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KEY PO INT S

l Nurse-like cells
express Wnt5a to
induce ROR1-
dependent stimulation
of NF-kB, which leads
to autocrine IL-6-
induced STAT3
activation in CLL cells.

l Cirmtuzumab inhibits
Wnt5a-induced, ROR1-
dependent stimulation
of NF-kB, and thereby
represses autocrine
IL-6-dependent STAT3
activation in CLL.

Coculture of nurse-like cells (NLCs) with chronic lymphocytic leukemia (CLL) cells induced
leukemia cell phosphorylation of STAT3 (pSTAT3), which could be blocked by anti-Wnt5a
antibodies or the anti-ROR1 monoclonal antibody, cirmtuzumab. Time-course studies
revealed Wnt5a could induce activation of NF-kB within 30 minutes, but required more
than 3 hours to induce pSTAT3. Culture of isolated CLL cells for 24 hours revealed Wnt5a-
induced expression of interleukin 6 (IL-6), IL-8, CCL2, CCL3, CCL4, and CXCL1, which in turn
could induce pSTAT3 in unstimulated CLL cells within 30 minutes. We found that Wnt5a
could induce CLL cell expression of NF-kB target genes, including IL-6, and that this
effect could be blocked by cirmtuzumab or drugs that inhibit NF-kB. Examination of CLL
cells and plasma collected from patients treatedwith cirmtuzumab revealed reduced levels
of phosphorylated p65 and diminished expression of NF-kB and STAT3 target genes in CLL
cells, as well as lower plasma levels of IL-6, in the samples after therapy. Collectively, these
studies indicate thatWnt5a/ROR1-dependent signaling contributes to CLL cell activation of
NF-kB, which in turn causes autocrine IL-6-induced activation of pSTAT3. As such, this study
demonstrates that cirmtuzumab can inhibit leukemia cell activation of both NF-kB and
STAT3 in patients with CLL. (Blood. 2019;134(13):1084-1094)

Introduction
Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is a de-
velopmentally restricted oncoembryonic surface protein that is
expressed on neoplastic cells of many types of cancer,1 including
chronic lymphocytic leukemia (CLL), but not on most normal
postpartum tissues.2 ROR1 can serve as a receptor forWnt5a, which
can promote leukemia cell growth and survival,2-4 potentially ac-
counting for the observation that high-level CLL cell expression of
ROR1 is associated with early disease progression and shorter
overall survival.5 These properties of ROR1 make it an attractive
target for therapy of patients with CLL, prompting development
of a humanized monoclonal antibody, called cirmtuzumab, which
targets ROR1 and inhibits ROR1-signaling in vitro.4,6-10 A phase I
study of cirmtuzumab in patients with CLL demonstrated that this
antibody also could inhibit ROR1-signaling in vivo, suppressing
leukemia cell activation of r-GTPases and phosphorylation of HS1.11

In addition to activation of r-GTPases,4 ROR1 signaling also can
induce recruitment and activation of 14-3-3z,8 HS1,7 DOCK2,6

and cortactin,12 each of which also contributes to Wnt5a-induced,
ROR1-dependent enhancement of CLL cell proliferation and/or
migration. Wnt5a also has been reported to induce activation of
STAT3 in melanoma cells13 and activation of NF-kB in the human
embryonic kidney cell line HEK293 in a ROR1-dependent-
manner.2 Activation of NF-kB and STAT3 also can enhance
proliferation and/or survival of CLL cells.14-17 Furthermore, acti-
vation of STAT3 may enhance expression of ROR1,18 potentially
providing a positive feedback loop in which Wnt5a could upreg-
ulate the expression of its receptor. However, it is not known
whether Wnt5a could induce activation of STAT3 or NF-kB in
ROR1-expressing CLL cells.

