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KEY PO INT S

l Depleting RUNX1 or
editing-out RUNX1
eR1, or treatment
with BET protein
antagonist, induces
lethality in AML
expressing mtRUNX1.

l EMs of RUNX1
depletion induce more
lethality in HPCs
expressing germline
mtRUNX1 from FPD
AML than HPCs from
FPD.

RUNX1 transcription factor regulates normal and malignant hematopoiesis. Somatic or
germline mutant RUNX1 (mtRUNX1) is associated with poorer outcome in acute myeloid
leukemia (AML). Knockdown or inhibition of RUNX1 induced more apoptosis of AML
expressing mtRUNX1 versus wild-type RUNX1 and improved survival of mice engrafted
with mtRUNX1-expressing AML. CRISPR/Cas9-mediated editing-out of RUNX1 enhancer
(eR1) within its intragenic super-enhancer, or BET protein BRD4 depletion by short hairpin
RNA, repressed RUNX1, inhibited cell growth, and induced cell lethality in AML cells
expressing mtRUNX1. Moreover, treatment with BET protein inhibitor or degrader
(BET–proteolysis targeting chimera) repressed RUNX1 and its targets, inducing apoptosis
and improving survival of mice engrafted with AML expressing mtRUNX1. Library of
Integrated Network–based Cellular Signatures 1000–connectivity mapping data sets
queried with messenger RNA signature of RUNX1 knockdown identified novel expression-
mimickers (EMs), which repressed RUNX1 and exerted in vitro and in vivo efficacy against
AML cells expressing mtRUNX1. In addition, the EMs cinobufagin, anisomycin, and
narciclasine induced more lethality in hematopoietic progenitor cells (HPCs) expressing

germline mtRUNX1 from patients with AML comparedwith HPCs from patients with familial platelet disorder (FPD), or
normal untransformedHPCs. These findings highlight novel therapeutic agents for AML expressing somatic or germline
mtRUNX1. (Blood. 2019;134(1):59-73)

Introduction
RUNX1 is a master-regulator transcription factor involved in
normal and malignant hematopoiesis.1-3 RUNX1 encodes for the
sequence-specific, DNA-binding subunit of the core binding
factor (CBF) complex.3 Binding to its cofactor CBFb promotes
the DNA binding and stability of RUNX1.3,4 RUNX1 has a highly
conserved, DNA-binding “Runt” homology domain (spanning
amino acids 50-177) and a more C-terminal transcription acti-
vation domain (spanning amino acids 291-371).2,5 RUNX1 super-
enhancer (.170 kb) with its enhancer epicenter (124-kb
enhancer or eR1) is highly conserved, spans the entire intron 1 of
RUNX1, and is located between its P1 and P2 promoters.6-8 The
eR1 is occupied by multiple transcription factors, including
TAL1, GATA2, RUNX1, PU.1, and LMO2, as well as by the BET
protein (BETP) BRD4,2,7,8 controlling transcription of RUNX1.9,10

RUNX1 also cooperates with other transcription factors (eg, Ets1,
PU.1, CEBPa, TAL1, LMO2) and with co-factors (eg, the histone
acetyltransferase EP300) at target gene enhancers and gene
promoters to regulate transcription.3,11-13 RUNX1 target genes

include IL-3, GM-CSF, c-FMS, TCR-a, PU.1, MPL, MPO, MYC,
and multiple ribosomal genes.14-17 Consistent with this, lack
of RUNX1 causes defective hematopoiesis and is embryonic
lethal.2,17 In addition to chromosomal translocations involving
the RUNX1 locus,3,18,19 somatic, heterozygous RUNX1 mutations
also occur in myelodysplastic syndromes (MDS) (;10%) and
chronic myelomonocytic leukemia (CMML) (up to 37%), as well
as in secondary (post-MDS or post–myeloproliferative neoplasm
[MPN]) or de novo (;10%) AML.20-25

