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KEY PO INT S

l The cyclic resveratrol
trimer caraphenol A
safely enhances
lentiviral vector gene
delivery to
hematopoietic stem
and progenitor cells.

l Caraphenol A
decreases interferon-
induced
transmembrane
protein-mediated
restriction in an
endosomal trafficking-
dependent manner.

Therapeutic gene delivery to hematopoietic stem cells (HSCs) holds great potential as a life-
saving treatment of monogenic, oncologic, and infectious diseases. However, clinical gene
therapy is severely limited by intrinsic HSC resistance tomodificationwith lentiviral vectors
(LVs), thus requiring high doses or repeat LV administration to achieve therapeutic gene
correction. Here we show that temporary coapplication of the cyclic resveratrol trimer
caraphenol A enhances LV gene delivery efficiency to human and nonhuman primate
hematopoietic stem and progenitor cells with integrating and nonintegrating LVs. Al-
though significant ex vivo, this effect was most dramatically observed in human lineages
derived from HSCs transplanted into immunodeficient mice. We further show that car-
aphenol A relieves restriction of LV transduction by altering the levels of interferon-
induced transmembrane (IFITM) proteins IFITM2 and IFITM3 and their association with late
endosomes, thus augmenting LV core endosomal escape. Caraphenol A-mediated IFITM
downregulation did not alter the LV integration pattern or bias lineage differentiation.
Taken together, these findings compellingly demonstrate that the pharmacologic modi-
fication of intrinsic immune restriction factors is a promising and nontoxic approach for
improving LV-mediated gene therapy. (Blood. 2019;134(16):1298-1311)

Introduction
Genetic modification of hematopoietic stem cells (HSCs) by
g-retroviral or lentiviral vectors (LVs) has shown efficacy in treating
several hematologic disorders.1-6 A critical factor in determining
treatment effectiveness remains the degree of modification of
true repopulating HSCs.7,8 Transduction-enhancing techniques,
including culture with HSC-enhancing cytokines,9-11 high multi-
plicity of infection (MOI), repeat LV administration,9,10 alternate LV
envelope pseudotyping,12-14 or addition of transduction-
enhancing small molecules15-17 have all been shown to im-
prove gene delivery. However, the predominant underlying
mechanism of HSC resistance to LV gene delivery remains an
open question.9,18-21

Along with LV transduction resistance, hematopoietic stem and
progenitor cells (HSPCs) are resistant to infection by many viruses
and intracellular bacteria.22-25 Recent findings have highlighted
the role of constitutive interferon-stimulated gene expression in
pluripotent and multipotent cell types.26 Interferon-regulated
innate effectors, especially the interferon-induced transmembrane
(IFITM) family of proteins, provide an intrinsic defense against

pathogens that rely on cellular endosomes for entry and trans-
port. The IFITM proteins were first identified as antiviral effectors
against vesicular stomatitis virus (VSV)27 and can restrict VSV G
protein pseudotyped (VSV-G) LV transduction28,29 as well as
regulate cellular growth, adhesion, and development.30,31 We
recently showed that IFITM3 protein expression limits gene
delivery efficiency with VSV-G pseudotyped LVs in HPSCs, and
that IFITM restriction is pharmacologically overcome by the
mammalian target of rapamycin (mTOR) inhibitor rapamycin.32

However, as an immunosuppressive compound with many
effects, rapamycin can induce unwanted outcomes including
cell expansion delay.15,33 Staurosporine and the IFITM3-modulating
cyclosporines also have LV transduction enhancer activity, but
can have undesirable cytotoxic effects.17,34 The differing sub-
cellular trafficking strategy used by VSV-G pseudotyped LVs
results in LV encountering distinct restriction factors from HIV-1
trafficking that may affect integration and alter latency.29,35

We report the identification and evaluation of caraphenol A, an
HSPC noncytotoxic compound able to transiently reduce IFITM
protein expression and association with endosomes in cell lines
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and human HSPCs. We show that caraphenol A treatment sig-
nificantly improved HSC gene delivery at both low and high LV
doses without altering LV integration patterns. This enhance-
ment translates to lasting improvements in gene marking effi-
ciency in vivo.

Methods
Compounds
Resveratrol, prostaglandin-E2 (PGE-2), and rapamycin were com-
mercially purchased (Calbiochem, Millipore-Sigma, CAT#554325,
#538904, #553210). Caraphenol A was synthesized as previously
published,36 and naturally derived caraphenol A and a-viniferin
were purified as described in the supplemental Methods, available
on the Blood Web site.

Lentiviral vector
Third-generation VSV-G pseudotyped pRRL-SIN-MND-EGFP LV,
termed LV, was generated as described,37 and stocks were
produced and titered as described.15,16,38

CD341 cell isolation and LV transduction
Umbilical cord blood (UCB) CD341 cells were isolated as
described15 from UCB generously donated from the Cleveland
Cord Blood Center (Cleveland, OH), frozen granulocyte colony-
stimulating factor mobilized peripheral blood (mPB) CD341 cells
were purchased from the Co-Operative Center for Excellence in
Hematology at the Fred Hutchinson Cancer Research Center
(Seattle, WA), and nonhuman primate CD341 cells were isolated
by bone marrow aspiration from rhesus macaques at the
Wisconsin National Primate Research Center (Madison, WI). All
approved human and nonhuman protocols are available on
request. Isolation, transduction, and culture protocols are pro-
vided in detail in the supplemental Methods.

Mouse transplantation
NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice were obtained from
Jackson Laboratory and maintained at The Scripps Research
Institute under approved institutional protocols (available on
request). CD341 cell transplantation, posttransplant procedures,
and analysis were previously described,15 and are further de-
tailed in the supplemental Methods.

