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KEY PO INT S

l Combined knockout of
Kdm4a, Kdm4b, and
Kdm4c results in HSC
defects.

l KDM4 demethylases
are required for
sustained expression
of genes important for
survival of HSCs.

KDM4/JMJD2 are H3K9- andH3K36-specific demethylases,which are considered promising
therapeutic targets for the treatment of acute myeloid leukemia (AML) harboring MLL
translocations. Here, we investigate the long-term effects of depleting KDM4 activity on
normal hematopoiesis to probe potential side effects of continuous inhibition of these
enzymes. Utilizing conditional Kdm4a/Kdm4b/Kdm4c triple-knockout mice, we show that
KDM4 activity is required for hematopoietic stem cell (HSC) maintenance in vivo. The
knockout of the KDM4 demethylases leads to accumulation of H3K9me3 on transcription
start sites and the corresponding downregulation of expression of several genes in HSCs.
We show that 2 of these genes, Taf1b and Nom1, are essential for the maintenance of
hematopoietic cells. Taken together, our results show that the KDM4 demethylases are
required for the expression of genes essential for the long-term maintenance of normal
hematopoiesis. (Blood. 2019;134(14):1154-1158)

Introduction
Chromatin-modifying enzymes are important during develop-
ment of leukemia where they sustain the erroneous expression
pattern of oncogenes and tumor-suppressor genes. Importantly,
their catalytic activities are often required for growth of leukemic
cells, making them potential therapeutic targets.1,2 The H3K9me3/
me2- and H3K36me3/me2-specific histone lysine demethylase
family KDM4/JMJD2 has 4 members: KDM4A-D.3-6 Although
KDM4A-C are expressed in many tissues, expression of KDM4D
is confined to testis.7 Mice single knockout for Kdm4a-c are
viable, whereas the combined deletion of Kdm4a and Kdm4c
or Kdm4a, Kdm4b, and Kdm4c is embryonic lethal.8,9 KDM4
enzymes localize to H3K4me31 promoters, preventing accu-
mulation of H3K9me3 and H3K36me3.9 KDM4 enzymes are
required for the growth of MLL-AF9–translocated acute myeloid
leukemia (AML) cells, and these enzymes are considered prom-
ising therapeutic targets.10,11 Here, we addressed the role of the
KDM4 enzymes in normal hematopoiesis.

Study design
Animal studies
Mouse lines and tamoxifen injection procedures have been
described.9,11 Bone marrow (BM) and peripheral blood (PB) cells
were isolated and stained as described.12 All animal studies were
approved by the Danish Animal Ethical Committee.

RNA sequencing
RNA from 10000 cells was converted to complementary DNA
using Nugen Ovation RNA sequencing (RNA-seq) System V2
and sequenced on aNextseq500 (Illumina). Readswheremapped
using RNA STAR13 (Galaxy version 2.4.0d-2) and counted using
htseq count14 (Galaxy version 0.6.1galaxy1). Differentially expressed
genes were identified using DESeq215 (Galaxy version 2.1.8.3).

Chromatin immunoprecipitation sequencing
Thirty thousand Lin2Sca2c-Kit1 (LSK) cells were fixed, sonicated,
and subjected to immunoprecipitation as described.12 Mapping
and peak calling were done using Bowtie2 (Galaxy version
2.2.6.2) and EaSeq.16

Results and discussion
To investigate the role of the KDM4 enzymes in normal hema-
topoiesis, weperformed a series of competitive BM transplantations.
We used BM frommice expressing tamoxifen-inducible Cre from
the Rosa26 locus (CreER) in combination with conditional alleles
of Kdm4 (CreER:Kdm4cfl/f,CreER:Kdm4acf/fl, andCreER:Kdm4abcfl/fl)
(Figure 1A). Four weeks after transplantation, we measured the
percentage of CD45.21 donor-derived cells in PB and induced
knockout through intraperitoneal injection of tamoxifen (sup-
plemental Figure 1A-B, available on the Blood Web site). We
followed the percentage of CD45.21 cells in myeloid, B-cell, and
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T-cell populations in PB 1, 3, and 5 months after tamoxifen
injection (Figure 1B). Deletion of Kdm4c alone did not affect the
production of either myeloid, T, or B cells (Figure 1B), whereas
Kdm4ac or Kdm4abc deletion resulted in a significant reduction