Also not clear is the principle cellular source or sources for
Wnt5a. Although hydrophobic amino acids and posttranslational
palmitoylation provides mature Wnt proteins the capacity to act
primarily as surface proteins tethered to the plasma membrane,19

Wnt5a can be found at high levels in the plasma of patients with
CLL relative to that of age-matched healthy adults.4,11 The cell
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source responsible for the high levels of Wnt5a in plasma of
patients with CLL is not clear. Although CLL cells themselves
have been noted to express Wnt5a, only 38% of patients have
detectable transcripts of Wnt5a in their leukemia cells.20 Other
candidates include nurse-like cells (NLCs), the nonmalignant
accessory cells residing in the proliferation centers of lymphoid
tissue that are derived from monocytes,21,22 which may express
Wnt5a.23 Expression ofWnt5a by NLCs implicates that there most
likely are higher concentrations of Wnt5a in lymphoid tissues than
in the circulation, potentially leading to amplified Wnt5a/ROR1
signaling and upregulated expression of ROR1 through the positive
feedback loop within the microenvironment.

Among circulating CLL cells, the relative expression CD5 and
CXCR4 can be used to distinguish between leukemia cells that
recently have exited from the lymphoid tissuemicroenvironment
(CD5high CXCR4dim) and leukemia cells that may be poised to
reenter the lymphoid compartments (CXCR4high CD5dim).24,25

Prior studies demonstrated that circulating CXCR4dim CD5high

CLL cells express higher levels of genes upregulated in leukemia
cells present in lymphoid tissues than blood CXCR4high CD5dim

CLL cells of the same patient,24 providing a means with which to
assess how the lymphoid microenvironment influences CLL cell
gene-expression. We examined whether CXCR4dim CD5high CLL
cells have higher levels of activated STAT3 and ROR1 compared
with CXCR4high CD5dim CLL cells.

Methods
CLL specimens
Blood samples were collected from Moores Cancer Center pa-
tients who provided written informed consent using a protocol
approved by the Institutional Review Board of the University of
California, San Diego (approval number 090401), in accordance
with the Declaration of Helsinki. Peripheral blood mononuclear
cells were isolated by density-gradient centrifugation with Ficoll-
Paque PLUS (GE Healthcare Life Sciences), followed by purifi-
cation with human B Cell Isolation Kit (130-091-151, Miltenyi
Biotec Inc.). CLL cells were segregated into “ROR1high” and
“ROR1low” subgroups, as described.5 Plasma was collected from
blood samples that had undergone centrifugation for 10minutes
at 187g, and stored at 280°C. Plasma samples and CLL cells
were collected from patients treated with cirmtuzumab in
the phase 1 clinical study of cirmtuzumab (registered at
www.clinicaltrials.gov as #NCT02222688).10

Generation of nurse-like cells
Peripheral blood mononuclear cells isolated by Ficoll-Paque
PLUS from patients with CLL were suspended in RPMI with
20% fetal bovine serum to a final concentration of 23 107/mL, as
described.21 After 14 days, the nonadherent CLL cells were
removed by vigorously pipetting the contents of the well,
leaving the adherent cells untouched. We observed these cells
to have the morphology typical of NLC via microscopy.

Materials
We obtained BAY 11-7082 (S2913) from Selleckchem. Human
recombinant Wnt5a (645-WN) was from R&D Systems. Wnt5a
was suspended in sterile PBS containing 0.1% bovine serum
albumin at 100 mg/mL.

Immunoblot analysis
Immunoblot analysis was performed as described.2 Primary
monoclonal antibody (mAb) for ROR1 (#4102), Phospho-STAT3
(Tyr705; #9145), STAT3 (#4904), phospho-p65 (#3033), phospho-
IkBa (#9246), p65 (#8242), and IkBa (#4814) were obtained from
Cell Signaling Technology. Secondary antibody conjugated with
horseradish peroxidase was from Cell Signaling Technology.