Results
Caraphenol A enhances gene delivery to cell lines
and hematopoietic stem and progenitor cells
ex vivo
Naturally occurring resveratrol oligomers are reported to have
anti-inflammatory, anti-acetylcholinesterase, and anticancer prop-
erties and are the focus of significant isolation and synthesis
efforts.39-48 a-viniferin, a plant-derived cyclic resveratrol trimer, is
present in elevated quantities during and after fungal infection.46

It has been shown to inhibit signal transducer and activation of
transcription-1 signaling, as well as cyclooxygenase-2 and
inducible nitric oxide synthase activity in mammalian cells,40,41

indicating an ability to modulate innate immune sensing.
In addition, resveratrol has been shown to enhance engraft-
ment and promote expansion of mouse and human UCB-
HSPCs.49,50

Therefore, we examined resveratrol, a-viniferin, and caraphenol
A (Figure 1A), a closely related resveratrol cyclotrimer of higher
oxidation state, for their capacity to augment VSV-G pseudo-
typed pRRL-SIN-MND-EGFP LV transduction. Caraphenol A and
a-viniferin, but not resveratrol, enhanced LV gene delivery to
HeLa, but not HEK293T, cells. HeLa cells responded in a dose-
dependent manner across a range of MOIs, increasing EGFP
marking frequency about twofold at doses between 30 and
50 mM (Figure 1B-C; supplemental Figure 1A). Twofold or
greater enhancement in gene marking frequency was observed
in UCB-, mPB-, and nonhuman primate-CD341HSPCs (Figure 1D)
after caraphenol A treatment. Transduction improvement was
most significant in mPB-CD341 HSPCs, a clinically important cell
type reported to be more resistant to transduction than UCB-
CD341 HSPCs.51 Caraphenol A improved integrated vector
copy number (VCN) at several MOIs in UCB-CD341 HSPCs
(Figure 1E), indicating treatment may improve delivery even at
high LV doses used in some clinical trial protocols.2,3,52-54 As
a result of the observation that a-viniferin has more of an effect
on HeLa cell growth (supplemental Figure 1B), caraphenol A
was chosen for further studies. Although synthetic caraphenol
A was used initially,36 similar LV transduction enhancement was
seen with plant-derived, HPLC-purified compound (supplemental
Figure 1C-G).

Rapamycin treatment has been shown to relieve LV transduction
resistance in mouse and human HSPCs.15,55,56 Critically, how-
ever, rapamycin also slows proliferation of treated cells ex vivo,
which might then slow progenitor expansion required for rapid
leukocyte recovery in clinical transplant settings.15,55-57 In con-
trast, caraphenol A treatment of mPB- or UCB-CD341 HSPCs did
not reduce proliferation at a range of concentrations (Figure 1F;
supplemental Figure 2A). Caraphenol A also showed no effect
on cell viability (supplemental Figure 2B), plating efficiency, or
lineagedifferentiation by colony-forming unit assay (supplemental
Figure 2C-D).

A recent report identified PGE-2 as a LV transduction enhancer
that improved gene delivery at a postfusion step.16 We observed
a slight increase in UCB-CD341 cell transduction with PGE-2
alone, and additive transduction enhancement when cells were
coincubated with PGE-2 and caraphenol A (supplemental
Figure 2E). Cotreatment of UCB-CD341 HSPCs with rapamycin
and caraphenol A or PGE-2 and rapamycin further enhanced
transduction, but reduced cell viability (supplemental Figure 2F).

VCN analysis of transduction of 2 separate clinical-grade LVs
used for correction of X-linked severe combined immunodefi-
ciency (X-SCID)58 showed that caraphenol A treatment improves
therapeutic gene delivery to mPB-CD341 HSPCs (Figure 1G).
These findings confirm that caraphenol A treatment enhances
LV transduction in a range of hematopoietic tissue types with
a favorable toxicity profile.

Caraphenol A-treated HSCs maintain improved
gene marking in vivo without altering lentiviral
integration profiles
To test whether gene delivery enhancement by caraphenol A is
observed in vivo, we transduced pooled human UCB-CD341

HSPCs pretreated for 4 hours (total transduction period 5 24 h)
with 30 mM caraphenol A or 0.06% DMSO (dimethyl sulfoxide;
vehicle control). We then transplanted 3 3 105 cells each into
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Figure 1. Caraphenol A enhances LV gene marking in HeLa and primary hematopoietic cells. (A) Chemical structure of caraphenol A, a-viniferin, and resveratrol. (B) HeLa
cells were transduced with pRRL-SIN-MND-EGFP (termed LV) at a MOI of 10, in the presence of DMSO (diluent control 5 no compound) or indicated concentrations of
resveratrol (closed orange circles), a-viniferin (closed purple circles), or caraphenol A (closed green circles) over the course of 8 hours, before removal of caraphenol A and LV
and then ex vivo culture. Cells were analyzed 5 days later by flow cytometry for EGFP expression (n 5 3 independent experiments). (C) HeLa cells were transduced as earlier,
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irradiated NSG mice (Figure 2A). Two separate cohorts (n 5 8
mice per treatment) were established with CD341 HSPCs
transduced with either low (MOI 5 10) or high (MOI 5 25) LV
doses, and EGFPmarking in peripheral blood (PB) wasmeasured
approximately every 3 weeks (supplemental Figure 3A). All
mice were healthy throughout the engraftment period, with no
adverse events noted. Unlike other transduction enhancers,
no effect on short-term human CD451 (hCD451) PB levels
was observed with caraphenol A treatment (supplemental
Figure 3B).15-17 Significant enhancement of EGFP marking
levels in human hCD451 cells in mouse PB after caraphenol A
treatment was observed in low (Figure 2B) and high (Figure 2C)
MOI cohorts. In both, mice transplanted with DMSO-treated
CD341 cells showed EGFP marking waning over time, whereas
mice receiving caraphenol A-treated CD341 cells retained stable
EGFP marking.

