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Recent genome-wide studies have revealed a plethora of germline variants that significantly influence the susceptibility
to acute lymphoblastic leukemia (ALL), thus providing compelling evidence for genetic inheritance of this blood cancer.
In particular, hematopoietic transcription factors (eg, ETV6, PAX5, IKZF1) are most frequently implicated in familial
ALL, and germline variants in these genes confer strong predisposition (albeit with incomplete penetrance). Studies of
germline risk factors for ALL provide unique insights into the molecular etiology of this leukemia. (Blood. 2019;134(10):
793-797)

Introduction
Acute lymphoblastic leukemia (ALL) is an archetype of a blood
cancer that is highly responsive to pharmacotherapy. With
successive trials over the past 50 years, refinement of risk-
adapted combination chemotherapy has led to dramatic
improvements in the survival rates of this hematological ma-
lignancy,1 with stem cell transplantation reserved for certain
high-risk populations as the only curative therapy.2,3 Although
the etiology of ALL in children and adults remains incompletely
characterized, there has been significant progress in recent years
in our understanding of the genetic risk factors associated
with ALL.

Inherited basis of ALL risk
The contribution of inherited genetics to ALL leukemogenesis
can be divided into 2 categories: low-penetrance susceptibility
conferred by common germline polymorphisms (eg, a 1.5-fold to
twofold increase in relative leukemia risk) and high-penetrance
predisposition conferred by rare germline variants (eg,.10-fold
increase in relative risk).4-6 For example, large-scale genome-
wide association studies (GWASs) have identified at least 12
genomic loci with common polymorphisms associated with ALL
susceptibility, the majority of which are in genes encoding he-
matopoietic transcription factors (eg, ARID5B,7-10 IKZF1,7-10

GATA3,11,12 CEBPE,8 ERG,13 and IKZF314) (Figure 1). Although
these risk alleles individually produce a modest effect and may
be of limited clinical significance, in aggregate they can give rise
to as much as a ninefold increase in leukemia risk for subjects
with risk alleles in multiple genes comparedwith subjects with no
risk alleles.10 More importantly, the discovery of novel ALL risk
genes through GWASs also points to new pathways underlying
leukemia pathogenesis.7,8,10

The second form of genetic inheritance of ALL is mediated by
rare germline variations associated with strong leukemia

predisposition, often with familial clustering. In fact, the occur-
rence of ALL has long been documented in a variety of genetic
syndromes, such as Li-Fraumeni syndrome (LFS), ataxia telan-
giectasia, and neurofibromatosis type 1. However, cancer pre-
disposition in these cases is not restricted to ALL, which usually
represents only a minority of the malignancies present in these
families.4,6 The arrival of whole-exome and whole-genome se-
quencing techniques dramatically improved the resolution and
scale at which genetic variations can be discerned, allowing for
the discovery of cancer genes in even small nuclear families.15-17

Thanks to these powerful genomic tools, a growing number of
genes have been implicated in familial ALL predisposition with
varying levels of evidence, including (but not limited to)
IKZF1,18-21 PAX5,22,23 ETV6,24-29 SH2B3,30 TP53,31,32 RUNX1,33-35

and TYK2.36 Although relatively rare (eg, explaining ,1% of
childhood ALL19,24), studies of cases with these pathogenic
germline variants can offer unique insights into ALL patho-
genesis. In this Blood Spotlight, we have elected to highlight
ETV6, IKZF1, and PAX5 because of exciting data that emerged
recently pointing to them as predisposition genes primarily
linked to ALL and their potential roles in benign and malignant
blood disorders. We also discuss research opportunities and
challenges that arise with these new discoveries.

ETV6, IKZF1, andPAX5 asALL risk genes
Although somatic ETV6 gene rearrangement (eg, ETV6-RUNX1
fusion gene) is one of the most frequent genomic abnormalities
in childhood ALL,37,38 germline variants at this locus have not
been implicated in this leukemia until recently. Initial reports of
germline variants of ETV6 described them as a genetic cause of
hereditary thrombocytopenia, but, interestingly, also noted
a relatively high frequency of hematological malignancies in
carriers (especially B-cell ALL [B-ALL]).25,26 Other loss-of-function
germline variants in ETV6 were independently identified in
additional pedigrees of familial ALL, confirming it as a leukemia-
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predisposition gene.24,27-29 Comprehensive ETV6 sequencing in
large childhood ALL cohorts identified 31 potentially pathogenic
variants in 35 of 4405 patients (0.8%).24 Across different reports,
there is a striking clustering of ETV6 variants (linked to platelet
disorders and/or ALL) in exons encoding the DNA binding
domain, which presumably leads to a decrease in transcription
repressor activity.39 In contrast, only a single variant has been
reported in the linker domain (although in multiple kindreds),
and it may indirectly impair ETV6-DNA interaction.25,26,28,29,40

