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KEY PO INT S

l VWF gene variants
that modify FVIII
binding influence
FVIII PK.

l Variants in clearance
receptors for VWF-
FVIII influence
FVIII PK.

Factor VIII (FVIII) pharmacokinetic (PK) properties show high interpatient variability in
hemophilia A patients. Although previous studies have determined that age, body mass
index, von Willebrand factor antigen (VWF:Ag) levels, and ABO blood group status can
influence FVIII PK, they do not account for all observed variability. In this study, we aim
to describe the genetic determinants that modify the FVIII PK profile in a population of
43 pediatric hemophilia A patients. We observed that VWF:Ag and VWF propeptide
(VWFpp)/VWF:Ag, but not VWFpp, were associated with FVIII half-life. VWFpp/VWF:Ag
negatively correlated with FVIII half-life in patients with non-O blood type, but no cor-
relation was observed for type O patients, suggesting that von Willebrand factor (VWF)
half-life, as modified by the ABO blood group, is a strong regulator of FVIII PK. The FVIII-

binding activity of VWF positively correlated with FVIII half-life, and the rare or low-frequency nonsynonymous VWF
variants p.(Arg826Lys) and p.(Arg852Glu) were identified in patients with reduced VWF:FVIIIB but not VWF:Ag.
Common variants at the VWF, CLEC4M, and STAB2 loci, which have been previously associated with plasma levels of VWF
andFVIII,were associatedwith theFVIII PKprofile. Together, these studies characterize themechanistic basis bywhichVWF
clearance and ABO glycosylation modify FVIII PK in a pediatric population. Moreover, this study is the first to identify non-
VWF and non-ABO variants that modify FVIII PK in pediatric hemophilia A patients. (Blood. 2019;134(11):880-891)

Introduction
Historically, prophylactic dosing regimens of factor VIII (FVIII)
concentrates for hemophilia A patients have been based on body
mass and in vivo recovery. However, the pharmacokinetic (PK)
profile of FVIII is highly variable within the hemophilia A pop-
ulation, with the half-life of FVIII varying more than fourfold (6-25
hours) in adult populations.1-3 Interindividual variability is greater
than intraindividual variability, with terminal half-life and weight-
adjusted clearance highly reproducible over a patient’s lifetime,
despite age-related changes, suggesting a genetic basis for this
observation.4 In more recent years, there has been an increased
emphasis on personalized prophylactic FVIII dosing to minimize
patient time below critical trough levels (0.01-0.03 IU/mL) to
prevent spontaneous joint bleeding.5 The dose and frequency of
personalized FVIII administration can vary greatly; however, the
factors that modulate FVIII PK are incompletely understood.

Factors that influence plasma levels of endogenous FVIII co-
agulant activity (FVIII:C) in normal individuals may also modify
FVIII PK in patients with hemophilia A. FVIII circulates in the

plasma in a noncovalent complex with von Willebrand factor
(VWF), with VWF acting as a carrier to protect FVIII from ac-
celerated proteolysis by activated protein C and clearance by
liver- and spleen-expressed lectin and scavenger receptors.6-10

In normal individuals, elevated VWF plasma levels are associated
with increased FVIII activity,11,12 and endogenous von Willebrand
factor antigen (VWF:Ag) levels have previously been demon-
strated to associate with FVIII PK parameters in hemophilia A
patients.1,13,14 In normal individuals, common and rare variants
within the VWF gene can modify plasma VWF:Ag levels through
biosynthetic or clearance-related mechanisms, thus modifying
FVIII activity.15,16 Additionally, variants within the D9D3 FVIII-
binding region of VWF can modify VWF:Ag and FVIII activity
levels in normal individuals (heterozygous inheritance), as well as
in type 2N von Willebrand disease (VWD) (homozygous or
compound heterozygous inheritance).15,17-19 However, the in-
fluence of VWF gene variants on FVIII PK has not been studied.

In addition to variability in the VWF gene, variants within the
ABO blood group locus account for ;50% of the heritability, or
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genetic influence, on plasma FVIII levels in normal individuals.20

ABO blood group status has been shown to modify endogenous
VWF and FVIII levels through amechanism involving accelerated
clearance of type-O VWF and, presumably, of type-O VWF-
bound FVIII.21 ABO blood group has previously been shown to
associate with FVIII PK, although the detailed mechanistic basis
by which VWF and ABO blood group factors modify FVIII PK
have not been confirmed.1,13 Moreover, these factors cannot
fully explain the high interindividual variability of FVIII PK.