Flow cytometry
Flow cytometry analysis was performed as described.2,11 Anti-
ROR1 mAb (4A5) conjugated with Alexa Fluor 647 (4A5-Alexa
Fluor 647) was generated in our laboratory. 4A5 is a non–cross-
blocking mAb specific for a ROR1 epitope distinct from that
recognized by cirmtuzumab.2 Anti-CD19-PerCP, anti-CD5-FITC,
anti-pSTAT3 Y705-PE, and anti–CXCR4-APC antibodies were
from BD Biosciences. The molecules of ROR1 per cell were
determined with the Quantum MESF (Molecules of Equivalent
Soluble Fluorochrome) microspheres. Alexa Fluor 647 conju-
gated beads were run on the same day as stained cell samples
to establish a calibration curve relating channel values to MESF
units, or DMFI.

ELISA
IL-6 in plasma or medium was detected by Human IL-6 ELISA
(enzyme-linked immunosorbent assay) kit (430504; BioLegend).
Wnt5a was detected by Human WNT5A ELISA kit (OKEH00723;
Aviva Systems Biology).

Human cytokine assay
CLL cells were cultured with or without Wnt5a (200 ng/mL) or
cirmtuzumab (10 mg/mL) or anti-Wnt5a antibody (MAB645; R&D
Systems) (5 mg/mL) in RPMI culture-media, which were analyzed
by Proteome Profiler Human Cytokine Array Kit (ARY005B; R&D
Systems), as per the manufacturer’s instructions.

NF-kB target gene expression
We used the RT2 Profiler PCR (polymerase chain reaction) Array
for human NF-kB signaling targets (PAHS-225ZA; Qiagen) to
profile the expression of 83 NF-kB target genes. Real-time PCR
was performed per the manufacturer’s instructions. The threshold
(CT) value for each gene in the array was normalized to the
average CT value of 4 housekeeping genes. The Volcano Plots
and ClusterGram Heatmap were generated using the Qiagen
data analysis center (https://www.qiagen.com/us/shop/genes-
and-pathways/data-analysis-center-overview-page/), as per the
vendor’s instructions.

Quantitative reverse-transcription PCR
Total RNA was extracted using Trizol (Life Technologies). A
10-mg volume of total RNA was incubated with 10 U RNase-free
DNase I (Life Technologies) for 30 minutes at 37°C. RNA was
further purified with an RNeasy Mini Kit (QIAGEN, Hilden,
Germany). The purified total RNA (2 mg) was reverse transcribed
with Superscript III Reverse Transcriptase (Life Technologies).
Taq 23 Master Mix (NEB) was used for the PCR, per the man-
ufacturer’s protocol. SYBR Green PCR Master Mix (Thermo Fisher
Scientific) and 7900HT Fast Real-Time PCR System (Applied
Biosystems,) were used for real-time PCR, per the manufacturer’s
protocol. The expression level of WNT5A transcripts was calcu-
lated using ACTB.
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Gene set enrichment analysis
We performed gene set enrichment analysis (GSEA) of STAT3
target genes in matched lymph nodes and peripheral blood CLL
cells collected from 17 patients previously included in a study by
Herishanu et al.16 Peripheral blood mononuclear cells of 3 CLL
samples were collected before therapy (Pre-Rx) and at day 28
(D28) of cirmtuzumab treatment. Each D28 sample was collected
after patients had received 2 doses of 16 mg/kg cirmtuzumab.
Negative isolation of CLL cells to more than 95% purity was
performed before RNA isolation. Total RNA was extracted using
Trizol reagent (Life Technologies). RNAseq data were analyzed
as described.11 Using GSEA software,26 we conducted GSEA on
the primary RNAseq data from CLL cells isolated from patients
before therapy (Pre-Rx) and at D28 of cirmtuzumab treatment.
We focused our attention on changes in the NF-kB27 and STAT328

target genes. Each gene set was considered significant when the
false discovery rate (FDR) was less than 25%.26 The FDR q value
was adjusted for gene set size and multiple hypothesis testing.

Statistical analyses
Data are presented as the mean 6 standard deviation. Differ-
ences between 2 groups were determined by 2-tailed Student
t test. Significance was analyzed by GraphPad Prism 6.0 (GraphPad
Software Inc.), and P , .05 was considered significant.