Mice were euthanized at 22 weeks, and EGFP marking was
assessed in PB, bone marrow, and spleen (Figure 2B-E), and
human cell engraftment and VCNwere assessed in bonemarrow
(Figure 2F-G). One mouse in the low MOI DMSO-treated group
was excluded from analyses because of human bone marrow
engraftment below 2%. Consistent with PB and ex vivo obser-
vations, caraphenol A treatment significantly increased EGFP
marking of hCD451 spleen and bone marrow cells (Figure 2D-E).
No significant difference in human cell engraftment was ob-
served in caraphenol A- vs DMSO-treated cells in either cohort
(Figure 2F). Interestingly, VCN values from the bone marrow
of mice transplanted with caraphenol A-treated CD341 HSPCs
showed ;10-fold higher levels compared with DMSO-treated
controls ex vivo (MOI 10 VCN 5 0.05 ex vivo vs 0.5 in vivo;
Figure 1E vs Figure 2G). Hematopoietic lineage analysis of bone
marrow subsets showed increased EGFP marking in myeloid, T-,
and B-cell subsets (supplemental Figure 3C) in mice receiving
caraphenol A-treated cells. No skewing of myeloid, T, or B
subsets was observed, suggesting that enhanced EGFP
marking was not a result of dysregulated hematopoiesis
(supplemental Figure 3D).

To study the effect of caraphenol A on gene marking in long-
term repopulating (LTR) HSCs, we established a third cohort of
humanized mice from high-dose (MOI 5 25) LV-treated cells.
Caraphenol A treatment again increased the EGFP marking
considerably more in vivo after 22 weeks than from initial ex vivo
observations (supplemental Figure 4A). As before, caraphenol A
produced no significant effect on engraftment or lineage fre-
quency (supplemental Figure 4B-C). Subsequently, 1 3 105

CD341 cells isolated from the bone marrow of the lowest-,
middle-, and highest-frequency EGFP marked mice from the

caraphenol A- and DMSO-treated cells were engrafted into
secondary recipient mice. Because of the lower number of
hCD341 cells used; engraftment was less robust after 12 weeks
(supplemental Figure 4E). Percentage EGFPmarking dropped in
cells originating from DMSO-treated CD341 primary mice, but
was dramatically increased in caraphenol A-treated CD341 cell
secondary mice (Figure 2H). Both caraphenol A- and DMSO-
treated mice could regenerate B-, T-, and myeloid cell lineages
after secondary transplantation (supplemental Figure 4F-G),
indicating LTR-HSC engraftment.

With the observation that VCN increased with caraphenol A
treatment, and given the reported effects of resveratrol and
other polyphenols on global patterns of gene regulation,59 we
investigated whether caraphenol A treatment altered patterns
of LV integration. High-throughput retroviral integration site
analysis60 was performed on human cells from bone marrow and
spleen samples harvested from both the low and high MOI
cohorts. Unique integrations were identified across all samples,
and no significant differences were observed in the frequency of
chromosomal insertion between treatment groups relative to
genomic features or known oncogenes. However, caraphenol A
treatment appeared to reduce integrations in close proximity to
transcription start sites only slightly (Figure 3A-B). Together,
these findings suggest that caraphenol A treatment enhances
gene delivery frequency ex vivo, in LTR-HSCs, without biasing
LV integration.

Caraphenol A treatment facilitates lentiviral escape
from endosomes
We next investigated the step by which caraphenol A facilitates
vector entry. Caraphenol A did not alter the frequency or density
of the VSV-G receptor LDL-R in UCB-CD341 HSPCs (supple-
mental Figure 5A). Similarly, transduction with LVs pseudotyped
with measles virus glycoproteins was not significantly enhanced
(supplemental Figure 5B). Measles virus has been proposed to
fuse at the cell surface,61,62 distinct from the clathrin-mediated
and pH-dependent endocytosis mechanism used by VSV-G.14,63

Caraphenol A treatment also did not increase AAV6-mediated
gene delivery in UCB-CD341 HSPCs (supplemental Figure 5C).
These results suggest that caraphenol A specifically enhances
enveloped vector entry routes that require pH-dependent
endocytosis.

Caraphenol A treatment of UCB-CD341 HSPCs increased LV-
endosomal membrane fusion and escape of LV cores to the
cytoplasm, as measured by the BLaM-Vpr assay64 (Figure 4A).
A modified kinetic BLaM-Vpr assay65 demonstrated that
UCB-CD341 HSPCs pretreated with caraphenol A showed an

