin (mTOR), vascular endothelial growth factor (VEGF), and
WNT signaling. Moreover, a drug screen revealed that JAK3/Suz12 mutant leukemia cells
were more sensitive to histone deacetylase (HDAC)6 inhibition than JAK3 mutant leu-
kemia cells. Among the broad genome and gene expression changes observed on Suz12
inactivation, our integrated analysis identified the PI3K/mTOR, VEGF/VEGF receptor, and

HDAC6/HSP90 pathways as specific vulnerabilities in T-ALL cells with combined JAK3 and SUZ12 mutations.
(Blood. 2019;134(16):1323-1336)

Introduction
The polycomb repressive complex 2 (PRC2) consists of 2 main
scaffold proteins, SUZ12 and EED, and 1 enzymatic protein,
EZH2, which is in some cases substituted by EZH1. The PRC2
complex is responsible for writing the histone 3 lysine 27 tri-
methylation (H3K27me3) mark,1 implicated in gene repres-
sion. In this way, the PRC2 complex enables cells to stabilize
cell identity through maintenance of repressive gene expres-
sion programs established by lineage-determining transcrip-
tion factors.2

Mutations in members of the PRC2 complex are found in many
cancers and include both gain-of-function and loss-of-function
mutations, depending on the tumor type. EZH2 is recurrently
overexpressed or amplified in solid tumors, follicular lymphoma,
and a subset of melanomas.2,3 In non-Hodgkin lymphoma, ac-
tivating mutations occur in the catalytic domain of EZH2, leading
to an aberrant increase in H3K27me3.4-6 These EZH2 gain-of-
function mutations served as a rationale for testing small
molecule EZH2 inhibitors for cancer treatment.3,7 In contrast,
malignant peripheral nerve sheath tumors, glioblastoma,
and melanoma frequently harbor loss-of-function mutations
in SUZ12 and/or EED, leading to complete loss of H3K27me3.8

In glioblastoma, loss of H3K27me3 can also occur through a

mutation of histone H3 at position K27.9 In myelodysplastic syn-
drome and myeloproliferative neoplasms, up to 13% of patients
carry EZH2 deletions that are associated with a poor prognosis.10,11

In T-cell acute lymphoblastic leukemia (T-ALL), recurrent non-
sense and frameshift mutations or deletions occur in EZH2,
SUZ12, or EED.12-14 Subsequent functional analyses have fo-
cused on the role of EZH2 loss within the aggressive early T-cell
precursor (ETP)-ALL subtype. Loss of Ezh2 or Eed was found
to cooperate with oncogenic NRAS(Q61K) and loss of Cdkn2a
in driving ETP-ALL in a mouse model.15 In another study,
Runx1 inactivation together with loss of Ezh2 was found to
cause the expansion of ETPs that progressed to an aggres-
sive myeloid/lymphoid leukemia on the addition of Flt3-
ITD.16 More recently, Ezh2 loss on a p53 null background was
shown to promote ETP-ALL in mice, which was associated with
increased DNA hypermethylation and concomitant repression of
critical T-cell development genes including Runx1, Bcl11b, and
Ptcra (pre-TCRa).17 These studies provide mechanistic insight
into the importance of maintaining a functional PRC2 complex,
and in particular EZH2, in regulating normal transcriptional
programs during early T-cell development. However, no studies
to date have evaluated whether mutations within SUZ12 are also
an important driver in T-ALL development or maintenance.
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Figure 1. PRC2mutations co-occur with JAK3mutations and Suz12 loss cooperates with JAK3(M511I) in vitro. (A) Pie charts comparing the frequency of JAK3 mutations
(orange) and IL7R-JAK1-STAT5 mutations (brown) within patients with PRC2 mutant T-ALL vs patients with PRC2 wild-type. Similar pie charts for JAK/STATmutation frequencies
for patients with T-ALL carryingmutations in the 3 different PRC2 components SUZ12, EED, and EZH are shown aside. Using Pearson’s x-squared test (*) or the Fisher’s exact test,
P values were calculated for testing significance of positive association between JAK3 mutations and mutations in PRC2, SUZ12, EZH2, or EED. T-ALL patient data (n 5 419).
(B) Schemeof ex vivo pro-T-cell culture requiring interleukin 7 (IL7), stem cell factor (SCF), and immobilizedD-like ligand 4 (DLL4). (C) Cell densities (meanwith standard deviation)
over time for different IL7-deprived pro-T-cell conditions: JAK3(M511I)1Suz12gRNA TS1, TS5, and TS6 (J1S1, J1S5, J1S6); Suz12 gRNA TS1, TS5, and TS6, always in combination
with green fluorescent protein (GFP) empty vector (S11EV, S51EV, S61EV) controls; JAK3(M511I) in combination with blue fluorescent protein (BFP) empty vector (J1EV);
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Methods
In vivo treatments and compounds
For in vivo treatment studies, mice were injected with 106 leu-
kemia cells. When engraftment was established, mice were ran-
domly assigned into the different treatment groups. Mice were
treated 5 days per week until the humane end point was reached.
Dactolisib (50 mg/kg/day) and sunitinib (60 mg/kg/day) were orally
delivered. Ricolinostat (50mg/kg/day) and 17-AAG (25mg/kg/day)
were delivered through intraperitoneal injection. All compounds
for in vivo treatments were ordered from MedChemExpress.