Results
The expression of ROR1 and phosphorylation of
STAT3 are higher in CD5high CXCR4dim CLL cells than
their CD5dim CXCR4high counterparts
We examined 24 CLL cell samples that expressed high
(ROR1high, N 5 12) or low (ROR1low, N 5 12) levels of surface
ROR1 (supplemental Table 1, available on the Blood Web site),
as per a previously defined theshold,4 which subsequently was
noted to correspond to �4 3 103 molecules of ROR1 per cell.11

CLL cells were stained with antibodies specific for CD5 or
CXCR4. CD5high CXCR4dim and CD5dim CXCR4high subpop-
ulations were electronically gated for analysis of the relative
expression of other proteins by these subpopulations. The levels
of ROR1 and pSTAT3 were determined in each gated sub-
population. We noted that CD5high CXCR4dim CLL cells, which
presumably had recently exited the lymph node, had higher
levels of ROR1 and pSTAT3 than the CD5dim CXCR4high coun-
terpart CLL cells (Figure 1A-C; supplemental Table 1), although
the difference in the levels of ROR1 between such sub-
populations did not reach statistical significance for ROR1low

samples (Figure 1B). Consistent with the notion that CLL cells
exiting the lymph nodes may have higher levels of activated
STAT3 than those circulating in the blood is our gene set en-
richment analyses of the published transcriptome data on CLL
cells isolated from the lymph node and blood of 17 patients.16

This analysis revealed that the expression levels of STAT3-target
genes (N 5 97) were significantly higher in CLL cells isolated
from the lymph node than in CLL cells isolated from the blood
of the same patients (NES 5 1.30; FDR q 5 0.08; Figure 1D).

NLCs induce CLL cell activation of STAT3 and
upregulation of ROR1 via Wnt5a
We cultured NLCs with CLL cells from each of 6 patients with
ROR1high CLL and 6 patients with ROR1low CLL, using an es-
tablished coculture system.29 The levels of ROR1 and pSTAT3

were determined by flow cytometry. CLL cells cocultured with
NLC had increased pSTAT3 in both ROR1high and ROR1low

samples (Figure 2A-C). Although ROR1high CLL cells cocultured
with NLC had increased levels of ROR1, the upregulation of
ROR1 in ROR1low CLL cells cocultured with NLC was not sta-
tistically significant (Figure 2B). Activation of STAT3 and upreg-
ulation of ROR1 in ROR1high CLL cells were blocked respectively
by adding the anti-ROR1 mAb, cirmtuzumab, or neutralizing
antibodies to Wnt5a at the initiation of culture (Figure 2A-C).
Consistent with the notion that NLCs were the principle source
of Wnt5a, we noted that isolated NLC expressed significantly
higher amounts of WNT5A than the CLL cells of the same
patient (Figure 2D). Moreover, we detected higher amounts
Wnt5a in the culture supernatants of isolated NLC than in the
supernatants of cultures containing similar numbers of CLL cells
(Figure 2E).

Wnt5a/ROR1 induces production of
proinflammatory factors that induce
phosphorylation of STAT3 and upregulation of
ROR1 in CLL cells
We stimulated CLL cells with exogenous Wnt5a for 0 to 6 and
24 hours in the presence of control IgG or cirmtuzumab. Cell
lysates were analyzed by immunoblot for pSTAT3 (Y705) and
total STAT3. This revealed that Wnt5a induced phosphorylation
of STAT3 in ROR1-positive CLL, and that this effect could be
blocked by cirmtuzumab (Figure 3A). The capacity of Wnt5a to
induce pSTAT3 was less apparent in CLL cells that lacked
expression of ROR1 (supplemental Figure 1). Wnt5a also en-
hanced expression of ROR1 on ROR1-positive CLL cells, but
did not induce expression of ROR1 on CLL cells that lacked
ROR1 (supplemental Figure 2). Time course studies revealed
latent induction of pSTAT3, which first was detected 3 hours
after stimulation with Wnt5a. Because of this latent induction,
we hypothesized that the capacity of Wnt5a to induce acti-
vation of STAT3 in CLL cells was indirect, being caused by
a factor or factors made by isolated CLL cells on stimulation
by Wnt5a.