Figure 1 (continued) with various MOIs of LV in the presence of 30 mM of each compound or DMSO (closed blue circles) for 8 hours and analyzed as earlier (n5 3). Data are
shown as linear plots (mean6 standard deviation [SD]). *P, .032, **P, .0021, ****P, 0002, ****P, .0001 by 2-tailed Student t test comparing percentage EGFP expression
in caraphenol A- and DMSO-treated cells. (D) LV transduction of CD341 human UCB (n5 6 donors), human granulocyte colony-stimulating factor mobilized peripheral blood
(mPB) (n5 6 donors), and nonhuman primate bone marrow aspirate (n5 2 donors) cells. CD341 cells were transduced with LV (MOI5 8) in the absence or presence of 30 mM
caraphenol A for 20 hours before LV and compound removal and expansion. Cells were analyzed 7 days later by flow cytometry for EGFP expression. Data presented as dot
plots (mean 6 SD) *P , .0406, ****P , .0001 by 2-tailed Student t test. (E) Average VCN in UCB-CD341 (n 5 3 donors) at increasing MOI of LV treatment with either DMSO
vehicle control or caraphenol A at 30 mM. VCN was calculated as a ratio of copy number of integrated LV Gag sequences per RNAse P copies. Data presented as dot plots
(mean6 SD). ****P, .0001 by 2-tailed Student t test. (F) Effects of caraphenol A (10 mM, open green circles or 30 mM, closed green circles), resveratrol (30 mM, closed orange
circles), and rapamycin (20 mg/mL, closed red circles) on proliferation of mPB-CD341 cells compared with DMSO (0.06%, closed blue circles; n5 3 donors, n5 2 for DMSO).
Proliferation of UCB-CD341 cells after compound treatment are shown in supplemental Figure 2A. Data presented as dot plots (mean6 SD). (G) VCN in mPB-CD341 cells (n5 4
donors) of 2 separate batches of clinical-grade CL204i-EF1a-hgc-OPT SIN-lentiviral vectors (VP5609 and VP5610) developed for the treatment of SCID-X1, incorporating an
internal EF1a promoter for human interleukin 2Rgc. Cell were transduced with SCID-X1 or LV at an MOI 5 15 in the presence of DMSO, 30 mM caraphenol A, 20 mg/mL
rapamycin, or 10 mM PGE-2 (closed light blue circles). Data presented as mean 6 SD. **P 5 .0024, ****P , .0001 by Student t test, comparing DMSO with caraphenol A.
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Figure 2. Caraphenol A improves gene delivery to human HSCs in mice. (A) Experimental set-up of mouse transplant experiments. NSG mice were irradiated with 2.40 Gy.
UCB-CD341 cells from a pool of donors were thawed and prestimulated for 24 hours before a 4-hour incubation of caraphenol A or DMSO (n5 8mice per treatment andMOI, 32
mice total) and LV, MOI5 10 (MOI 10) or MOI5 25 (MOI 25). Incubation with UCB-CD341 cells lasted 20 hours, after which, 33 105 cells per mouse were injected retro-orbitally,
and the remaining UCB-CD341 cells were cultured ex vivo. Transgene expression was measured 7 and 14 days posttransduction. Peripheral blood samples were obtained and
evaluated every 3 to 5 weeks after an initial 6- to 7-week engraftment period.Mice were euthanized at 22 weeks (terminal) and peripheral blood, bonemarrows, and spleens were
obtained. For re-engraftment studies, CD341 cells were isolated from MOI 25 cohort bone marrows (n 5 3 from each treatment group), and 1 3 105 cells were injected into
irradiated NSG mice. Re-engraftment and gene marking were determined after 12 weeks. (B) Percentage human CD451 EGFP1 cells in peripheral blood of UCB-CD341 cell-
engrafted NSG mice transduced with LV at either MOI5 10, (C) or MOI5 25, treatments as per the legend, throughout indicated points during the study period. Human cells
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immediate twofold increase in fusion that was maintained
throughout, indicating that the rate of LV cytoplasmic entry
had increased (Figure 4B). mPB-CD341 HSPCs also showed an

enhanced rate of LV fusion with caraphenol A treatment, which
later translated to increased transduction (supplemental
Figure 5D-E). Measurements of both early- and late-stage re-
verse transcription products by quantitative polymerase chain
reaction showed two- to threefold increases on LV and caraphenol
A addition, whereas the ratio of early to late products remained
the same per UCB donor (supplemental Figure 5F-H). This indi-
cates that caraphenol A increases the total pool of reverse
transcribed viral DNA, but has no effect on reverse transcrip-
tion efficiency in UCB-CD341 HSPCs.66 Caraphenol A also in-
creased integration-deficient LV transduction of mPB-CD341

HSPCs (Figure 4C), consistent with an effect early in LV entry,
before genomic integration. Caraphenol A treatment showed
maximal transduction enhancement in HeLa cells when LV
and caraphenol A were added simultaneously. However, car-
aphenol A could be added up to 4 hours after LV, or washed out
before LV addition, and still resulted in some enhancement
(Figure 4D-E). These findings localize the effect of caraphenol A
on enhancing LV escape from the endosomes, with maximal
effect during simultaneous addition of caraphenol A and
vector.

LV restriction by IFITM2/3 proteins is relieved by
caraphenol A treatment
The IFITM family of proteins are potent restrictors of viruses
that use pH-dependent fusion for endosomal escape and are
intrinsically expressed in pluripotent and multipotent tissue
types.26,28-30,67-72 To confirm the effect of IFITM proteins on
LV transduction, we ectopically expressed IFITM1, IFITM2,
or IFITM3 in HEK293T cells (supplemental Figure 6A-B) and
compared transduction efficiency with LV (Figure 5A). Although
IFITM1 ectopic expression had little effect, IFITM2- and IFITM3-
expressing cells had reduced transduction, with IFITM3 exhib-
iting the most inhibition. After introducing the D17-20 mutation
into IFITM3, which redirects IFITM3 localization to the cell pe-
riphery,73 we observed a loss of LV restriction, confirming that
IFITM3 localization has a significant role in restricting VSV-G-
mediated LV transduction.

Next, we evaluated the effect of caraphenol A treatment on
IFITM2/3 expression in HeLa cells. We observed a high level of
IFITM3 protein expression by western blot that was reduced by
up to 80% after 4 hours of caraphenol A treatment (Figure 5B;
supplemental Figure 6C). Longer incubation with caraphenol A
showed a recovery of IFITM3 protein levels with a return to
baseline after 24 hours of continuous incubation. Quantitative
polymerase chain reaction evaluating IFITM3 mRNA expression
in HeLa cells, under the above treatment conditions, showed no
significant changes (supplemental Figure 6D), indicating car-
aphenol A’s effect is likely posttranslational. Unlike caraphenol A,
PGE-2 treatment did not alter IFITM3 protein levels (supplemental