Genetic variability outside VWF and the ABO blood group locus
that associates with plasma VWF or FVIII levels has been identified
through whole-genome linkage analysis and genome-wide asso-
ciation studies.16 The CHARGE genome-wide association studies
meta-analysis identified 400 single nucleotide variants (SNVs) that
associate with plasma VWF and/or FVIII levels in normal subjects
of European ancestry at 8 loci: VWF,ABO, STAB2, SCARA5, TC2N,
STXBP5, STX2, and CLEC4M.16 These associations were re-
cently confirmed in a multiethnic population of .46000 normal
individuals.22 STXBP5 and STX2 encode proteins involved in en-
dothelial cell biosynthetic pathways and, although the function
of TC2N is unknown, SCARA5, STAB2 (stabilin-2), and CLEC4M
encode endocytic receptors expressed in the liver and spleen that
have been shown tobind, internalize, and/or regulate the clearance
of VWF-FVIII and therefore, may modify FVIII PK.23-25

In this study, we performed FVIII PK analysis in 43 pediatric
patients with severe hemophilia A. We assessed the association
between measurements of FVIII PK and plasma VWF properties,
including levels of VWF:Ag, FVIII-binding activity, and surrogate
markers of VWF synthesis/secretion (VWF propeptide [VWFpp])
and clearance (VWFpp/VWF:Ag).26,27 We sequenced the FVIII-
binding region of the VWF gene to identify missense variants
and characterized the influence of the identified rare and low-
frequency variants on VWF:Ag and FVIII-binding activity in these
patients. Finally, study subjects were genotyped for VWF- or FVIII-
modifying SNVs identified in the CHARGE study, as well as the
CLEC4M variable number tandem repeat (VNTR) polymorphism,
and their association with measurements of FVIII PK was assessed.
This study represents the most comprehensive analysis of the
genetic regulation of FVIII PK in a pediatric population to date.

Patients, materials, and methods
Study subjects
A total of 43 children and adolescent study subjects (age, 6 to
17.7 years) with severe hemophilia A was recruited from 3 large
academic pediatric hemophilia centers (the Hospital for Sick
Children in Toronto, the Children’s Hospital at the Medical
University of Vienna, and the Division of Pediatric Hematology/
Oncology at the University of Leuven) between October 2012
and August 2015. Informed consent was obtained for patient
participation following approval from institutional ethics review
boards. Subjects had a baseline plasma FVIII:C , 1% and no
evidence of current anti-FVIII inhibitors or nonneutralizing anti-FVIII
immunoglobulin G. Subject demographics can be found in Table 1
and supplemental Table 1 (available on the Blood Web site).

PK study
Participants were dosed with recombinant standard half-life FVIII
concentrates at 50 IU/kg, rounded as appropriate to vial size.
Recombinant FVIII products used can be found in supplemental

Table 1. Blood was collected under resting conditions at the
following intervals: preinfusion (within 30 minutes prior to in-
fusion) and postinfusion 1 hour (65 minutes), 9 hours (61 hour),
24 hours (62 hours), and 40 to 48 hours, in accordance with a pre-
vious International Society on Thrombosis and Haemostasis–
recommended schedule of sampling.28,29 The dosing history for
each subject (up to 72 hours prior to the PK study) was collected;
therefore, a wash-out period was not required.

PK analysis
FVIII activity was measured by a 1-stage clotting assay using
a BCS XP Hemostasis System (Siemens, Munich, Germany) or an
STA compact hemostasis system (Diagnostica Stago, Parsippany,
NJ) at a single site atQueen’s University. FVIII PK parameters were
evaluated using TCIWorks 10.0-RC1 program, as previously
described.13,30 TCIWorks is a 1-compartmentmodel that has been
previously validated for use in assessing FVIII PK parameters for
plasma-derived and recombinant products.30 FVIII PK character-
istics, including clearance, elimination rate constant, terminal half-
life, and AUC, were reported.

Plasma assays
Plasma levels of VWFpp and VWF:Ag were measured by
enzyme-linked immunosorbent assay (Immucor GTI Diagnostics,
Waukesha,WI). VWF:FVIIIB was measured by solid-phase binding
assay, as described, using 1.25 U/mL recombinant FVIII (ADVATE;
Baxter, Deerfield, IL) and a horseradish peroxidase–conjugated
polyclonal sheep anti-human FVIII antibody (Affinity Biologicals,
Ancaster, ON, Canada) for detection.31

Genotyping
Genotyping for SNVs rs868875, rs2726953, rs9644133, rs4981022,
rs12229292, and rs10133762 was performed using TaqMan

Table 1. Summary of study subject characteristics, FVIII
PK profile, and plasma VWF properties

Median Range

Patient traits
Age, y 10.6 6.0-17.7
Weight, kg 40.6 17.6-132.5
Height, cm 143.0 109.6-177.2
BMI, kg/m2 19.3 14.4-42.8
BSA, m2 1.3 0.7-2.4

FVIII PK
Cl, mL/h 149 47-400
Vd, L 2.12 1.20-4.29
k, h21 0.067 0.038-0.130
Half-life, h 10.38 5.32-18.43
AUC, h×mIU/dL 137.36 62.39-291.99
Recovery, (IU/dL)/(IU/kg) 2.18 1.3-5.14

VWF
VWF:Ag, % 86.74 39.94-141.64
VWFpp, % 85.84 43.46-156.63
VWFpp/VWF:Ag 1.09 0.33-1.71
VWF:FVIIIB, % 80.70 11.30-292.15