Flow cytometry
Single-cell suspensions were prepared from peripheral blood,
bone marrow, spleen, thymus, or lymph nodes. Cells were an-
alyzed on either a FACSVerse flow cytometer (BD Biosciences) or
MACSQuant VYB (Miltenyi). Antibodies used are listed in the
supplemental Materials, available on the Blood Web site. Data
were analyzed using FlowJo (Tree Star) software to quantify the
median fluorescence intensity (MFI) of allophycocyanin (APC)
or phycoerythrin (PE).

Drug screening
JAK3(M511I)1Suz12gRNA leukemia cells and JAK3(M511I) leu-
kemia cells were subjected to a drug screen with the Epigenetics
Compound Library (Selleckchem L1900). Cells were seeded into
96-well plates at 200000 cells/mL, and inhibitors were added at
1 mM final concentration, using a mosquito HTS dispenser (TTP
Labtech). For single-drug dose response studies, cells were seeded
into 96-well plates at 300000 cells/mL, and the compounds were
added using a D300e digital dispenser (Tecan). Cell proliferation
wasmeasured after 24 hours, using the ATPlite luminescence system
(PerkinElmer) using a Victormultilabel plate reader. Differential drug
sensitivity was determined by the J/J1S score, defined as the
ratio of dimethyl sulfoxide (DMSO)-normalized viability of
JAK3(M511I) leukemia cells divided by DMSO-normalized via-
bility of JAK3(M511I)1Suz12gRNA leukemia cells.

ChIP-seq, ATAC-seq, RNA-seq
ChIPmentation was carried out as previously described, with
spike-in controls for normalization.18 The antibodies used are
provided in the supplemental Materials. RNA was extracted
from tissue and cells, using the Maxwell 16 LEV Simply RNA
purification kit (Promega). Next-generation sequencing libraries
were constructed from 500 ng of total RNA, using the Truseq RNA
sample prep kit v2 (Illumina). The Fast ATAC-seq protocol
suitable for primary hematopoietic cells was used.18,19

Gene set enrichment analysis
A ranked gene set enrichment analysis was performed with the
BROAD gene set enrichment analysis (GSEA) software. For the
RNA sequencing data, the ranked gene lists were constructed
from the differential gene expression results, in which the ranking
value was calculated as –sign[(log2FC)*log(padj)]. Different gene
sets were used, such as those from the Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathway database, and custom
gene sets such as the genes with a disappearing H3K27me3
peak. Overrepresentation enrichment analyses were per-
formedwith the online WEB-based Gene SeT AnaLysis Toolkit
(WebGestalt).

Statistics and quantification
All statistical analyses were performed using Prism software
(Graphpad). For analysis of the mouse data, survival was cal-
culated using the Kaplan-Meier method, and 2-sided P values
were determined by the log-rank (Mantel Cox) test. For quan-
titative polymerase chain reaction analyses, data are expressed
as the mean6 standard deviation (SEM). Comparisons between
2 groups were performed by 2-sided unpaired Student t tests.

Data sharing statement
The RNA-seq and ChIP-seq data have been deposited in the Gene
Expression Omnibus database via accession number GSE122496.
Raw data and drug scores from the drug screen can be found in
the supplemental Materials.

Additional methods are provided in the supplemental Materials.

Results
PRC2 inactivating mutations co-occur with JAK3
mutations in patients with T-ALL
A combined analysis of sequence data from 419 patients with
T-ALL13,14 revealed that PRC2 mutations occurred in 14.3% of all
T-ALL cases and showed a higher frequency within immature
(LYL1/LMO2) and HOXA-positive T-ALL subgroups (supple-
mental Figure 1A). Focusing on the individual core subunits of
the PRC2 complex, a near-equivalent mutation frequency was
found for both EZH2 (7.2%) and SUZ12 (6.2%), with slightly fewer
mutations in EED (3.8%). These PRC2 mutations were strongly
associated with IL7R-JAK-STAT mutations, which included
mutations in IL7R, JAK1, JAK3, STAT5A, and STAT5B (P 5 .0004
for Liu dataset, P 5 .03 for Vicente dataset; supplemental Figure
1B). The highest significant association was between JAK3 mu-
tations and SUZ12 mutations (P , .001), followed by JAK3 and
EED mutations (P 5 .03; Figure 1A). Mutations in SUZ12 and
EED were mainly deletions and nonsense mutations (80%-89%),
strongly suggesting that these are loss-of-function mutations,
whereas mutations in EZH2 were mainly missensemutations (73%).