Figure 2 (continued) were gated from the total leukocyte population and analyzed for EGFP expression. Dot plots presented (mean 6 SD) with the y-axis in log10 scale.
*P , .028, **P , .0042, ***P , .0006 by 2-tailed Mann-Whitney U test. Percentage human CD451 EGFP1 cells in spleen (D) and bone marrow (E) of UCB-CD341 cell engrafted
NSG mice at the terminal time, comparing EGFP1 expression in caraphenol A- (green circles) and DMSO-treated (blue circles) mice at 2 MOIs. Dot plots presented (mean 6 SD)
comparing spleenMOI 10 (closed circles; ***P5 .0003),MOI 25 (open circles; *P5 .049) andbonemarrowMOI 10 (closed circles; ***P5 .0006),MOI 25 (open circles; *P5 .042) by
2-tailed Mann-Whitney U test. (F) Comparison of donor engraftment in bonemarrow at terminal time, as measured by total proportion of leukocytes that weremCD452 hCD451.
Dot plots presented (mean 6 SD), n.s., not significant. (G) VCN of human cells from bone marrow of caraphenol A and DMSO-treated cohorts, 22 weeks after ex vivo LV
transduction and compound treatment. VCN was recorded as a ratio of integrated Gag sequences per RNase P sequence. Dot plots presented (mean 6 SD), comparing
caraphenol A- with DMSO-treated mice at MOI 10 (closed circles; **P 5 .0022), and MOI 25 (open circles; *P 5 .022) by 2-tailed Mann-Whitney U test. (H) Percentage human
CD451 EGFP1 cells in bone marrow of NSG mice receiving UCB-CD341 cells at terminal points of primary (left, 22 weeks) and secondary (right, 12 weeks) transplant, comparing
EGFP1 expression in caraphenol A and DMSOmice at MOI 25. Data presented as dot plots, each representing individual mice and change from primary to secondary transplant.
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Figure 6E). Caraphenol A reduced levels of IFITM2 and
IFITM3, but not IFITM1, proteins in HEK 293T cells ectopically
expressing each, as determined by flow cytometry (supple-
mental Figure 6F-G).

We next sought to determine whether IFITM3 expression was
required for caraphenol A-mediated LV transduction enhance-
ment. IFITM3 was knocked out in HeLa-derived TZM-bl cells
by directed IFITM3 CRISRP/Cas9 disruption and homologous
recombination.32 These cells showed a complete loss of IFITM3
protein with no observed effect on IFITM2 levels (supplemental

Figure 6H). Caraphenol A treatment of wild-type (WT) TZM-bl
cells exhibited a 1.5-fold increase in transduction, whereas
resveratrol showed no effect (Figure 5C). In contrast, IFITM3
knockout (KO) cells demonstrated increased baseline LV
transduction, and caraphenol A treatment led to only a slight
additional transduction enhancement, potentially as a result of
downregulation of IFITM2 (Figure 5D). In addition, we observed
that vacuolar ATPase inhibitor bafilomycin A1 rescued the car-
aphenol A-mediated downregulation of IFITM2 and IFITM3
(supplemental Figure 6I), indicating that endolysosomal acidi-
fication contributes to IFITM protein degradation.32
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Figure 4. Concurrent caraphenol A treatment improves LV endosomal escape into the cytoplasm. (A) UCB-CD341 cells (n5 3 donors) were transduced in the presence of
caraphenol A (Cara, 30 mM, green symbols) or DMSO (0.06%, blue symbols) with LV, MOI 15, carrying the enzyme-Vpr protein (LV-Vpr). After a 6-hour transduction, cells were
loaded with 7-hydroxycoumarin cephalosporin fluorescein–acetoxymethyl (CCF2-AM) substrate, and LV entry was quantified by flow cytometric detection of cells exhibiting
cleaved CCF2. Transduction was measured by nerve growth factor receptor (NGFR) expression 7 days later. Data presented as dot plots (mean 6 SD). Fusion, **P 5 .0039;
transduction, *P 5 .016 by 2-tailed Student t test. (B) UCB-CD341 cells (n 5 3 donors) were LV-Vpr-transduced in the presence of DMSO or caraphenol A, as above, and then
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LV. Percentage EGFP expression was measured 3 days later by flow cytometric analysis. Data are shown as linear plots (mean6 SD). ****P, .0001 by 2-tailed Student t test,
comparing percentage EGFP expression in 30 mM caraphenol A and 0.6% DMSO-treated cells. (D) HeLa cells (n 5 5 cultures) were treated with LV at MOI 10 for 8 hours
and caraphenol A (30 mM, green bars) was added at indicated points after LV addition. DMSO (0.06%, blue bar) with LV only was added as a separate control. Compounds and
LV were washed out 8 hours after LV addition, and cells were analyzed for EGFP expression by flow cytometry 5 days later. Data presented as bar graphs (mean 6 SD). (E)
Cells were pretreated with caraphenol A (30 mM, green bars) for indicated lengths of time before washout of compound and exposure to LV-GFP for an additional
8 hours. After transduction, LV and any remaining compound was removed, and cells were analyzed as in panel D. Bar graphs presented (mean 6 SD).
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IFITM protein expression in mPB-CD341 HSPCs from several
donors was evaluated by western blot for IFITM1, IFITM2, and
IFITM3 expression. No appreciable IFITM1 was observed,
but IFITM2/3 were seen in all tested donors (supplemental
Figure 6J). Flow cytometric analysis of pooled (n 5 9) donor
UCB-CD341 HSPCs and mPB-CD341 HSPCs from 2 different
donors treated with caraphenol A showed a consistent 50%
reduction in median fluorescence intensity in IFITM2/31 cells
(Figure 5E-F). These findings imply that caraphenol A reduces
IFITM2/3 expression in therapeutically relevant CD341 cells.