AUC, area under the curve; BMI, body mass index; BSA, body surface area; Cl, clearance; k,
elimination rate constant; Vd, volume of distribution.
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Real-Time PCR analysis, in accordance with the manufacturer’s
protocols (Thermo Fisher Scientific). Genotyping of VWF variants
(rs1063856, rs1063857) and analysis of D9D3 and N-linked
glycan-containing exonic sequence of VWF were performed
as previously described.32 Analysis of the CLEC4M VNTR ge-
notype was performed as previously described.24,33

Statistical analysis
Associations between continuous variables and FVIII PK pa-
rameters were determined by a 2-tailed Pearson correlation
coefficient using GraphPad Prism 7.03 (GraphPad Software, La
Jolla, CA). Linear regression analysis was performed to quantify
influences for each SNV; they were adjusted for age and ABO
blood group status using IBM-SPSS Version 25.0 for Windows
2018 (Armonk, NY). Differences between genotypes were
assessed by the Mann-Whitney U test or by Fisher’s exact test
using GraphPad Prism 7.03. P # .05 was considered statistically
significant; because this is an exploratory study, no adjustments
were made for multiple comparisons.

Results
Patient characteristics and VWF:Ag, VWFpp, and
VWF:FVIIIB measurements
Patient physical characteristics and FVIII PK profiles can be found
in Table 1 and supplemental Table 1. We first confirmed the
association between patient age and body mass index, which
have previously been associated with FVIII PK using Pearson’s
correlation coefficient (Table 2). Both parameters were signifi-
cantly associated with FVIII PK.

We next assessed the influence of baseline plasma VWF prop-
erties on FVIII PK. We confirmed that plasma VWF:Ag levels
were strongly associated with FVIII PK parameters, including FVIII
half-life (P , .0001) and clearance (P , .0001), in our pediatric
population (Figure 1A; Table 2), which is consistent with previous
observations.1,4,13,34 Plasma VWF:Ag levels are influenced by
pathways that modify its synthesis and secretion, as well as by
mechanisms that regulate its clearance from the plasma. We
measured VWFpp as a surrogate marker of endothelial cell or
platelet VWF secretion, as well as the VWFpp/VWF:Ag ratio,
which serves as an indirect measurement of the rate of VWF
clearance. Interestingly, we observed no significant association
between plasma VWFpp levels and FVIII PK (half-life: P 5 .202)
(Figure 1B; Table 2), although there was a strong association
between PK and VWFpp/VWF:Ag (half-life: P , .0001)
(Figure 1C; Table 2), indicating that the rate at which VWF is
cleared from the plasma, but not the rate of VWF secretion,
strongly modifies FVIII PK in this cohort of patients. We also
observed a significant association between the FVIII binding
ability of VWF (VWF:FVIIIB) and FVIII PK (half-life: P 5 .0012)
(Figure 1D; Table 2).

VWF gene variants
Common and rare variants within the VWF gene canmodify VWF
plasma levels, the rate of VWF clearance, and the FVIII-binding
ability of VWF.15-17 We performed sequencing of the FVIII-
binding and N-linked glycan sites in the VWF gene.35 No vari-
ant at the Asn–X–Ser/Thr consensus N-linked glycan sequences
previously confirmed to be occupied was observed. We next
assessed the influence of nonsynonymous variants found within
the FVIII-binding region of VWF (exons 17-21, 24-27). Five

patients heterozygous for 2 rare or low-frequency nonsynonymous
variants were identified: c.2477G.A, p.(Arg826Lys) (n 5 1) and
c.2555G.A, p.(Arg852Glu) (n 5 4). Of note, the patient het-
erozygous for the p.(Arg826Lys) variant had the shortest FVIII
half-life (5.3 hours) and fastest rate of FVIII clearance (400 mL/h) in
this cohort (Table 3). In silico pathogenicity assessment predicted
that the p.(Arg826Lys) substitution may influence VWF function,
whereas the p.(Arg852Glu) variant may be tolerated (supple-
mental Table 2). Interestingly, when we compared the patients
with a rare or low-frequency VWF D9D3 variant with the rest of
the patient cohort, we did not observe significant differences in
VWF:Ag (P 5 .159) (Figure 2A), although VWF:FVIIIB (P 5 .05)
was reduced (Figure 2B). Expression of the p.(Arg826Lys) and
p.(Arg852Glu) variants cloned into human VWF complementary
DNA did not modify VWF secretion in a heterologous HEK
293T cell system (supplemental Figure 1A). A VWF:FVIII bind-
ing assay using recombinant human VWF demonstrated that
p.(Arg826Lys) and p.(Arg852Glu) had reduced binding activity
compared with wild-type VWF (supplemental Figure 1B).