of all 3 lineages 6months after transplantation (Figure 1B). Single
knockout or the combined deletion of Kdm4b and Kdm4c did
not have any gross effect on hematopoiesis (supplemental
Figure 2A-F). These data indicate that KDM4A, KDM4C, and, to
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Figure 1. The combined knockout of Kdm4a, Kdm4b,
andKdm4c leads to reduction ofmyeloid and lymphoid
cells. (A) Schematic drawing of the experimental setup.
Lethally irradiated mice were transplanted with BM from
mice with the indicated genotypes (CD45.2) mixed 1:1 with
BM from B6-SJL mice. (B) CD45.2 chimerism in PB at the
indicated times after injection of tamoxifen (TAM). Data
represented as mean 6 standard deviation (SD) (n 5 6 in
each group). (C) Histogram depicting the CD45.2 per-
centage in the indicated cell populations within the BM
4 months after tamoxifen injection. Data represented as
mean 6 SD (n 5 6 in each group). Hematopoietic stem
cell (HSC; Lin2Sca2c-Kit1CD342), LSK (Lin2Sca2c-Kit1),
and granulocyte-monocyte (GM) progenitor (GMP) pop-
ulation. (D) Cell-cycle profile of LSK cells sorted from the
BM of mice that were treated 10 days with tamoxifen and
an additional 72 hours with 5-bromo-29-deoxyuridine
(BrdU). The percentage of BrdU1 cells in the different
populations is indicated. Data are represented as mean6

SD (n 5 4 in control group and n 5 3 in the Kdm4abc
knockout [KO] group). (E) In vitro growth curve of HSCs
sorted from BM of mice with indicated genotypes 2 weeks
after injection of tamoxifen. Data are represented as
mean 6 SD (n 5 4 in each group). (F) Methocult replating
assay using LSK cells sorted from the BM of mice with the
indicated genotypes 2 weeks after injection of tamoxifen.
One thousand cells per plate were plated in the first round
and 5000 in the subsequent rounds of replating. Data are
represented as mean 6 SD (n 5 3 in each group). Rel.,
relative.
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a lesser extent, KDM4B play functionally redundant roles in
hematopoiesis.

Because Kdm4abc triple-knockout mice have reduced numbers
ofmyeloid, B, and T cells, we hypothesized that the loss of KDM4

activity resulted in defects in a commonprogenitor.Wequantified
CD45.21 cells in CD342Lin2Sca-11c-Kit1 (CD342LSK) HSC, multi-
potent progenitor (CD341LSK), and granulocyte/macrophage
progenitor (GMP) compartments of the BM 6 months after
transplantation. We found that Kdm4abc deletion resulted in
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Figure 2. Loss of KDM4A-C leads to accumulation of
H3K9me3 at TSS on a subset of genes in LSK cells.
(A) Pie chart indicating the position of H3K4me3 peaks in
LSK (Lin2Sca2c-Kit1) cells from C57BL6 mice.12 Orange
and gray represent peaks localized 61 kb of TSS, peaks
falling outside of these regions are represented with blue.
H3K4me31 regions 61 kb of TSS that experience a sig-
nificant change in H3K9me3 levels are indicated with gray.
(B) Heat map of H3K9me3 ChIP-seq read counts610 kb of
TSS. Data have been filtered to only include regions in
which a significant change in H3K9me3 occurs. (C) Sum-
mary of the data in panel A zoomed in to 62.5 kb of TSS.
(D) Direct ChIP-qPCR validation on selected target genes
using cells sorted in an independent experiment. (E) RNA-
seq analysis of HSCs sorted from CreER:Kdm4abcfl/fl or
CreER mice 2 weeks after tamoxifen injection (n 5 4 in
each group). (F) Heat map showing the distribution of
normalized counts for the listed genes in the RNA-seq
data set. (G) LSK cells were sorted from C57BL6 mice and
transduced with lentiviruses expressing GFP, Cas9, and
single guide RNA (sgRNA) against Taf1b andNom1 as well
as positive (Rps19) and negative controls (nontargeting
sgRNA). The percentage of GFP1 cells was followed over
time by FACS. The percentages have been normalized to
the negative control and plotted relative to the value
at day 3. FC, fold change; IgG, immunoglobulin G; reg.,
region; rel, relative; sg, sgRNA; T.P.M., tags per million;
Wt/WT, wild type.
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a significant reduction in cell numbers for all 3 cell types (Figure
1C). To understand why the cells were lost, mice treated with
tamoxifen for 10 days were subsequently injected with 5-bromo-
29-deoxyuridine (BrdU), and cells were harvested 72 hours after.
As shown in Figure 1D, LSK cells showed an increase in apo-
ptosis/S-phase and a reduction of cells in G0/G1, supporting the
notion that KDM4A-C exert important functions in HSCs and
early progenitors. To investigate this possibility, we generated
in vitro cultures of CD342LSK cells isolated fromCreER:Kdm4cfl/fl

and CreER:Kdm4abcfl/fl mice 2 weeks after tamoxifen injections,
using fluorescence-activated cell sorting (FACS). These ex-
periments showed that KDM4A-C are required for the pro-
liferation of CD342LSK cells (Figure 1E), an effect confirmed in
methocult replating experiments (Figure 1F). Taken together, we
conclude that the KDM4 histone demethylases play functionally
redundant, but essential, roles in maintaining HSCs and multi-
potent progenitors and for the long-term maintenance of B, T,
and myeloid cells in PB.