Inactivation of Suz12 cooperates with activating
JAK3 mutations to confer interleukin-7-
independent growth in pro-T-cells
Given the strong association of JAK3 and SUZ12 mutations in
T-ALL (Figure 1A), we initially studied the effects of these
mutations in pro-T-cell cultures (Figure 1B). Primary mouse pro-
T cells can be cultured ex vivo in the presence of DLL4 (D-like
ligand 4, activating NOTCH1), SCF (stem cell factor, activat-
ing the Kit receptor), and IL7 (interleukin 7, activating the IL7

Figure 1 (continued) and BFP empty1GFP empty vector (EV) controls. (D) Western blot on EV pro-T cells and IL7-independent JAK3(M511I)1Suz12gRNA pro-T cells (J1S1, J1S5,
J1S6). b-actin was used as loading control. (E-F) Suz12 protein (E) and H3K27me3 (F) levels were measured by intracellular flow cytometry in IL7-independent JAK3(M511I)
1Suz12gRNA pro-T-cells (J1S1, J1S5, J1S6) and JAK3(M511I) (J) pro-T-cells. MFIs were calculated for APC emission. (G-H) Suz12 protein (G) and H3K27me3 (H) levels were
measured by intracellular flow cytometry. MFIs were calculated for APC emission. (I) PercentagemCherry relative to d0 was measured over time in IL7-independent J1S1 and J1S5
pro-T-cells that were transduced with mCherry EV or mCherry Suz12 cDNA overexpression (Suz12 OE).

SUZ12 AND JAK3 MUTATIONS COOPERATE IN T-ALL blood® 17 OCTOBER 2019 | VOLUME 134, NUMBER 16 1325

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/134/16/1323/1248571/bloodbld2019000015.pdf by guest on 04 M

ay 2024



receptor-JAK-STAT pathway).20,21 We have recently demon-
strated that mutations found in T-ALL can confer DLL4, SCF,
and/or IL7 independent growth to pro-T cells.19,20,22

We used pro-T-cells derived from a Cas9 transgenic mouse, and
the Suz12 gene was inactivated using 3 different CRISPR guide
RNAs (gRNAs), selected from a panel of 7 gRNAs (supplemental
Figure 2A-D). In pro-T-cells, neither JAK3(M511I) expression
alone or inactivation of Suz12 alone was able to confer IL7-
independent growth. However, expression of JAK3(M511I)
together with the Suz12gRNAs conferred IL7-independent

proliferation capability (Figure 1C). The JAK3(M511I)1Suz12gRNA
pro-T-cells also showed reduced Suz12 protein levels and de-
creased H3K27me3 levels (Figure 1D-F), confirming inactivation
of Suz12 and PRC2 activity. To test specificity of the Suz12gRNA, a
Suz12 cDNA (with mCherry reporter) was re-introduced in
IL7-independent JAK3(M511I)1Suz12gRNA pro-T-cells. This re-
stored Suz12 protein and H3K27me3 levels and showed a
growth disadvantage compared with untransduced cells (Figure
1G-I). Interestingly, JAK3(M511I) could also cooperate with Eed
loss, but not with Ezh2 loss, to drive IL7 independent growth in
pro-T cells (supplemental Figure 2E).
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Figure 2. Suz12 loss cooperates with JAK3(M511I) in driving an aggressive T-ALL in vivo. (A) Scheme of bone marrow transplantation set-up. HSPCs were isolated from
the bone marrow of Cas9 donor mice, followed by retroviral transduction with constructs overexpressing JAK3(M511I) and/or Suz12gRNA before injection into recipient mice.
(B) Clonal evolution of different populations (WT, S, J, J1S) in the blood of a representative JAK3(M511I)1Suz12gRNAmouse (M1R15) over time, showing competitive advantage
of J1S cells over other populations. Cell populations: nontransduced (wild-type; WT), Suz12gRNA (S; BFP only), JAK3(M511I) (J; GFP only), and JAK3(M511I)1Suz12gRNA (J1S,
BFP1GFP double positive). (C) WBC counts of recipient mice over time for 4 different cohorts: JAK3(M511I)1Suz12gRNA, JAK3(M511I), Suz12gRNA, and control (GFP and BFP
empty vectors, EV) mice. A WBC count of 30000 was used as cutoff for DFS. (D) Survival curve showing DFS of mice in the same 3 cohorts as in C. Mice in which Suz12gRNA-TS5
instead of TS1was usedwere designatedwith a box and darker color. P values were calculatedwithGehan-Breslow-Wilcoxon test. (E-F) Survival curves of JAK3(M511I)1Suz12gRNA
(E) and Suz12gRNA (F) leukemias that were serially transplanted. (G) Representative flow cytometry stainings for CD8 (APC-Cy7, y-axis) and CD4 (PerCP-Cy5.5, x-axis) of thymus
and spleen of leukemia cells (pregated on GFP and/or BFP) from 3 different cohorts at time of sacrifice. For all figures except Fig. 2D, Suz12gRNA TS1 was used in Suz12gRNA
and JAK3(M511I)1Suz12gRNA mice.
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Differential gene expression analysis on IL7-independent
JAK3(M511I)1Suz12gRNA pro-T-cells vs sorted IL7-dependent
JAK3(M511I) pro-T-cells showed up/downregulation of 3748/
3408 genes. Analysis of the gene clusters that correspond with
IL7, SCF, or DLL4 stimulation20 revealed no global effect on the
JAK/STAT cluster (supplemental Figure 2J). Moreover, phospho-
STAT5 (p-STAT5) and phospho-STAT3 (p-STAT3) analysis did not
show increased phosphorylation of STAT5 or STAT3 when com-
pared with JAK3(M511I) or empty vector (EV) cells (supplemental
Figure 2F-G). In contrast, gene cluster analysis revealed a
positive enrichment for the genes of the E2f and Myc clusters in
Suz12-inactivated cells (supplemental Figure 2H-I). These data
indicate that loss of Suz12 can cooperate with JAK3(M511I) to
stimulate pro-T-cell growth through multiple pathways, and not
through direct effects on the JAK/STAT pathway.