ABO blood group
Although the ABO blood group has been previously shown to
modify FVIII PK, the mechanistic basis for this association has not
been demonstrated.1,13 Consistent with previous studies, we
observed that non-O blood group was associated with a longer
FVIII half-life (P5 .007) comparedwith typeO subjects (Figure 3A;
Table 4). Although there was amodest increase in VWF:Ag in the
non-O subjects (Figure 3B; Table 4), this influence was not sta-
tistically significant (P 5 .299). Importantly, the non-O blood
group was associated with a significant (P 5 .016) decrease in
VWFpp/VWF:Ag, indicating a longer VWF half-life (Figure 3C;
Table 4). We next performed association analyses to assess the
influence of ABO blood group on FVIII half-life. We observed
a positive association between VWF:Ag and FVIII half-life for type
O patients (P 5 .011) and non-O patients (P , .0001), although
the association was stronger for non-O individuals (Figure 3D). In
contrast, we observed a significant association between VWFpp/
VWF:Ag for non-O individuals (P 5 .002) but not type O subjects
(P 5 .6) (Figure 3A), suggesting that, for non-O subjects, the
increase in FVIII half-life is related to the longer half-life of VWF.

CHARGE variants
We next assessed the influence of 9 SNVs, which have previously
been demonstrated to be associated with plasma VWF or FVIII
levels in normal individuals, on FVIII PK parameters in our pe-
diatric population.16,22 The association between the CHARGE
SNVs and FVIII PK was assessed using linear regression, which
assumes an additive genetic model (Table 5). TheMann-Whitney
U test was used to determine the difference between individuals
homozygous for the reference allele (gray bar) and heterozy-
gous individuals (blue bar) to investigate nonadditive effects
(Figure 4), because, for most variants, the sample size of indi-
viduals homozygous for the nonreference allele was too small for
this analysis. VWF (P 5 .05), CLEC4M (P 5 .039), and TC2N
(P 5 .045) gene variants were associated with FVIII clearance by
linear regression (Table 5) and/or the Mann-Whitney U test
(Figure 4A). The STAB2 variant rs4981022 was associated with
the FVIII elimination rate constant (P 5 .005), FVIII half-life
(P 5 .007), and plasma VWF:Ag (P 5 .015) by regression anal-
ysis, whereas the rs12229292 variant was associated with an
increased rate of clearance (P 5 .016) in patients heterozygous
for the STAB2 variant compared with patients homozygous for
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the reference allele (Mann-Whitney U test) (Figure 4A). Neither
SCARA5 gene variant was associated with FVIII PK or plasma
VWF measurements by regression analysis (Table 5) or the
Mann-Whitney U test (data not shown).

The CLEC4M SNV rs868875 is in linkage disequilibrium with the
VNTR polymorphism that has been shown to modulate the
ligand-binding affinity of CLEC4M.24 We genotyped our study
subjects for the CLEC4M VNTR and observed, using 1-way

ANOVA, that there was a significant association between VNTR
genotype and FVIII clearance (P 5 .003) (Figure 5A), elimination
rate constant (P 5 .0004) (Figure 5B), and half-life (P 5 .019)
(Figure 5C). Associations between CLEC4M VNTR genotype and
AUC (P5 .081), VWF:Ag (P5 .23), and VWFpp/VWF:Ag (P5 .21)
were not statistically significant (Figure 5D-F). Tukey’s post hoc
analysismultiple-comparisons tests for differences between VNTR
genotypes were not statistically significant, likely as a result of the
small number of study subjects.

Table 2. Association between FVIII PK profile and study subject physical characteristics and plasma VWF properties

Cl, mL/h k, h21 Half-life, h AUC, h×mIU/mL

Age, y r 5 0.534 r 5 20.039 r 5 0.005 r 5 0.202

P 5 .002 P 5 .8027 P 5 .9738 P 5 .1939

BMI, kg/m2 r 5 0.512 r 5 20.008 r 5 0.0213 r 5 0.118

P 5 .0005 P 5 .9580 P 5 .8941 P 5 .0258

VWF:Ag, % r 5 20.615 r 5 20.741 r 5 0.777 r 5 0.656

P < .0001 P < .0001 P < .0001 P < .0001

VWFpp, % r 5 2.0657 r 5 20.277 r 5 0.2112 r 5 0.036

P 5 .6949 P 5 .0922 P 5 .202 P 5 .8288

VWFpp/VWF:Ag r 5 0.634 r 5 0.538 r 5 20.598 r 5 20.644

P < .0001 P 5 .0005 P < .0001 P < .0001

VWF:FVIIIB, % r 5 20.510 r 5 20.499 r 5 0.484 r 5 0.317

P 5 .006 P 5 .0008 P 5 .0012 P 5 .0408

The P values were determined using a 2-tailed test of significance. Bold results are statistically significant.