To evaluate the effect of caraphenol A on IFITM2/3 protein
localization in the endosome, we evaluated HeLa cells and mPB-
CD341 HSPCs by confocal microscopy. HeLa cells treated with
caraphenol A and LV showed a reduction in and relocation
of IFITM2/3 signal from the cell periphery to the perinuclear
region, a result not observed with resveratrol or DMSO treat-
ment (Figure 6A). Three-dimensional analysis and quantification
of IFITM2/3-containing endosomes demonstrated a highly
significant reduction in number and staining intensity compared
with resveratrol- or DMSO-treated cells at 30 minutes and
2 hours after LV addition (Figure 6B). In contrast to Hela cells,
mPB-CD341 HSPCs exhibited limited endosomal activity with-
out LV addition (Figure 6D). Within 30 minutes of LV addition,
lysosomal-associated membrane protein-1 (LAMP11) endo-
somes were apparent and the IFITM2/3 signal appreciated in
the endosomal compartment (Figure 6D). As seen in HeLa
cells, a reduction and relocalization of the IFITM2/3 signal in
caraphenol A-treated mPB-CD341 HSPCs was observed
(Figure 6D). The kinetics of the effect were different than HeLa
cells, as a significant reduction in IFITM2/31 vesicle number was
not observed until 2 hours after LV addition (Figure 6E), although
a significant reduction in IFTIM2/3 staining intensity per endo-
some was observed at both points. In support of the above,
we observed no difference in p241 (LV) signal intensity per
endosome, but a reduction in the number of p241-containing
endosomes with caraphenol A treatment (Figure 6F; supple-
mental Figure 7A), indicating similar initial vector uptake but
increased LV fusion and escape from endosomes. In addition,
we noted differing effects on various endosomal compartments,
as caraphenol A treatment had no effect on the number of
early endosomal antigen-1-containing vesicles (supplemental
Figure 7B-C). However, a moderate but significant reduction in
the number and staining intensity of late endosomes carrying
LAMP1 after caraphenol A treatment was observed in both HeLa
(Figure 6C) cells and mPB-CD341 HSPCs (Figure 6G). We also
detected an overall increase in endosomal pH, as determined by
LysoSensor pH-sensitive dextran (supplemental Figure 7D).

Given that caraphenol A reduced the number of LAMP11

vesicles and aided LV endosomal escape in both cell types

tested, we next investigated whether this effect was dependent
on IFITM3. Both IFITM3 KO andWT TZM-bl cells were evaluated
as described previously in the presence of LV and caraphenol A
or DMSO (Figure 7A). Caraphenol A reduced the number and
intensity of IFITM2/3-containing endosomes in WT TZM-bl cells
and of IFITM2 in IFITM3 KO cells (Figure 7B). In contrast to
WT cells, the reduction in LAMP11 vesicle number and staining
intensity was not observed in the IFITM3 KO cells after car-
aphenol A treatment (Figure 7C). These results support the
finding that effects of caraphenol A on the late endosome
compartment are dependent on the presence of IFITM3
proteins.

Discussion
An ongoing barrier to LV-mediated gene therapy for hemato-
logic disorders is the well-documented transduction resistance
of HSCs, previously attributed to cell cycle quiescence,74 lack of
vector receptor,19 or proteasome-mediated inhibition.9 We re-
port here that short-term treatment of CD341 HSPCs with the
resveratrol cyclotrimer, caraphenol A, increases transduction
by clinical, laboratory-grade, and nonintegrating LVs, indicating
the potential to improve both gene delivery and gene-editing
methodologies. Importantly, we observed stable marking in all
lineages derived from human LT-HSCs in serially engrafted NSG
mice, and comparable LV integration profiles to DMSO treat-
ment. The HSPC LV restriction mechanism modulated by car-
aphenol A was found to be the reduction and relocalization of
endosomal IFITM2/3 proteins.

We and others have previously demonstrated that short-term
rapamycin and cyclosporine treatment enhanced transduction
of CD341 HSPCs, resulting in a lasting improvement in gene
marking in vivo.15,17,32,55,56 Similar to caraphenol A, both rapa-
mycin and cyclosporin H downregulated IFITM2/3,17,32 indicat-
ing this pathway may be a major barrier to HSC LV-mediated
gene therapy. However, these compounds can be cytostatic with
LV treatment in vivo and, in the case of rapamycin, a delay in
proliferation of hematopoietic progenitors is observed in culture.
This may translate to delayed progenitor expansion required for
leukocyte recovery in clinical transplant settings.57

Caraphenol A does not delay expansion of CD341 HSPCs with
LV treatment (Figure 1F; supplemental Figure 2A), further im-
plying that LV transduction effect can be uncoupled from
pathways that influence engraftment and cell cycle delay. Similar
to rapamycin, resveratrol has been demonstrated to induce
autophagy through the inhibition of mTOR in an ULK1-, SIRT1-,
and AMPK-dependent manner.75-77 However, it remains unclear
whether caraphenol A also acts as an mTOR inhibitor. We pre-
viously showed that gene delivery enhancement by rapamycin is

Figure 5 (continued) (green lines) or resveratrol (orange lines) for 8 hours before LV and compound removal. Cells were evaluated for EGFP expression by flow cytometry 5 days
later. Wild-type cells (closed circles) demonstrated significant transduction enhancements response to caraphenol A (DMSO vs caraphenol A, P, .0001, 2-tailed Student t test),
but not resveratrol (not significant, Student t test). IFITM3 KO cells showed no significant difference compared with DMSO with caraphenol A treatment. (D) TZM-bl wild-type
(solid lines) and IFITM3 KO (dotted lines) cells were treated for 4 hours with caraphenol A (30 mM, green) or DMSO (0.06%, blue), then fixed, permeabilized, and analyzed for
intracellular IFITM2/3 expression by flow cytometry (n5 3 independent experiments). Expression reported as median fluorescence intensity of IFITM2/31 cells. (E) UCB-CD341

cells (n 5 9 donors pooled) were prestimulated and then treated with either caraphenol A (30 mM) or DMSO (0.06%) for 4 hours. Cells were then fixed, permeabilized, and
immunostained for IFITM2/3 expression before analysis by flow cytometry. Expression reported as percentage of IFITM2/31 cells compared with isotype control and median
fluorescence intensity of IFITM2/31 cells. (F) mPB-CD341 cells (n 5 2 donors) were prestimulated (see "Methods") and then treated with caraphenol A (30 mM, green line),
rapamycin (20 mg/mL red line), or 0.06% DMSO (blue line) for 4 hours followed by a 2-hour addition of 15 MOI integration-deficient LV (Figure 4C). Cells were then fixed,
permeabilized, and immunostained for IFITM3 expression before analysis by flow cytometry. Expression reported as median fluorescence intensity of IFITM2/31 cells.