Loss of Suz12 results in decreased H3K27me3 and
cooperates with JAK3 activating mutations in
driving an aggressive T-ALL in vivo
Having established that JAK3(M511I) and inactivation of Suz12
led to IL7-independent growth of pro-T cells, we next sought to
determine whether these co-occurring mutations also cooperate
in vivo. To test this, we isolated hematopoietic stem/progenitor
cells (HSPCs) from transgenic mice that constitutively express
Cas9.23 These cells were transduced with JAK3(M511I), Suz12gRNA
(S1 or S5), or JAK3(M511I)1Suz12gRNA. The resulting mixed
population of non-, single-, and double-transduced cells were
then injected into sublethally irradiated wild-type recipient
mice without sorting to assess both oncogenic potential and
clonal competition in vivo (Figure 2A).

A rapid increase in white blood cell (WBC) count was observed
in JAK3(M511I)1Suz12gRNA mice with the double-transduced
cells (GFP/BFP)outcompeting theother cells (Figure2B). JAK3(M511I)
or Suz12gRNAmice showed a later onset of leukocytosis (Figure 2C).

JAK3(M511I)1Suz12gRNA mice (n 5 17) had a median
disease-free survival (DFS) of 74 days. Suz12gRNA mice de-
veloped leukemia with a significantly longer latency (median
DFS, 112 days; n 5 9; P 5 .001). Mice transplanted with cells
transduced by JAK3(M511I) developed leukemia (DFS, 149 days;
n 5 10; P 5 .0002), as previously described24 (Figure 2D; supple-
mental Figure 3A-B). JAK3(M511I)1Suz12gRNA and Suz12gRNA
leukemias were CD81 or CD41CD81 T-ALL and showed efficient
transplantability, indicating the presence of high numbers of leukemia-
initiating cells (Figure 2E-G; supplemental Figure 3F; supple-
mental Table 3). Additional characterization of JAK3(M511I)1
Suz12gRNA, EedgRNA, or Ezh2gRNA mice is provided in sup-
plemental Figure 3E.

CRISPR/Cas9-mediated gene editing of Suz12 in JAK3(M511I)
1Suz12gRNA and Suz12gRNA leukemias was confirmed by poly-
merase chain reaction and Sanger sequencing (supplemental
Figure 4; supplemental Figure 5A). These leukemias carried
deletions in the Suz12 gene flanking the gRNA target site
ranging from 64 to 257 bp (supplemental Table 5; supplemental
Figure 4B-D). At the protein level, loss of Suz12, reduction of
H3K27me3, and/or overexpression of JAK3(M511I) was con-
firmed by western blot and intracellular flow cytometry (sup-
plemental Figure 5B-F).

Suz12 inactivation causes loss of the H3K27me3
repression mark and increased chromatin
accessibility
We next sought to determine how the loss of Suz12 contributes
to leukemia development by integrating quantitative ChIP-seq,
ATAC-seq, and RNA-seq data from the mouse leukemia cells.
Inactivation of Suz12 resulted in a global reduction of ChIP-seq
signals for both H3K27me3 and Suz12 (Figure 3A-C). Principle
component analysis of the differential RNA-seq analysis revealed
strong clustering of each of the samples according to genotype
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Figure 2. (Continued).
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Figure 3. Suz12 inactivation causes loss of the H3K27me3 repressionmark and increased chromatin accessibility. (A) Centered heat maps of the ChIP-seq Suz12 signals in
the different leukemia conditions, centered on Suz12 peaks in J control leukemias. (B-C) Global Suz12 and H3K27me3 signal densities comparing J1S1 vs J and S1 vs WT.
J, JAK3(M511I) leukemia; J1S1, JAK3(M511I)1Suz12gRNA leukemia; S1, Suz12gRNA leukemia; WT, wild-type cells. (D) Principle component analysis (PCA) plot showing
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and immunophenotype (Figure 3D). Suz12 inactivation led to
a large number of significant gene expression changes: 2916
upregulated and 1253 downregulated genes in JAK3(M511I)
1Suz12gRNA compared with JAK(M511I); 2566 upregulated
and 1967 downregulated genes in Suz12gRNA compared with
wild-type (Figure 3E). A ranked GSEA on the differentially
expressed genes showed a significant positive enrichment for
genes that had a disappearing H3K27me3 peak at the pro-
moter on Suz12 loss (P , .001; Figure 3F). Similarly, these
differentially expressed genes also exhibited positive enrich-
ment for appearing ATAC-seq peaks (P , .001; Figure 3G),
indicating that upregulation of these genes is associated with
increased accessibility of the chromatin at these loci. Ranked
GSEA showed a positive enrichment of annotated PRC2 target
genes,25 including Hoxa genes, in leukemia samples with Suz12
inactivation (P , .001; Figure 3H-I; supplemental Figure 6).