We examined harvested supernatants of CLL cells cultured with
or without Wnt5a, using a human cytokine array. Multiple
proinflammatory factors including IL-6, IL-8, CCL2, CCL3, CCL4,
and CXCL1 were detected in the medium of CLL cells cultured
for 24 hours with Wnt5a that either were not detected or were
found at significantly lower levels in the medium of CLL cells
cultured without Wnt5a (Figure 3B). Cirmtuzumab inhibited the
capacity of Wnt5a to induce CLL cells to generate most of these
factors (Figure 3C). The medium harvested from CLL cells cul-
tured with Wnt5a, but not the medium of CLL cells cultured
without Wnt5a, could induce pSTAT3 within 30 minutes in
serum-starved CLL cells; this effect could be inhibited by the
anti-IL-6-receptor mAb, tocilizumab (Figure 3D). The condi-
tioned medium also induced upregulation of ROR1 in ROR1high

CLL cells; this effect also could be inhibited by tocilizumab, but
not by neutralizing antibodies specific for Wnt5a (supplemental
Figure 3). We used exogenous Wnt5a, IL-6, IL-8, CCL2, CCL3,
CCL4, or CXCL1 to stimulate serum-starved CLL cells for
30 minutes, and found IL-6 was the most potent early inducer of
pSTAT3 (supplemental Figure 4). IL-6 could induce pSTAT3 in
CLL cells independent of the expression of ROR1 (supplemental
Figure 5), but it could only upregulate the level of ROR1 on CLL
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cells that already expressed ROR1 (supplemental Figure 6).
Because IL-6 is a target gene of STAT3, we considered whether
the increased expression of IL-6 might be a consequence of
STAT3 activation, rather than a cause. Using reverse transcrip-
tion PCR on RNA isolated from cultured CLL cells, we detected
increased levels of IL6 within 1 hour of treatment with Wnt5a
before the noted phosphorylation of STAT3. As such, the in-
duced expression of IL6 preceded the 3 or more hours required
for Wnt5a to induce CLL cell activation of STAT3 (Figure 3E).
Similarly, we detected IL-6 by ELISA in the media of CLL cells
within a few hours after adding exogenous Wnt5a (Figure 3F).
These data indicate that the activation of STAT3 largely was
caused by autocrine IL-6, which was expressed after Wnt5a-
induced activation of ROR1 signaling.

Wnt5a induces production of proinflammatory
factors via activation of NF-ĸB
Prior studies noted that NLC could stimulate CLL cells to activate
NF-kB,20-32 which in turn could influence expression of the genes
encoding many of the cytokines and chemokines we found were
induced by Wnt5a.33 We hypothesized that Wnt5a expressed by
NLC could contribute to CLL cell activation of NF-ĸB. First, we
found that Wnt5a indeed could induce phosphorylation of p65
and IkBa in CLL cells that expressed ROR1 (Figure 4A). More-
over, the capacity of Wnt5a to induce activation of NF-kB in CLL
cells could be blocked by cirmtuzumab or neutralizing anti-
bodies specific for Wnt5a (Figure 4A). As anticipated, we found
that NLC also could induce phosphorylation of p65 in both
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Figure 1. CD5high CXCR4dim CLL cells express higher
levels of ROR1 and phosphorylated STAT3 than CD5dim

CXCR4high counterparts. (A) Flow cytometry analysis of
pSTAT3 (Y705) and ROR1 in CD5high CXCR4dim and CD5dim