r, Pearson’s correlation.
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Figure 1. Association between VWF, VWFpp, and VWF:
FVIIIB and FVIII half-life. The Pearson correlation coefficient
of continuous variables was assessed by a 2-tailed test of
significance. (A) Strong positive correlation between VWF:Ag
and FVIII half-life (P , .0001). (B) Weak positive correlation
between VWFpp (a surrogate marker for VWF secretion) and
FVIII half-life (P 5 .202). (C) Moderate negative correlation
between VWFpp/VWF:Ag ratio (a surrogate marker for VWF
clearance) and FVIII half-life (P , .0001). (D) Moderate positive
correlation between VWF:FVIIIB and FVIII half-life (P 5 .0012).
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Finally, we assessed the genetic characteristics in the quartile
(Q1) of patients (n 5 11) with the fastest FVIII clearance and
the quartile (Q4) with the slowest FVIII clearance (n5 11) and the
quartile (Q1) of patients (n 5 11) with the shortest FVIII half-life
compared with the quartile (Q4) of patients (n 5 11) with the
longest FVIII half-life. We observed a significant association of
theCLEC4M rs868875 variant with fast FVIII clearance (P5 .034),
whereas the CLEC4M VNTR 5 allele trended toward significance
(P5 .069) (Figure 6A) using Fisher’s exact test. We also observed
a significant association between a longer FVIII half-life and
non-O blood group (P 5 .024), STAB2 rs122292929 (P 5 .045),
and CLEC4M VNTR 9 allele (P 5 .049) using Fisher’s exact test.

Discussion
FVIII PK properties are likely influenced by genetic and envi-
ronmental factors; although the heritability of FVIII PK has not
been determined, it is likely similar to endogenous FVIII:C in
normal individuals, in whom the genetic contribution has been
estimated to be between 57% and 82%.36,37 There is very little
information available concerning the non-ABO pharmacoge-
nomic regulation of FVIII PK; patient F8mutation type, and LRP1
genotypes have not been shown to be associated with these
parameters, although a recent report has described the c.1773C.T,
p.(Asn5915) variant in LDLR as being associating with FVIII
clearance and volume of distribution.13,38

In this study of FVIII PK determinants in 43 boys with severe
hemophilia A, we observed that the rate at which endogenous
VWF is cleared from the plasma and the relative FVIII-binding
activity of VWF are important determinants of FVIII PK. Within
the FVIII-binding D9D3 region of the VWF gene, we identified
1 rare [p.(Arg826Lys)], 1 low-frequency [p.(Arg852Glu)], and
2 common [p.(Thr789Ala) and p.(Tyr7955)] variants in our pa-
tient population. An analysis generated from the 1000 Genomes
database has previously observed 2.5 VWF gene SNVs per in-
dividual, with rare or novel nonsynonymous coding region
variants identified in .6% of normal individuals.39 When the
patients with the rare and low-frequency variants p.(Arg826Lys)
and p.(Arg852Glu) were pooled, we observed a significant
decrease in VWF:FVIIIB, but not VWF:Ag levels in these patients
(Figure 2), which is consistent with studies involving recombinant
VWF variants (supplemental Figure 1). The p.(Arg826Lys) variant
was predicted to have pathogenic function by two thirds of
in silico software analyses (supplemental Table 2). p.(Arg826Lys)
is not listed in the VWF variant database (http://www.vwf.group.
shef.ac.uk/index.html), although 1 abstract has reported an
association with type 2N VWD.40 In contrast, although the
p.(Arg852Glu) variant is not associated with type 2N VWD, it has
been shown to be associated with a modest reduction in VWF:
FVIIIB activity in hemophilia A patients.41 Collectively, these data
suggest that heterozygous inheritance of VWFD9D3 variants that
modify VWF-FVIIIB may influence FVIII PK.

Table 3. Summary of rare and low VWF D9D3 variants and associated FVIII PK

Genetic variant Reference allele c.[2477G>A]1[5] c.[2555G>A]1[5]

Protein variant N/A p.(R826K) p.(R852Q)

Sample size n 5 38 n 5 1 n 5 4

FVIII PK
Cl, mL/h 149 (47-322) 400 132 (63-260)
k, h21 0.0668 (0.0377-0.098) 0.13 0.069 (0.04-0.084)
Half-life, h 10.38 (7.09-18.43) 5.3 10.06 (8.23-17.05)
AUC (h×mIU/dL) 137.36 (73.34-267.79) 62.39 137.33 (93.65-202.65)

VWF
VWF:Ag, % 87.49 (39.93-141.64) 45.7 78.82 (44.99-109.37)
VWFpp/VWF:Ag 1.1 (0.329-1.71) 1.38 0.99 (74.13-145.32)
VWF:FVIIIB, % 83.0 (27.0-291.5) 11.3 66.62 (43.0-90.3)

Data are median (range).

N/A, not applicable.
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Figure 2. Influence of rare and low-frequency VWF D9D3
variants on VWF:Ag and VWF:FVIIIB. (A) Comparison of
VWF:Ag between study subjects heterozygous for a rare or
low-frequency VWF D9D3 variant and subjects homozygous
for the reference allele [excluding the p.(Thr789Ala)/
p.(Tyr7955) variants]. (B) Comparison of VWF:FVIIIB between
study subjects heterozygous for a rare or low-frequency VWF
D9D3 variant and subjects homozygous for the reference
allele [excluding the p.(Thr789Ala)/p.(Tyr7955) variants]. Data
are mean6 standard error. s, wild-type; n, p.(Arg852Glu); N,
p.(Arg826Lys). *P # .05.
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We also observed that the common VWF variants p.(Thr789Ala)
and p.(Tyr7955) (rs1063856 and rs1063857), which are in
strong linkage disequilibrium, were associated with decreased
rates of FVIII clearance (Figure 4; Table 5). This observation is
consistent with previous studies that have determined that these
variants are associated with increased VWF:Ag and FVIII:C
in normal individuals and, consequently, with an increased

risk for venous thromboembolism.16,19,42-47 Previously pub-
lished in vitro and in vivo studies suggest that these variants can
increase the rate of synthesis/secretion and decreased clear-
ance without altering FVIII-binding activity.19,41,42 Therefore, it
follows that these variants may influence FVIII clearance in this
population by altering the rate at which endogenous VWF is
cleared.
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Table 4. Association between ABO blood group and FVIII PK parameters or plasma VWF properties