Suz12 inactivation causes activation of the PI3K/
mTOR, VEGF/VEGFR, andWNT signaling pathways
Overrepresentation enrichment analysis revealed significant
enrichment of the cytokine-cytokine receptor interaction
(P , .001) and the PI3K/mammalian target of rapamycin (mTOR)
(P , .001), the Ras (P , .001), and Wnt (P 5 .002) pathways as
major cancer-related pathways enriched in leukemia cells with
Suz12 inactivation (Figure 4A-B). To determine which of these path-
ways were important for the proliferation and survival of the
mouse leukemia cells, these cells were subjected to selective
pathway inhibitors. This confirmed important roles for the PI3K/
mTOR, vascular endothelial growth factor (VEGF)/VEGF receptor
(VEGFR), and WNT pathways (Figure 4C-E), as these showed pref-
erential effects on the JAK3(M511I)1Suz12gRNA or Suz12gRNA
leukemia cells compared with JAK3(M511I) or wild-type cells.

Pathway analysis based on gene expression data revealed sig-
nificant upregulation of the PI3K/mTOR signaling pathway,
growth factor receptors, and their adaptors in the JAK3(M511I)1
Suz12gRNA leukemia cells compared with JAK3(M511I) cells
(Figure 5A). Moreover, ChIP-seq data showed direct Suz12
binding and H3K27me3 at promoters of Pik3cb, encoding PI3K
catalytic subunit b, and Akt3. This repression was lost in the
leukemias with inactivation of Suz12, associated with increased
H3K4me3 levels and increased mRNA expression (Figure 5B).
Other genes were not directly bound by Suz12 and are likely to
be upregulated by indirect effects. Human T-ALL samples with
SUZ12 mutation also showed elevated levels of PI3K signaling
genes (supplemental Figure 8A).

To verify activation of the PI3K/mTOR pathway, we measured
phosphorylation and total protein expression of key signal-
ing components. We observed increased p-Akt resulting from
increased expression of Akt (Figure 5C), and increased p-S6K
and p-S6, indicative of increased PI3K/mTOR signaling (Figure
5E-F). Phosphorylation of Gsk3b was also increased, leading
to inhibition of this negative regulator of the PI3K/mTOR path-
way (Figure 5D). No changes in STAT5 or STAT3 activation were
detectable in leukemia cells with Suz12 loss, indicating again that

Suz12 loss has no direct effect on JAK/STAT signaling (supple-
mental Figure 8B-C).

Dactolisib also showed strong on-target inhibition on phosphory-
lation levels of Akt, S6, and S6K (Figures 5G-I). To test in vivo
therapeutic efficacy of PI3K-AKT-mTOR inhibition, we treated
JAK3(M511I)1Suz12gRNA leukemia mice with dactolisib, which
significantly prolonged disease-specific survival of these animals
(P 5 .003; Figure 5J). Mice treated with dactolisib also showed
reduced leukemia burden, as illustrated by reduced leukocytosis
(P, .0001, Figure 5K) and by reduced spleen and thymusweights
(P 5 .008 and P 5 .003, respectively, Figure 5L).

In addition to the PI3K/mTOR pathway, many different receptor
tyrosine kinases and their ligands were found to be upregulated
specifically in the JAK3(M511I)1Suz12gRNA leukemia cells,
including the Flt3 promoter that was directly bound by Suz12
(supplemental Figure 9A). Interestingly, both VEGF ligand (Vegfa,
Vegfc, Vegfd) and VEGFR (Flt1, Flt4, Kdr) genes were upregulated
(Figure 6A), which appeared to be a direct effect of Suz12 loss
at the promoter site of Flt1 (VEGFR1) and Vegfa (Figure 6B-D).
Importantly, in patients with SUZ12 mutant T-ALL, there was also
a significantly increased expression of FLT1, FLT4, VEGFA, and
VEGFC (Figure 6E). Inhibition of JAK3(M511I) with tofacitinib
was able to reduce Vegfa expression levels, indicating that VEGFA
upregulation is caused by cooperation between JAK3 signaling
andSuz12 loss (supplemental Figure 9B-C). JAK3(M511I)1Suz12gRNA
leukemia mice treated with sunitinib in vivo exhibited a survival
advantage (P 5 .04; Figure 6I). Leukocytosis and spleen weight
were also significantly reduced in mice treated with sunitinib
(P 5 .001; Figure 6J-K).

Overall, these data illustrate activation of the PI3K/mTOR and
VEGF/VEGFR pathways in JAK3(M511I)1Suz12 mutant leuke-
mias, which were associated with sensitivity to dactolisib and
sunitinib in vitro and in vivo. Data on theWNT signaling pathway
are shown in supplemental Figures 10 and 11.