CXCR4high CLL cells. (B) Dot figures representing ROR1
intensity in CD5high CXCR4dim and CD5dim CXCR4high CLL
cells from ROR1high (n5 12) and ROR1low (n5 12) patients.
Error bars denote standard deviation. (C) Bar figures
representing pSTAT3 DMFI in CD5high CXCR4dim and
CD5dim CXCR4high CLL cells from ROR1high (n 5 12) and
ROR1low (n 5 12) patients. Error bars denote standard
deviation. (D) GSEA plot of STAT3 target genes in lymph
nodes vs peripheral blood CLL cells collected from
17 patients. The gene set size was 97, the normalized
enrichment score (NES) was 1.30, and the false discoveray
rate (FDR) q value was 0.08.
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ROR1high and ROR1low CLL cells (Figure 4B; supplemental Fig-
ure 7). Unexpectedly, however, we found that cirmtuzumab or
anti-Wnt5a antibodies caused near-complete suppression of
the p65 phosphorylation in ROR1high CLL cells induced by co-
culture with NLC, which elaborate factors, such as APRIL or
BAFF, that also could activate NF-kB (Figure 4B; supplemental
Figure 7).30-32 As such, these studies reveal that Wnt5a may be
a primary factor involved in NLC-induced activation of NF-kB in
ROR1-expressing CLL cells.

We reasoned that the capacity of anti-Wnt5a or cirmtuzumab to
inhibit the activation of STAT3 in CLL cells was a result of the
production of cytokines induced by activation of NF-kB. Con-
sistent with this notion, we observed that levels of IL-6 released
into media were elevated in ROR1high CLL cells cocultured with
NLC, which could be inhibited by anti-Wnt5a or cirmtuzumab,
but not in ROR1low CLL cells (supplemental Figure 8). Also,
a small molecule inhibitor of NF-kB, BAY 11-7082, could in-
hibit Wnt5a-induced CLL cell production of IL-6 and activation of

STAT3 (Figure 4C-D). Furthermore, we found that Wnt5a could
induce CLL cells to enhance expression of NF-kB target genes,
including IL6, and that this effect could be blocked by cirmtu-
zumab (Figure 4E-F). We also examined this effect in MEC1,
which is a human cell line derived fromCLL that does not express
ROR1. Previously, we demonstrated that MEC1 cells transfected
to express ROR1 (MEC1-ROR1 cells) had higher rates of cell
proliferation and more effective chemokine-directed migration
than parental MEC1 cells.4 In this study, we found that MEC1-
ROR1 had higher levels of phosphorylated p65 and STAT3, and
secreted higher amounts of IL-6 into the media, than MEC1 cells
(supplemental Figure 9A-B). Furthermore, knockout of IL6R
reduced the levels of activated STAT3 in MEC1-ROR1 cells
(supplemental Figure 9C-D).

Treatment with cirmtuzumab inhibits CLL cell
activation of NF-kB and STAT3
To examine the in vivo significance of our findings, we collected
plasma and CLL cells from patients treated with cirmtuzumab in
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a phase 1 clinical trial.11 Immunoblot and RNAseq, respectively,
were used to examine for activation of NF-kB and the tran-
scriptomes of negatively selected CLL cells. ELISA was used
to evaluate the concentrations of IL-6 in plasma collected
before and after treatment with cirmtuzumab. Consistent with
our in vitro findings, cirmtuzumab downregulated CLL cell
expression of NF-kB and STAT3 target genes in vivo (Figure
5A) and reduced the levels phosphorylated p65 and STAT3
detected in the CLL cells of treated patients (Figure 5B). The
levels of IL-6 in plasma also were decreased significantly in
patients after treatment with this antibody (Figure 5C; sup-
plemental Table 2).

Discussion
In this study, we found that NLC could induce Wnt5a/ROR1-
dependent activation of NF-kB in CLL, which in turn elicits

autocrine IL-6-induced activation of STAT3. First, we found that
levels of ROR1 and pSTAT3 were higher in circulating CD5high

CXCR4dim CLL cells than in CD5dim CXCR4high CLL cells in any
1 patient, suggesting that ROR1 and pSTAT3 may be higher
in CLL cells within the leukemia microenvironment present
in lymphoid tissues. We found NLC-induced Wnt5a/ROR1-
dependent activation of STAT3 and upregulation of ROR1
in ROR11 CLL cells by inducing the leukemia cells to produce
proinflammatory cytokines, predominantly IL-6, through the
activation of NF-kB.