Type O (n 5 18),
median (range)

Non-O (n 5 25),
median (range) P Regression analysis b (CI); P

FVIII PK
Cl, mL/h 173 (74-322) 141 (47-400) .136 234.84 (274.25 to 4.57); .082
k, h21 0.072 (0.052-0.098) 0.061 (0.038-0.130) .007 20.011 (20.021 to 0); .048
Half-life, h 9.62 (7.09-13.20) 11.36 (5.32-18.43) .007 2.231 (0.604 to 3.858); .008
AUC, h×mIU/dL 125.19 (83.42-176.39) 150.86 (62.39-291.99) .056 32.93 (2.30 to 63.56); .036

VWF
VWF:Ag, % 86.84 (48.22-113.78) 86.63 (39.94-141.64) .3 13.2 (25.348 to 31.75); .157
VWFpp/VWF:Ag 1.13 (0.84-1.70) 0.963 (0.329-1.701) .016 20.209 (20.407 to 20.011); .039
VWF:FVIIIB, % 80.0 (27.0-291.5) 82.9 (11.30-260.6) .36 0.009 (20.332 to 0.352); .955

Bold results are statistically significant. Statistical significance was assessed using the Mann-Whitney U test and confirmed by regression analysis.

b, b coefficient; CI, confidence interval.

GENETIC DETERMINANTS OF FVIII PK blood® 12 SEPTEMBER 2019 | VOLUME 134, NUMBER 11 885

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/134/11/880/1554559/bloodbld2019000190.pdf by guest on 02 June 2024



Ta
b
le

5.
A
ss
o
ci
at
io
n
b
et
w
ee

n
co

m
m
o
n
C
H
A
R
G
E
va

ri
an

ts
an

d
FV

III
P
K

p
ar
am

et
er
s
o
r
p
la
sm

a
V
W

F
p
ro

p
er
ti
es

V
W

F
C
LE

C
4M

SC
A
R
A
5

ST
A
B
2

TC
2N

rs
10

63
85

6/
rs
10

63
85

7
rs
86

88
75

rs
27

26
95

3
rs
96

44
13

3
rs
49

81
02

2
rs
12

22
92

92
rs
10

13
37

62

M
A
F
5

0.
29

7
M
A
F
5

0.
20

9
M
A
F
5

0.
26

3
M
A
F
5

0.
22

4
M
A
F
5

0.
22

1
M
A
F
5

0.
33

7
M
A
F
5

0.
5

FV
III

P
K

C
l,
m
L/
h

2
32

.2
1
(2

64
.4
3
to

0.
02

)
39

.5
0
(2
.1
9
to

76
.8
3)

2
1.
26

(2
38

.5
5
to

36
.0
4)

2
7.
33

(2
48

.3
5
to

33
.6
9)

22
.0
8
(2

13
.6
6
to

57
.8
1)

2
10

.1
1
(2

35
.7
3
to

15
.5
1)

2
32

.6
1
(2

64
.4
1
to

2
0.
82

)

P
5

.0
5

P
5

.0
39

P
5

.9
46

P
5

.7
19

P
5

.2
19

P
5

.4
3

P
5

.0
45

k,
h2

1
2
0.
00

4
(2

0.
01

3
to

0.
00

5)
0.
00

8
(-0

.0
02

to
0.
01

8)
0.
00

4
(2

0.
00

6
to

0.
01

3)
2
0.
00

5
(2

0.
01

5
to

0.
00

6)
0.
01

3
(0
.0
04

to
0.
02

2)
2
0.
00

6
(2

0.
01

3
to

0.
00

1)
2
0.
00

6
(2

0.
01

4
to

0.
00

3)

P
5
.3
91

P
5

.1
09

P
5

.4
44

P
5

.3
87

P
5

.0
05

P
5

.0
79

P
5

.1
86

H
al
f-
lif
e,

h
0.
59

1
(2

0.
79

4
to

1.
97

7)
2
1.
05

2
(2

2.
64

5
to

0.
54

)
2
0.
64

7
(2

2.
13

3
to

0.
84

)
0.
82

6
(2

0.
80

6
to

2.
45

8)
2
1.
94

1
(2

3.
30

8
to

0.
57

3)
0.
85

4
(2

0.
17

6
to

1.
88

3)
0.
91

7
(2

0.
40

6
to

2.
24

)