Based on the data published thus far, it appears that ETV6
variants almost always cosegregate with thrombocytopenia in
these families, but with only partial penetrance of B-ALL and
rarely with myeloid malignancies.25,27,28 Although the absolute
risk of ALL conferred by different ETV6 variants is hard to define
without large pedigrees, we estimate a relative risk approaching
23 by comparing the burden of potentially pathogenic variants in
the ALL cohort vs in the general population (eg, estimated from
;130000 whole-exome or whole-genome sequences in
gnomAD).24 This is notable because similar analysis of TP53
variants indicates that LFS may confer only an approximate
fivefold increase in ALL risk.32 The cosegregation of thrombo-
cytopenia and ALL in families with germline ETV6 variants points
to the importance of this gene in platelet and B-cell de-
velopment, as well as raises the question of whether its functions
in these 2 distinctive lineages of hematopoiesis are in-
dependent. Similarly, germline genetic defects in RUNX1 can
also have pleotropic effects, giving rise to familial platelet dis-
order and leukemia (primarily acute myeloid leukemia with rare
occurrence of T-cell ALL).33-35 Although ETV6 and RUNX1 have
overlapping effects on thrombocytopenia, the differences in the
spectrum of leukemia arising from germline variants in these 2
genes clearly indicate strong lineage bias in their potential to
promote leukemogenesis.

Challenges and opportunities
Compared with ETV6, IKZF1 plays a more specific role in lym-
phoid development as a master transcription regulator. Somatic
genomic aberrations in IKZF1 are well documented in B-ALL,
especially Ph141,42 and Ph-like ALL,43,44 resulting in loss of
transcription factor activity with evidence of dominant-negative
effects.45,46 Recently, rare germline IKZF1 variants in the
N-terminal DNA binding domains have been linked to inherited
immunodeficiency (eg, low B-cell numbers).20 A surprising report
subsequently described highly conserved de novo germline
IKZF1missense mutations in patients with early-onset combined

immunodeficiency syndrome.21 These subjects present with
abnormalities in multiple hematopoietic lineages, including T, B,
myeloid, and dendritic cells.21 Strikingly, ALL was observed in
both studies in a small subset of carriers with loss-of-function
IKZF1 variants, although the investigators did not establish
a clear familial transmission with small sample sizes.20,21 In
contrast, we recently described a unique kindred of 6 subjects
carrying a germline truncating variant in IKZF1 (p.D186fs), 2 of
whomdeveloped B-ALL.19 Comprehensive targeted sequencing
in 4963 children with newly diagnosed B-ALL identified 27
unique IKZF1 coding variants in 43 patients (0.9%).19 Unlike
IKZF1 variants in immunodeficient patients18,20,21 (or somatic
IKZF1 mutations in ALL46), the ALL-related germline variants are
not restricted to the N-terminal regions or zinc finger domains. In
fact, only a minority of these variants results in defects in tran-
scription factor activity, whereas many showed a variety of
functional effects involving IKZF1 dimerization, localization, cell
adhesion, and/or drug sensitivity.19 This diversity in IKZF1 variant
functions stands in contrast to that of ETV6, in which pathogenic
variants primarily influence DNA binding and its core tran-
scription factor activity.25-28 Given the small number of IKZF1-
mediated hereditary ALL cases reported thus far, it is plausible
that IKZF1 variants have a lower penetrance of this leukemia than
those in ETV6, and pathogenicity of IKZF1 variants in the context
of ALL may be challenging to define without comprehensive
family histories and in-depth functional characterization.

PAX5 is an another essential transcription factor during B lym-
phopoiesis, and the PAX5 gene is commonly targeted by a va-
riety of somatic genomic abnormalities in B-ALL (eg, focal
deletion, gene fusions, and point mutations).47,48 A recurrent
PAX5 germlinemissense variant (p.G183S) has been identified in
3 unrelated kindreds thus far, in whom an autosomal-dominant
inheritance pattern of B-ALL was observed.22,23 Particularly of
note, individuals affected by ALL consistently showed a somatic
deletion of the wild-type PAX5 allele, whereas carriers who
retained the wild-type allele did not develop ALL, suggesting
a simple loss-of-function effect of this germline variant.22 Unlike
ETV6 and IKZF1, there have not been comprehensive PAX5
sequencing studies in sporadic childhood ALL; thus, the degree
to which germline PAX5 variants contribute to ALL susceptibility
remains unclear.