Prior studies revealed that NF-ĸBmay be constitutively activated
in patients with CLL, thereby contributing to disease progression
and CLL-cell resistance to apoptosis.15 CLL cells present in the
microenvironment are more likely to have activated NF-ĸB than
the CLL cells in the circulation.16 Activation of NF-ĸB in CLL was
considered a consequence of CLL-cell exposure to factors such
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as BAFF and/or APRIL, as well as B-cell receptor signaling, which
are more prominent in the microenvironments of lymphoid
tissues than in the blood.22,30,31,34 In this study, we found that
cirmtuzumab, a mAb that could block ROR1 signaling, inhibited
CLL cell phosphorylation of p65 and expression of NF-ĸB target
genes and proteins, such as IL-6, in patients treated with this
mAb. These findings indicate that ROR1 signaling is at least

a major contributor to the activation of NF-ĸB in ROR1-positive
CLL cells in vivo.

The in vitro effects of IL-6 on the survival of CLL cells appear
context-based.35 Prior studies showed that IL-6 could inhibit the
proliferation of CLL cells when stimulated with tumor necrosis
factor a or Toll-like receptor 7.36,37 However, other studies found
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that IL-6 could enhance the CLL-cell proliferation and re-
sistance to spontaneous apoptosis.38,39 A more recent study
found that high-level CLL-cell production of IL-6 apparently
was associated with high levels of CLL-cell STAT activation
and more aggressive disease.40 Conceivably, targeting sig-
naling pathways that induce higher levels of IL-6 may have
beneficial clinical effects, as have drugs that inhibit B-cell
receptor signaling, which also leads to higher levels of JAK/
STAT activation in CLL cells.41 Because drugs that inhibit B-cell
receptor signaling, such as ibrutinib, do not inhibit Wnt5a-
induced ROR1 signaling in neoplastic B cells,9,42 there may be
an added advantage to targeting both signaling pathways in
patients with CLL.

In addition to IL-6, we observed that Wnt5a/ROR1 signaling also
inducedCLL cells tomake other proinflammatory factors, such as
IL-8, CCL3, and CCL4, which also may play a role in promoting
disease progression in patients with CLL.43-45 Moreover, the
current study demonstrates that cirmtuzumab also could in-
hibit Wnt5a-induced CLL-cell expression of IL-6 and these other
cytokines/chemokines, which help recruit nonneoplastic ac-
cessory cells to the leukemia microenvironment.46

Wnt5a not only is expressed by accessory cells in the micro-
environment but also is present at high levels in the blood of
patients with CLL relative to that of age-matched healthy adults.4

Although amphipathic Wnt factors typically are thought of being
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involved primarily in cognate cell-cell interactions, Wnt5a may
be released from NLC and carried on plasma proteins to effect
activation of CLL cells within the circulation. This may account in
part for the high levels of activated NF-kB found in the cir-
culating CLL cells of some patients, whose leukemia cells are
relatively resistant to spontaneous or drug-induced apopto-
sis.14 We showed that the CLL cells of patients treated by
cirmtuzumab had reduced activation of NF-kB and reduced
expression of NF-kB target genes. Our data support a model
proposing that Wnt5a expressed by NLC induces leukemia cell
activation of NF-kB, which may enhance CLL-cell survival and
induce expression of proinflammatory factors by CLL cells
in vivo that in turn could activate CLL cells in an autocrine
fashion (Figure 6). Consistent with the notion that NLC ex-
pression of Wnt5a contributes to a ROR1-dependent survival
stimulus for CLL cells, we note that cirmtuzumab or neutraliz-
ing antibodies to Wnt5a can mitigate the survival advantage of
CLL cells cocultured with NLC cells in vitro (supplemental
Figure 10).

Collectively, these data indicate that Wnt5a/ROR1-dependent
signaling induced by NLC contributes to the noted activa-
tion of NF-kB, leading to cytokine production and activation
of STAT3 in CLL. As such, agents such as cirmtuzumab that
can block ROR1 signaling can suppress leukemia-cell acti-
vation of NF-kB and production of factors that contribute to

disease progression, providing another rationale for evalu-
ating the potential benefit of cirmtuzumab in patients with this
disease.
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