P
5
.3
93

P
5

.1
89

P
5

.3
93

P
5

.3
11

P
5

.0
07

P
5

.1
02

P
5

.1
68

A
U
C
,

h×
m
IU
/d
L

2
3.
61

(2
2.
99

to
2.
27

)
2
3.
45

(2
6.
3
to

5.
92

)
0.
68

(2
28

.1
8
to

29
.5
4)

0.
12

(2
3.
17

to
31

.9
3)

2
27

.0
4
(-
53

.9
7
to

2
0.
01

1)
14

.3
6
(2

0.
00

5
to

33
.8
8)

22
.4
5
(2

0.
25

to
47

.3
9)

P
5

.7
83

P
5

.0
19

P
5

.9
62

P
5

.9
94

P
5

.0
49

P
5

.1
45

P
5

.0
76

P
la
sm

a
le
ve

ls

V
W
F:
A
g
,
%

4.
50

9
(2

11
.1
4
to

20
.1
5)

2
0.
89

9
(2

19
.4
1
to

17
.6
1)

2.
11

9
(2

13
.4
2
to

17
.6
6)

7.
25

1
(2

9.
71

to
24

.2
)

2
19

.3
99

(2
34

84
to

2
3.
96

)
4.
96

6
(2

6.
73

to
16

.6
7)

9.
86

6
(2

3.
79

to
23

.5
3)

P
5

.5
62

P
5

.9
22

P
5

.7
83

P
5

.3
91

P
5

.0
15

P
5

.3
94

P
5

.1
51

V
W
Fp

p
/

V
W
F:
A
g

0.
02

2
(2

0.
14

6
to

0.
18

9)
0.
12

7
(2

0.
06

6
to

0.
31

9)
0.
01

1
(2

0.
15

5
to

0.
17

7)
2
0.
02

7
(2

0.
21

to
0.
15

6)
0.
07

6
(2

0.
10

2
to

0.
25

4)
0.
02

5
(2

0.
10

1
to

0.
15

1)
2
0.
09

(2
0.
23

7
to

0.
05

7)

P
5

.7
95

P
5

.1
91

P
5

.8
96

P
5

.7
67

P
5

.3
95

P
5

.6
85

P
5

.2
22

B
ol
d
re
su
lts

ar
e
st
at
is
tic

al
ly

si
g
ni
fi
ca
nt
.S

ta
tis
tic

al
si
g
ni
fi
ca
nc

e
w
as

d
et
er
m
in
ed

us
in
g
re
g
re
ss
io
n
an

al
ys
is
.
D
at
a
ar
e
p
re
se
nt
ed

as
b
(C
I)
an

d
P
va
lu
e.

M
A
F,

m
in
or

al
le
le

fr
eq

ue
nc

y.

886 blood® 12 SEPTEMBER 2019 | VOLUME 134, NUMBER 11 SWYSTUN et al

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/134/11/880/1554559/bloodbld2019000190.pdf by guest on 02 June 2024



We next assessed the influence of the ABO blood group on FVIII
PK, which accounts for the greatest proportion of heritable
variability in endogenous plasma VWF and FVIII levels.12,20 Im-
portantly, we have previously demonstrated that the influence of
the ABO blood group locus on the VWF life cycle in pediatric
populations may be significantly different than in adults. Al-
though VWF:Ag and FVIII:C levels are consistently elevated in

non-O middle- and old-age adults, this effect is less profound in
pediatric cohorts.26 Here, we observed an increase in FVIII half-
life in non-O patients, although VWF:Ag levels were not sta-
tistically different between the 2 groups (Figure 3; Table 4).13

This effect is likely related to ABO-mediated influences on VWF
clearance, because the VWFpp/VWF:Ag ratio was significantly
decreased in the non-O group. Interestingly, the variability in
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Figure 4. Association between common CHARGE variants and FVIII PK parameters. Analysis of the association between CHARGE variants in VWF, CLEC4M, STAB2, and
TC2N and FVIII PK or VWF levels. Gray boxes correspond to homozygous inheritance of the major (reference) allele, and blue boxes correspond to heterozygous inheritance.
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FVIII PK parameters is larger for the non-O group than for the
O group, likely because of the diversity of non-O genotypes
(AA, AB, AO, BB, BO) within this population.

In addition to VWF and ABO, a number of genetic variants have
been shown to be associated with plasma levels of VWF and FVIII
in normal adult populations.16 Given the observed association
between FVIII PK parameters and VWF clearance in our pediatric
population, we looked at variants in the STAB2, CLEC4M, and
SCARA5 genes that encode cell surface receptors thought to

modify VWF-FVIII clearance, as well as TC2N, which has an
unknown function. In our pediatric patients, the STAB2, CLEC4M,
and TC2N variants exhibited the same directionality and similar
effect size on VWF levels that was previously reported in the
CHARGE study (supplemental Table 6).16