With these discoveries, there is a growing excitement and in-
terest in studying the biology of ALL predisposition, and several
research themes have begun to emerge. For example, across
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Figure 1. Genetic variations in hematopoietic
transcription factors contribute to the inherited
risk of developing ALL. This diagram shows tran-
scriptional factor genes in which germline genetic
variation have been associated with ALL risk (eg,
common polymorphisms linked to ALL susceptibility
and rare variants linked to familial predisposition to
ALL). The transcriptional factors are drawn largely
according to the hematopoietic developmental
stage at which they are known to operate. CLP,
common lymphoid progenitor; DCs, dendritic cells;
HSC, hematopoietic stem cell; ILCs, innate lymphoid
cells; NK, natural killer cells; pre-B, pre-B cell; pro-B,
pro-B cell.
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different ALL risk genes discussed here, germline genetic var-
iants consistently show incomplete penetrance, requiring the
acquisition of a myriad of secondary somatic events to trigger
overt leukemogenesis. Mutagenesis studies in mice with het-
erozygous Pax5 deficiency identified somatic changes in Pax5,
Ras, and/or Jak1/3 that significantly accelerated leukemogen-
esis.49 Intriguingly, Borkhardt and Sanchez-Garcia’s groups50

showed that Pax51/2 mice developed B-ALL only when they
were exposed to infection and also revealed somatic Jak3
mutations as a common second hit in the leukemic cells. Simi-
larly, they reported that infection can significantly promote
leukemogenic effects of ETV6-RUNX1 in mice, with recurrent
somatic alterations in lysine demethylase genes (eg, Kdm5c).51

Infections directly trigger RAG1/2 activation as a host immune
defense mechanism,52,53 which can promote widespread DNA
rearrangements and mutations,54 thus increasing the chances of
acquiring secondary genomic aberrations, as documented in
ETV6-RUNX1 ALL.55 It is tempting to hypothesize that this
mechanism is also operational in ALL with germline ETV6 var-
iants. In fact, germline ETV6 risk alleles are mutually exclusive
with ETV6-RUNX1 fusion in ALL, suggesting that they may in-
voke a common leukemogenic pathway.24 These findings
strongly point to the interplay between inherited susceptibility
and somatic genomic alterations, with environmental exposures
(eg, infection-related activation of RAG activity) as a possible
facilitator. In these scenarios, germline variants in hematopoietic
transcription factor genes may cause impaired lymphoid de-
velopment and expansion of immature B-precursor cells that are
vulnerable to secondary genetic alterations induced by in-
fectious exposures. Alternatively, inherited defects in these
hematopoietic transcription factors can lead to epigenomic
changes at their target genes (eg, reduced transcription re-
pression with increased chromatin accessibility), increasing the
likelihood of acquiring secondary genomic aberrations at these
genomic loci and, thus, transforming preleukemic clones into
overt ALL.

Although each ALL risk gene only accounts for a small fraction of
childhood ALL, collectively, as a group, inherited susceptibility
explains the development of this hematological malignancy in
an increasingly significant subset of patients. Therefore, the
recognition of genetic predisposition can have a profound
clinical impact in a number of ways. For example, donor se-
lection for a hematopoietic stem cell transplant involving families
with a leukemia-predisposition variant would need to be con-
sidered very carefully. If a germline variant is highly penetrant,
carriers of this variant should be avoided as stem cell donors;
however, for low-penetrance variants, it is debatable whether

this should be factored into clinical decision-making, especially
when transplant is the only curative treatment. The threshold of
high vs low penetrance certainly has not been established in the
field and probably should be adjudicated individually for each
patient/family. This is even more complex in the context of
returning results of genetic testing for leukemia-predisposition
variants to patients and families. With rare exceptions, such as
LFS,56 the exact increase in absolute ALL risk has not been
established, even though many have already been included in
various clinical genetic testing panels. Returning results for
variants with modest effects on leukemia risk could potentially
impose unnecessary emotional burden and stress on patients
and family members; however, these carriers and kindreds are
invaluable research subjects and are critical for investigations to
precisely define the impact of ALL risk variants. Clinicians and
scientists have begun addressing these issues, developing
guidelines for clinical interventions, and establishing frameworks
for research with sound ethical standards.57-59 Although not
without challenges, the nascent field of ALL genetic pre-
disposition is well poised to advance quickly, and a better un-
derstanding of the genetic basis of ALL risk will provide
important insights into the biology of normal and malignant
hematopoiesis.
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