We speculated that KDM4 enzymes are required for proper
expression of genes essential for HSCs. To identify such genes,
we performed chromatin immunoprecipitation (ChIP) sequenc-
ing (ChIP-seq). We were unable to perform KDM4A and KDM4C
ChIPs in LSK cells; however, previous results have shown that
the KDM4 proteins associate with H3K4me31 transcription start
sites (TSSs).8,9,11 We expected that direct target genes of
KDM4 would accumulate H3K9me3 at TSSs after KDM4 de-
pletion. Thus, we performed H3K9me3 ChIP-seq on chromatin
prepared from LSK cells of CreER:Kdm4abcfl/fl and CreER
mice 2 weeks after injection of tamoxifen. We quantified
the H3K9me3 reads in knockout and control cells in a region
of61000 bp around the 9072 H3K4me31 TSSs present in LSK
cells12 (Figure 2A-D). We filtered the data to identify TSS
regions in which H3K9me3 levels changed at least twofold in
response to tamoxifen treatment. This led to the identification
of 1381 TSSs (Figure 2A,D).

To identify genes for which an increase in H3K9me3 resulted in
a transcriptional change, we FACS sorted long-term HSCs (Lin2

Sca-11, c-Kit1, CD482, CD1501) from CreER:Kdm4abcfl/fl and
CreER mice 2 weeks after tamoxifen injection and performed
RNA-seq. This led to the identification of 164 downregulated
genes and 157 upregulated genes in knockout long-term HSCs
(Figure 2E). Comparing ChIP-seq and RNA-seq analyses, we
identified 6 genes that are both repressed and have increased
H3K9me3 levels (Figure 2E-F).

To identify genes that could explain the phenotype of the KDM4
knockout mice, we analyzed the 6 genes using the DepMap data
set.17,18 Here, we found that Nom1 and Taf1b are classified as
common essential genes. Both genes are expressed at similar
levels in both HSCs and AML cells,19 and the H3K9me3 levels
on the TSS of none of them changed significantly in KDM4A
or KDM4C single knockouts (supplemental Figure 1B-C). We
speculated that the decreased expression of Nom1 and Taf1b
in HSCs could explain the requirement of the KDM4 histone
demethylases for the maintenance of HSCs. To test this more
directly, we depleted Nom1 or Taf1b using clustered regu-
larly interspaced short palindromic repeats (CRISPR)/CRISPR-
associated protein 9 (Cas9) in LSK cells. We cloned and
validated lentiviral constructs expressing green fluorescent
protein (GFP)–tagged guide RNAs against Nom1 and Taf1b in

conjunction with Cas9 (supplemental Figure 1E-F). Wild-type
LSK cells were transduced with these constructs and the per-
centage of GFP1 cells was followed over a period of 12 days
of in vitro growth. We conclude that CRISPR/Cas9-mediated
depletion of NOM1 and TAF1B attenuates the growth of LSK
cells (Figure 2G; supplemental Figure 1G). This supports the
hypothesis that loss of KDM4 activity results in transcriptional
repression of Nom1 and Taf1b, which in turn causes a growth
defect in LSK cells.

Previously, we and others have demonstrated that deletion
of Kdm4a-c had a strong effect on proliferation of MLL-
AF9–translocated AML cells whereas the effect on untrans-
formed progenitors was less severe.10,11 Specifically, we found
that KDM4A-C activity is required for the expression of Il3ra,
a gene essential for the survival of AML cells, but dispensable
for normal hematopoiesis.20 Using noncompetitive BM trans-
plantation, we also showed that the hematopoietic output
of KDM4A-C knockout stem cells was sufficient to confer sur-
vival of recipient mice for up to 3 months.11 This differential
requirement for KDM4 for the proliferation of AML and main-
tenance of HSCs provides a potential therapeutic window of
opportunity. However, the results from this study show that
KDM4 is required for normal long-term hematopoiesis, which is
critical to take into consideration when KDM4 inhibitors move
into a clinical setting.
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