STAB2 encodes stabilin-2, a class H scavenger receptor ex-
pressed on the sinusoidal endothelial cells of the liver and
spleen. Stabilin-2–expressing cells can bind and internalize VWF
in vitro, and stabilin-2–knockout mice demonstrate an increased
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half-life for human VWF and VWF-bound FVIII, but not for VWF-
free FVIII.23 Additionally, stabilin-2 regulates the clearance of the
murine propeptide,48 suggesting that the VWFpp/VWF:Ag ratio
may fail to capture the effect of all non-VWF gene variants that
modify the rate of VWF clearance in vivo. Rare pathogenic
variants in the STAB2 gene have previously been associated with
elevated levels of VWF:Ag in the normal population and an
increased risk for venous thromboembolism15,49,50 or VWF:Ag in
patients with “low-VWF” or type 1 VWD.23 Here, we observed
that both CHARGE STAB2 variants were associated with FVIII PK
parameters by regression analysis or the Mann-Whitney U test
(Figure 4; Table 5). Furthermore, the rs4981022 variant was
associated with FVIII half-life, elimination rate constant, and
AUC, as well as a relatively large ;19% decrease in VWF:Ag.
Although this effect size is greater than expected given the
magnitude reported in the CHARGE study, in which the median
age of study subjects ranged from 44.9 to 72.3 years,16 there
may be STAB2-dependent differences in VWF clearance in
pediatric vs adult populations.

CLEC4M is a mannose-specific lectin receptor expressed by
endocytic endothelial cells in the liver, spleen, and lymphatics.
The neck region of CLEC4M consists of a VNTR region (3-9
repeats), which supports tetramerization of the molecule and
modulates its ligand-binding affinity.51 We have previously
demonstrated that CLEC4M-expressing cells are capable of
binding and internalizing the VWF-FVIII complex and VWF-free
FVIII.24,52 The CLEC4M VNTR variant is in linkage disequilibrium
with the rs868875 variant, and these variants are associated with
VWF:Ag or activity levels in patients with “low-VWF” or type 1
VWD.24,53 In this study, we observed that rs868875 is associated
with FVIII clearance and AUC (Figure 4; Table 5) and that the
VNTR variant is associated with FVIII clearance, elimination rate
constant, half-life, and AUC but not VWF:Ag or VWFpp/VWF:
Ag (Figure 5), although the sample sizes for each geno-
type precluded a multiple-comparison test. The absence of an
association between the CLEC4M variants and VWF:Ag or
VWFpp/VWF:Ag may reflect the small sample size, as well as
the observation that CLEC4M can regulate the clearance of
VWF-free FVIII.52 We also observed an increased prevalence of
rs868875 and VNTR 5 in individuals with rapid FVIII clearance,
as well as an increased prevalence of VNTR 9 in individuals with
a long FVIII half-life (Figure 6). This observation is consistent
with our previous in vitro studies that demonstrated that the
CLEC4M VNTR 9 variant was associated with impaired VWF
internalization compared with VNTR 6 and VNTR 7 in an in vitro
assay.24

The association among VWF:Ag, age, and FVIII PK has been well
characterized, with older age associated with longer FVIII half-
life and elevated VWF:Ag.4,13,34 The basis of this observation is
thought to be related to the accumulation of fewer pathobio-
logical or environmental influences on plasma VWF levels in
younger cohorts. Studies on VWF heritability have consistently
produced higher estimates of the proportion of VWF variability
influenced by genetic factors in younger populations.36,37,54-56

Thus, it follows that the heritability of FVIII PK may also be higher
in a pediatric population, and the replication or confirmation of
these observations in an adult cohort may be warranted.

Plasma levels of VWF are highly variable and continuously dis-
tributed and, in the normal population, can be modified by

environmental factors, as well as variants in the VWF gene and at
external genetic loci, making this a complex quantitative trait.57

Thus, the PK profile of FVIII is also likely to be regulated by
environmental and multigenic influences. In this study, we
assessed the influence of each variant in isolation, because the
relatively large number of variants tested and the small sample
size of this study preclude the possibility of a multivariable
analysis. However, future studies with larger subject populations
may allow for testing of the overall model or for the influence of
individual variants within the model.

Collectively, these studies demonstrate for the first time that
FVIII PK is predominantly regulated by the relative rate at which
VWF is cleared from the plasma. Common genetic modifiers of
VWF clearance, including ABO blood group, VWF gene variants,
and variants in the VWF clearance receptors CLEC4M and
stabilin-2, can also influence patient FVIII PK profiles. Future
studies of FVIII PK determinants may focus on searching for rare
gain- and loss- of-function variants within these genes that make
larger contributions to FVIII PK. Moreover, the findings in this
report demonstrate that differences in VWF-FVIII binding can
also modify FVIII PK, suggesting that the accelerated clearance
of VWF-free FVIII can influence FVIII PK and that the clinical use
of VWFD9D3 extended half-life products may prove beneficial in
this patient population.58-60 This study has begun to elucidate
the pharmacogenomic basis underlying the variability of FVIII PK
within the hemophilia A population. Although these studies are
not intended to supplant PK analyses for individual patients, they
may provide insights into novel strategies for improving the half-
life of FVIII replacement products.
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