Leukemias with Suz12 loss are sensitized to
inhibitors targeting the HDAC6/HSP90 axis
Complementary to our genetic approach to identify signaling
pathways important for JAK3/Suz12 mutant leukemia cells, we
also performed a drug screen with 181 inhibitors targeting a
variety of epigenetic factors (histone deacetylase [HDAC], DNA
methyltransferase [DNMT], bromodomain-containing protein).
Ex vivo treatment of JAK3(M511I)1Suz12gRNA vs JAK3(M511I)
control leukemia cells revealed differential sensitivity to HDAC6
inhibitors ricolinostat and Nexturastat A (Figure 7A-B), whereas
other HDAC inhibitors (n5 29) did not show a strong differential
effect. JAK3(M511I)1Suz12gRNA leukemia cells exhibited in-
creased sensitivity (GI505 558 nM) compared with JAK3(M511I)
leukemia andwild-type cells (GI50. 3mM; Figure 7C). HDAC6 is
known to promote HSP90 chaperone activity, which may support
cancer cells by increasing efficient protein folding.26-29 There-
fore, we hypothesized that the selective differential sensitivity of
the leukemia cells to HDAC6 inhibitors (and not to other HDAC

Figure 3 (continued) an appearing ATAC-seq peak in the ranked list of differentially expressed genes in J1S1 vs J (SP background) and S1 vs WT (DP background). (H) GSEA
showing significant positive enrichment of PRC2 target genes25 in the ranked list of differentially expressed genes in J1S1 vs J (SP background) and S1 vsWT (DP background). NES,
normalized enrichment score; p, nominalP value. (I) RNA-seq counts showupregulation of canonical PRC2 targets Hoxa3 andHoxa5 on Suz12 loss (S1, J1S1). Expression (meanwith
SEM) is relative to wild-type (WT) levels. P values, calculated with 2-tailed unpaired Student t test, denote significant differences between J1S1 vs J cells and S1 vs J cells.
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inhibitors) could be related to this effect on HSP90. We thus
treated JAK3(M511I)1Suz12gRNA leukemia cells with HSP90
inhibitors (17-AAG and PU-H71). Indeed, we observed a high
sensitivity to HSP90 inhibition of the leukemia cells with Suz12
loss (GI50 5 5.3-160 nM) compared with JAK3(M511I; GI50 .

5mM; Figure 7D-E). Treatment of the JAK3(M511I)1Suz12gRNA
and Suz12gRNA leukemia cells with the HDAC6 inhibitor ric-
olinostat significantly reduced HSP90 protein levels (Figure 7F-
G), whereas JAK3(M511I) leukemia cells exhibited reduced
HSP90 levels only at the highest dose of 5 mM (Figure 7H). This
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Figure 4. Suz12 inactivation causes activation of the PI3K/mTOR, VEGF/VEGFR andWNT signaling pathways. (A) Results of overrepresentation enrichment analysis of the
KEGG canonical pathways in the set of upregulated genes in JAK3(M511I)1Suz12gRNA leukemias (J1S1 vs J), ranked according to lowest false discovery rate (FDR). The number
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Figure 6. Suz12 loss enhances VEGF/VEGFR signaling. (A) Heat map of cytokine-cytokine receptor interaction genes in leukemias with Suz12 inactivation (J1S1 vs J and S1 vs
WT); gene expression is shown as normalized read counts. (B-C) ChIP-seq tracks showing Suz12, H3K27me3, and H3K4me3 signals in S1 vs WT and J1S1 vs J conditions for
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confirms the link between HDAC6 and HSP90 and reveals that
sensitivity toward HDAC6/HSP90 inhibition is more specific for
Suz12 loss.

JAK3(M511I)1Suz12gRNA leukemia mice treated with 17-AAG
(P 5 .009) showed prolonged survival compared with placebo,
whereas mice treated with ricolinostat (P 5 .20) succumbed to
disease at similar latency as placebo (Figure 7I). 17-AAG treatment
also reduced disease burden in terms of WBC count (P5 .003;
Figure 7J) and organ weight at sacrifice (spleen P 5 .03; thymus
P 5 .005; Figure 7K).

Discussion
Next-generation sequencing studies have shown that patients
with T-ALL carry, on average, more than 10 mutations at diag-
nosis. This raises the question of whether some of thesemutations
are found together more frequently than expected. Here, we
describe a positive association between PRC2 mutations and
mutations in the IL7R-JAK-STAT5 pathway. It has previously
been shown that strong genetic associations in human T-ALL
are indicative of direct cooperation of oncogenes, and the study
of these mechanisms of cooperation can potentially identify
new therapeutic avenues.18,19 In the current study, we observed
a strong cooperation between inactivation of Suz12 andmutant
JAK3 to drive T-ALL development in mice. Suz12 inactivation or
JAK3(M511I) alone could cause T-ALL in mouse bone marrow
transplant models, and the 2 events together drastically short-
ened the disease latency. Interestingly, JAK3(M511I) could also
cooperate with Eed inactivation, but not with inactivation of Ezh2,
which might be explained by compensation by Ezh1.30,31 Also, in
patients with T-ALL, JAK/STAT mutations are strongly associated
with mutations in SUZ12 and EED, but not with EZH2 mutations
(Figure 1A), and our functional data are in agreement with these
genetic data.