1306 blood® 17 OCTOBER 2019 | VOLUME 134, NUMBER 16 OZOG et al

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/134/16/1298/1248560/bloodbld2019000040.pdf by guest on 09 June 2024



Hoechst
R

es
ve

ra
tr

o
l

(3
0

M
)

C
ar

ap
he

no
l A

(3
0

M
)

D
M

SO
(0

.0
6%

)

HeLa cells

IFITM2/3 LAMP1 IFITM2/3 + LAMP1

A

DM
SO

0

200

Nu
m

be
r o

f I
FI

TM
2/

3+
ve

sic
le

s/c
el

l

400

600

800
****

**** **** ****
***

Res
v

Car
a

DM
SO Res

v
Car

a

30 min 2hr

40
50
60
70
80
90

100

Av
er

ag
e 

IF
ITM

2/
3+

ve
sic

le
 in

te
ns

ity
/ce

ll **** *** **
**** ****

DM
SO Res

v
Car

a

DM
SO Res

v
Car

a

30 min 2hr

B

Nu
m

be
r o

f L
AM

P1
+

ve
sic

le
s/c

el
l

0

** *
* *** ****

200

400

600

800

DM
SO Res

v
Car

a

DM
SO Res

v
Car

a

30 min 2hr

40
50
60
70
80
90

110
100

Av
er

ag
e 

LA
M

P1
+

ve
sic

le
 in

te
ns

ity
/ce

ll ****
**** ****

* * *

DM
SO Res

v
Car

a

DM
SO Res

v
Car

a

30 min 2hr

C

Nu
m

be
r o

f I
FI

TM
2/

3+
ve

sic
le

s/c
el

l

0

50

100

150 ****

DM
SO Car

a

DM
SO Car

a

DM
SO Car

a

DM
SO Car

a

30 min 2 hr

Av
er

ag
e 

IF
ITM

2/
3+

ve
sic

le
 in

te
ns

ity
/ce

ll *** **

0

50

100

200

150

30 min 2 hr

E

Av
er

ag
e 

p2
4+

ve
sic

le
 in

te
ns

ity
/ce

ll

0

50

100

150

DM
SO Car

a

DM
SO Car

a

30 min 2 hr

Nu
m

be
r o

f p
24

+
el

em
en

ts/
ce

ll

********

0

20

40

60

80

DM
SO Car

a

DM
SO Car

a

30 min 2 hr

F

Nu
m

be
r o

f L
AM

P1
+

ve
sic

le
s/c

el
l

0

50

100

150 ** ***

DM
SO Car

a

DM
SO Car

a

30 min 2 hr

Av
er

ag
e 

LA
M

P1
+

ve
sic

le
 in

te
ns

ity
/ce

ll *

0

50

100

200

150

DM
SO Car

a

DM
SO Car

a

30 min 2 hr

G

LV

mPB CD34+ cells

D
M

SO
(0

.0
6%

)
C

ar
ap

he
no

l A
(3

0
M

)
N

o
 L

V
+

 D
M

SO
 (0

.0
6%

)

IFITM2/3 LAMP1 IFITM2/3 + LAMP1

D

Figure 6. Caraphenol A alters expression and subcellular localization of IFITM2/3 protein and late endosomes. (A) Representative images of HeLa cells obtained by
confocal microscopy using 633 oil immersion objective lens at room temperature. HeLa cells were plated and treated for 4 hours with caraphenol A (30 mM), resveratrol (30 mM),
or DMSO (0.06%) before addition of LV, MOI of 15, for 30 minutes or 2 hours. Cells were then fixed, permeabilized, and immunostained using a-IFITM2/3, a-LAMP1 antibodies,
and Hoechst 33342 nuclei stain. Scale bars are 10 microns. Images were collected on Zeiss Zen Software and analyzed using Imaris InCell software, identifying the number and
mean intensity of IFITM2/3 (B) and LAMP1 (C) stained vesicles per cell. At least 50 cells were imaged per condition and plotted as dot plots (caraphenol A, green symbols;
resveratrol, orange symbols; DMSO, blue symbols; mean 6 SD). *P , .032, **P , .0021, ***P , .0002, ****P , .0001 by Kruskal-Wallis test with Dunn’s multiple comparison
correction. (D) Representative images of mPB-CD341 HSPC that were thawed, prestimulated for 48 hours, and then either immediately imaged without LV and DMSO (0.06%)
(top), or then treated for 4 hours with either DMSO (middle, 0.06%) or caraphenol A (bottom, 30mM) before addition of LV for 30minutes or 2 hours. Cells were fixed, stained, and
analyzed as above for HeLa cells for IFITM2/3 (E), p24 protein (F), and LAMP11 (G) vesicle number and mean vesicle intensity (mean 6 SD).
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independent of autophagy induction and is likely achieved
through inhibition of mTOR complex (mTORC) 2, rather than
mTORC1,32 suggesting that mTORC2 inhibition may represent
a common means for improving transduction. In contrast, PGE-2
does not alter IFITM2/3 expression (supplemental Figure 6E) and
is additive when used with caraphenol A for LV transduction,
which suggests a mechanism of enhancement distinct from
caraphenol A, rapamycin, and cyclosporin H.