Previous studies indicated that complete inactivation of Suz12
in the hematopoietic system caused exhaustion of the stem
cell pool, whereas heterozygous inactivation of Suz12 enhanced
hematopoietic stem cell renewal, but no leukemic transformation
was observed.32 Another study showed that partial loss of
Suz12 accelerated Em-Myc lymphoma.33 These different results
are likely to reflect differences in the cell of origin and/or knock-
out technology. In contrast to previous studies, we used CRISPR/
Cas9 gene editing with retroviral vectors to inactivate Suz12 in
a subset of HSPCs. This strategy allowed us to test whether
Suz12 knock-out cells could outcompete wild-type cells and
drive leukemia development.

The PRC2 complex writes the H3K27me3 histone mark that is
associated with transcriptional repression. In our cell and mouse
models, inactivation of Suz12 led to a drastic reduction in
H3K27me3 levels, indicating that inactivation of Suz12 re-
sults in near-complete loss of PRC2 activity. Loss of Suz12 has

previously been shown to cause the degradation of the other
PRC2 components Eed and Ezh2, leading to destabilization of
the PRC2 complex.34 Interestingly, JAK3(M511I)-only leukemias
exhibited a slight decrease in H3K27me3 levels (supplemental
Figure 5C-F), which is in agreement with the observation that
JAK3 can phosphorylate EZH2 at Tyr244, leading to a global but
mild reduction in H3K27me3 levels.35 Loss of H3K27me3 levels
led to increased expression of the Hoxa cluster genes, including
Hoxa9, in the mouse leukemias with Suz12 loss. This increased
Hoxa9 expression could directly cooperate with mutant JAK3
signaling, as recently shown,18 and this could be part of the
mechanism of cooperation between JAK3 and SUZ12 mutations.
However, because the level of Hoxa expression in Suz12gRNA
mouse leukemias was still much lower than in HOXA-rearranged
T-ALL cases, we believe that Hoxa upregulation alone is unlikely
to account for the entire effect of Suz12 inactivation (supple-
mental Figure 7).

Transcriptome analysis of the mouse leukemia cells showed
that inactivation of Suz12 led to the upregulation of the over-
expression of thousands of genes. Integration of quantitative
ChIP-seq, ATAC-seq, and RNA-seq analysis allowed us to identify
genomic loci that had direct loss of H3K27me3 and increased
gene expression, as well as pathways that were enriched in the
upregulated genes. This identified upregulation of Wnt signaling
as a major pathway after Suz12 inactivation. This included both
Wnt signaling components, mainly the receptors, and down-
stream Wnt target genes (supplemental Figures 10 and 11).
Similarly, cooperation between loss of the PRC2 scaffold member
Eed and a K-Ras(G12D) mutant was also shown to result in a
mucinous lung adenocarcinoma with increased expression of
Wnt ligands.36 Notably, some of the observed upregulated Wnt
target genes after loss of Suz12 are also involved in Notch1
signaling, including Jag1/2, Dll1, andMyc. As Notch1 signaling is
a known oncogenic driver in T-ALL, Suz12 loss-mediated upreg-
ulation of these targets might also contribute to the cooperation of
JAK3mutations and Suz12 loss. Despite strong upregulation of the
WNT signaling pathway on loss of Suz12, we did not observe
enhanced sensitivity to currently available WNT pathway inhibitors,
potentially also because of the limitations of these inhibitors.

We also identified increased PI3K/mTOR signaling and cytokine-
cytokine interaction pathways as major consequences of Suz12
inactivation. Among the upregulated genes, many receptor
tyrosine kinases and their ligands were found. One of the few
receptor tyrosine kinase genes directly bound by Suz12 was Flt3
(supplemental Figure 9A), which is in line with a recent study that
showed upregulation of FLT3 in T-ALL cell lines after EZH2
knock-down.37 JAK3(M511I)1Suz12gRNA leukemia cells also
exhibit increased expression of genes involved in PI3K/mTOR
signaling. Moreover, negative regulators of this pathway, such as
Pten, Gsk3b, and Tsc2, showed a moderate reduction of ex-
pression, which may help tilting the balance toward higher PI3K-
AKT-mTOR activation. Interestingly, patients with PRC2 mutant

Figure 6 (continued) and Vegfa protein expression quantified asMFI with SEM. P values were calculated with 2-tailed unpaired Student t test. (E) mRNA expressionmeasured as
FPKM values (RNA-seq). P values were calculated with 2-tailed Mann-Whitney test. (F-H) Flow cytometry plots and quantifications of MFI with SEM of phosphorylation levels of
Akt (F), S6 (G), and S6K (H) in J1S1 leukemia cells treated for 3 hours with 5 mM sunitinib (SUN). P values, calculated with 2-tailed unpaired Student t test, denote significant
differences between DMSO vs SUN. (I) Survival curve showing DSS of J1S1 leukemic mice treated with SUN. The P value was calculated with Gehan-Breslow-Wilcoxon test.
(J) WBC counts of J1S1 leukemic mice after 5 days of treatment. The P value was calculated with a 2-tailed unpaired Student t test. (K) Weights of spleen and thymus at
time of sacrifice of J1S1 leukemic mice treated with SUN vs placebo. P values were calculated with 2-tailed unpaired Student t test.
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Figure 7. Leukemias with Suz12 loss are sensitive to inhibitors targeting the HDAC6/HSP90 axis. (A) Graph showing results of drug screen performed on JAK3(M511I)
1Suz12gRNA (J1S1) vs JAK3(M511I) (J) leukemia cells ex vivo. A total of 181 drugs in screen are ranked according to J/J1S score. J/J1S score is defined as the ratio of the
viability of the JAK3(M511I) leukemia cells (J) divided by the viability of the JAK3(M511I)1Suz12gRNA leukemia cells (J1S). (B) Heat map of a selection of 12 drugs from the screen
showing differential sensitivity between J1S1 leukemia cells and J leukemia cells. The average viability of the 2 conditions was centered to 0. (C-E) Drug dose response curves
showing viability of (leukemia) cells in response to 24 hours of treatment with increasing concentrations of HDAC6 inhibitor ricolinostat (C), HSP90 inhibitor 17-AAG (D), and
HSP90 inhibitor PU-H71 (E). Percentage viability is defined as percentage surviving cells relative to DMSO concentration. GI50 values are shown. (F-H) Intracellular flow cytometry
plots and quantifications of HSP90-PE MFIs with SEM after overnight (18 hours) treatment with Ricolinostat (RIC: 1, 2, or 5 mM) vs DMSO in J1S1 (F), S1 (G), and J (H) leukemia
cells. (I) Survival curve showing DSS of J1S1 leukemic mice treated with RIC, 17-AAG, or placebo. The P values were calculated with Gehan-Breslow-Wilcoxon test. (J) WBC
counts of J1S1 leukemic mice after 5 days of treatment. P values were calculated with 2-tailed unpaired Student t tests. (K) Weights of spleen and thymus at time of sacrifice of
J1S1 leukemic mice treated with placebo vs RIC or 17-AAG. P values were calculated with 2-tailed unpaired Student t test.
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T-ALL show a negative enrichment for PI3K/mTOR mutations
(supplemental Figure 1B), which may be explained by our finding
that these leukemias with SUZ12 loss activate the PI3K/mTOR
pathway through gene expression changes instead of gene
mutations. Closely related to PI3K/mTOR signaling, we identified
activation of the VEGF/VEGFR signaling pathway in leukemias
with Suz12 loss, as well as in human T-ALL cases with SUZ12 mu-
tation. Our in vivo results with dactolisib and sunitinib indicate that
patients with JAK3/SUZ12 mutant T-ALL could benefit from treat-
ment with these targeted inhibitors. However, further investigation
on JAK3/SUZ12 mutant T-ALL patient cells will be required to
confirm increased sensitivity of human leukemia cells to these
targeted inhibitors.

In a complimentary approach, we tested the effect of 181 inhibitors
for differential activity against the JAK3(M511I)1Suz12gRNA and
JAK3(M511I) leukemia cells. This screen revealed high sensitivity of
leukemia cells with Suz12 inactivation to the HDAC6 inhibitors
ricolinostat and nexturastat A, whereas other HDAC inhibitors did
not show specificity for the leukemia cells with Suz12 loss. Ric-
olinostat is currently tested in a clinical trial for multiple myeloma.38

AlthoughHDACs aremost known for the deacetylation of histones,
several members of this class of enzymes also deacetylate other
proteins. HDAC6 is known to regulate and promote the chap-
erone function of HSP90 throughde-acetylation, which is required
for proteome homeostasis in cancer cells.26-29,39,40 In our study,
JAK3(M511I)1Suz12gRNA leukemia cells were indeed also sen-
sitive to HSP90 inhibitor 17-AAG both in vitro and in vivo,
supporting the hypothesis that the sensitivity toward HDAC6
inhibitors could be related to the link with HSP90. In addition, we
have observed an increased need for the HSP90 chaperone in
mouse T-ALL cells with inactivation of Suz12, which was asso-
ciated with prolonged survival on in vivo treatment with HSP90
inhibitor 17-AAG. It will be interesting to assess, in further studies,
whether patients with JAK3/SUZ12 mutant T-ALL could also benefit
from HSP90 inhibitors.

In conclusion, our study illustrates that the inactivation of Suz12
in T-ALL cells cooperates with JAK/STAT signaling and is as-
sociated with activation of the PI3K/mTOR, VEGF, and WNT
signaling pathways. These data provide insight in the various
consequences of Suz12 mutation in T-ALL and demonstrate that
inhibitors targeting PI3K/mTOR, VEGFR, and HSP90 may be

beneficial for the treatment of patients with T-ALL with JAK/
STAT pathway mutations and inactivation of SUZ12.
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