The surprising finding that initiation of endosomal activity in
mPB-CD341 HSPC and relocation of IFITM2/3 staining from
peripheral to perinuclear endosomes depends on LV addition
implies that endosomal-IFITM-lysosomal restriction activity
remains dormant in quiescent CD341HSPCs until vector binding
and entry. The observation that the caraphenol A-dependent
effect of decreasing late-stage LAMP11 endosomes was not
observed in IFITM3 KO cells suggests a link between the
presence of IFITM3 and late endosomal activity. This finding is
further supported by a recent independent analysis in IFITM KO
cell lines78 and is consistent with the observed higher cellular pH
observed after caraphenol A treatment, indicating a reduction
in acidic cellular compartments. VSV-G triggers vector/host
membrane fusion at a defined pH, a separate event from LV
core escape into the cytoplasm.62 IFITM proteins are reported
to interact with vacuolar ATPase, altering acidification of
the endolysosomal lumen,79 which may trap virions in vesicles
intended for degradation.80 Determining whether the trans-
duction enhancement effect of caraphenol A is related to in-
creased vector escape from a normally degradative trafficking
pathway or diversion to compartments favorable to vector fusion
requires further study. The finding that complete whole-cell

IFITM3 downregulation was not needed for transduction en-
hancement indicates that proper IFITM localization, rather than
overall expression, may be a critical barrier to gene delivery.17,32

Because of the role of IFITM proteins in cellular protection from
pathogens,81,82 long-term reduction of IFITM2/3 expression in
CD341 HSPCs would be unfavorable. Transient inhibition of
IFITM2/3 through short-term ex vivo compound pulsing may be
a safer strategy for increasing LV gene delivery. However, IFITM
expression abnormalities have been observed in various can-
cers, and IFITM gene disruption has been associated with tumor
malignancy and growth.31,83,84 The differing trafficking strategy
used by VSV-G pseudotyped LVs, comparedwith HIV-1, exposes
LV to distinct restriction factors that may affect integration and
alter latency.29,35 Thus, an open question is whether transient
pharmacologic IFITM modulation is a genetically safe approach.
Our findings of IFITM2/3 protein recovery after transient car-
aphenol A treatment that show no altered LV integration profile
or lineage frequency in primary or secondary transplantation
recipients are therefore encouraging.

One promising finding was the observed transduction im-
provement in vivo, beyond that seen ex vivo with the same
applied dose of LV (Figure 1E vs Figure 2G). Serial trans-
plantation studies demonstrated a further increase in EGFP
marking frequency in transplanted cells originally treated with
caraphenol A, unlike the decrease observed in DMSO-treated
HSPCs. A recent report highlights that constitutive interferon-
stimulated gene expression is a unique phenotype found in
pluripotent and multipotent tissue in the absence of IFN sig-
naling.26 An explanation consistent with our findings is a higher
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Figure 7. Caraphenol A effect on late endosome is dependent on IFITM3 expression. (A) Representative images of WT TZM-bl and IFITM3 KO cells imaged by confocal
microscopy, as above. Cells were plated and treated for 4 hours with caraphenol A (30mM) or DMSO (0.06%) before addition of LV for 30minutes or 2 hours. Cells were then fixed,
permeabilized, and immunostained using a-IFITM2/3, a-LAMP1 antibodies, and Hoechst 33342 nuclei stain. Scale bars are 10 microns. Images were collected and analyzed as
previously described, identifying the number and mean intensity of IFITM2/3- (B) and LAMP1-stained (C) vesicles per cell. Data plotted as dot plots comparing WT (closed
symbols) to IFITM3 KO (open symbols) treated with caraphenol A (green symbols) or DMSO (blue symbols, mean 6 SD). *P , .032, **P , .0021, ***P , .0002, ****P , .0001
by Kruskal-Wallis test with Dunn’s multiple comparison correction.
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overall expression of IFITM proteins in LTR-HSCs compared with
HSPCs. As a consequence, LTR-HSCs may have a more pro-
nounced response to caraphenol A IFITM downregulation, al-
though additional experiments evaluating IFITM expression in
these cells is required.

We have described novel small molecules that significantly im-
prove LV gene delivery to HSCs via a cellular mechanism involv-
ing disruption of IFITM2/3-mediated LV restriction. Importantly,
IFITM2/3 modulation by caraphenol A did not result in an unusual
integration profile or lineage abnormalities in vivo. Moreover, we
provide evidence that additional non-IFITM2/3 LV restriction
pathways are operating in HSPCs that, when countered, further
increase transduction efficacy when combined with compounds
that target IFITM2/3. Gene delivery strategies that minimize
treatment time, expense, complexity, and vector concentrations
are of critical importance for advancing the fields of gene therapy
and cellular engineering to the clinic.We anticipate that the use of
caraphenol A may help achieve these goals, whereas our findings
may help to uncover additional restriction pathways that facilitate
enhanced gene delivery to stem cells.
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Mrówczyñska L, et al. Resveratrol oligomers
are potent MRP1 transport inhibitors.
Anticancer Res. 2006;26(3A 3a):2081-2084.

40. Chung EY, Kim BH, Lee MK, et al. Anti-
inflammatory effect of the oligomeric stilbene
alpha-Viniferin and its mode of the action
through inhibition of cyclooxygenase-2 and
inducible nitric oxide synthase. Planta Med.
2003;69(8):710-714.

41. Chung EY, Roh E, Kwak JA, et al. alpha-
Viniferin suppresses the signal transducer and
activation of transcription-1 (STAT-1)-
inducible inflammatory genes in interferon-
gamma-stimulated macrophages.
J Pharmacol Sci. 2010;112(4):405-414.
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