The majority of mutant RUNX1 (mtRUNX1) are missense muta-
tions, large deletions, or truncation mutations in the “Runt”
homology domain or in the transactivation domain.3,20,21 Be-
having mostly as loss-of-function mutations, they confer relative
resistance to standard chemotherapy and are associated with an
unfavorable prognosis in AML.20,22,23 Loss-of-function mtRUNX1
expands hematopoietic stem-progenitor cells and myeloid pro-
genitors, with impaireddifferentiation and resistance to genotoxic
stress, attenuated unfolded protein response, and decreased
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Figure 1. Depletion of RUNX1by shRNAdiminishes RUNX1 target gene expression and induces greater in vitro lethality inmtRUNX1-expressing thanwtRUNX1AML
BPCs, as well as attenuates leukemia engraftment and significantly prolongs survival of mice bearing luciferase-expressing OCI-AML5 xenografts. (A) Relative mRNA
expression of RUNX1, RUNX2, RUNX3, MPO, BCL-2, and MYC in OCI-AML5 cells transduced with non-target shRNA (sh NT) or RUNX1 shRNA for 72 hours. Expression of each
mRNA was normalized to GAPDH and to sh NT. (B) Immunoblot analysis of OCI-AML5 cells transduced with sh NT or RUNX1 shRNA for 72 hours. The numbers beneath the
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ribosome biogenesis.14 In AML, RUNX1 mutations often co-occur
with mutations in FLT3, MLL-PTD, DNMT3A, ASXL1, CEBPA,
NRAS, KIT, and IDH1/2.21,22,26 Germline, monoallelic, and in-
tragenic mutations and deletions in RUNX1 cause the highly
penetrant (;40%) autosomal dominant familial platelet disorder
(FPD), with a propensity to evolve into myeloid malignancy
(FPD-MM).20,26-28 Previous reports showed that wild-type RUNX1
(wtRUNX1) activity is necessary to sustain leukemia caused
by RUNX1-RUNXT1, CBFb-SMMHC, and MLL-ENL or MLL-
AF9.26,29-31 However, in AML expressing mtRUNX1, the effects of
knockdown of RUNX1 have not been determined. The present
studies show that short hairpin RNA (shRNA)-mediated knock-
down of mtRUNX1 and wtRUNX1 inhibited in vitro and in vivo
AML growth and survival of immune-depleted mice engrafted
with AML cells expressing mtRUNX1. Our findings also show that
BETP inhibitor (BETi) or degrader (proteolysis targeting chimera
[PROTAC])32 depletes BRD4 occupancy at the RUNX1 eR1,
consistent with which editing-out of the RUNX1 eR1 was also
lethal to mtRUNX1 expressing AML cells. Expression-mimickers
(EMs) were discovered by querying the Library of Integrated
Network–based Cellular Signatures (LINCS) 1000-CMap (con-
nectivity mapping) with the RNA sequencing (RNA-Seq) sig-
nature of RUNX1-knockdown in mtRUNX1-expressing AML
cells.33,34 These EMs include narciclasine (natural plant alkaloid),
fenbendazole (benzimidazole anthelmintic), cinobufagin (bufanolide
steroid), and anisomycin (antibiotic).35-38 Treatment with the EMs
depleted RUNX1 and its target gene expression levels, as well as
induced in vitro and in vivo lethality in AML cells expressing
somatic or germline mtRUNX1 vs normal or FPD hematopoietic
progenitor cells (HPCs).

Materials and methods
Cell lines and cell culture
Human AML cell lines Mono-Mac-1 (MLL-AF9), OCI-AML5,
and OCI-AML2 cells were obtained from the DSMZ. HEL92.1.7
and THP1 cells were obtained from the ATCC. Mono-Mac-1,
HEL92.1.7, and THP1 cells were cultured in RPMI-1640 media
with 20% fetal bovine serum and 1% penicillin/streptomycin.
OCI-AML5 and OCI-AML2 cells were cultured in minimum
essential medium alpha with 20% fetal bovine serum and
1% penicillin/streptomycin. OCI-AML5 cells were supplemented
with 10 ng/mL of granulocyte-macrophage colony-stimulating
factor (PeproTech).

Primary AML blast cells
Patient-derived (PD) mtRUNX1 and wtRUNX1 expressing AML
cells and normal cord blood samples were obtained with in-
formed consent as part of a clinical protocol approved by the
Institutional Review Board of The University of Texas, M.D.

Anderson Cancer Center. Samples were processed, and next-
generation sequence analysis was performed as previously
described.32

RNA isolation and quantitative polymerase
chain reaction
After treatments with shRNA or drugs, total RNA was isolated,
and quantitative real-time polymerase chain reaction (PCR)
analysis for the expression of genes was performed as previously
described.32,39

Assessment of apoptosis by annexin V staining
Untreated or drug-treated cells were stained with annexin V
(Pharmingen) and TO-PRO-3 iodide (Thermo Fisher Scientific).
The percentage of apoptotic cells was determined by using flow
cytometry as previously described.32,39

Colony growth assay
After the designated treatments, cells were harvested, and
colony growth assays were performed as previously described.39

Chromatin immunoprecipitation and real-time PCR
OCI-AML5 cells were treated with OTX015 or ARV-771 for 8 to
16 hours. Chromatin immunoprecipitation (ChIP) and quantita-
tive PCR (qPCR) were performed as previously described.39

Detailed methods for RNA-Seq analysis, ChIP sequencing (ChIP-
Seq) analysis, ATAC sequencing (ATAC-Seq) analysis, reverse
phase protein array analysis, and in vivo studies performed in
mice are provided in the supplemental Methods (available on
the Blood Web site).

Results
Presence of mtRUNX1 and comutations confer
inferior median survival in patients aged <60 years
with AML exhibiting mtRUNX1
Using next-generation sequencing, we determined the inci-
dence of RUNX1 mutations in 655 patients with relapsed or
newly diagnosed, de novo and secondary AML (post-MPN and
post-MDS) managed at the M.D. Anderson Cancer Center from
July 2013 to June 2016. Of the 141 patients with AML harboring
a RUNX1 mutation, 84 were documented as de novo AML, 47 as
post-MDS secondary AML, and 10 as post-MPN secondary AML
(supplemental Figure 1A). Supplemental Table 1 shows the site
of the mutations in RUNX1 in the 141 patients with AML har-
boring RUNX1 mutation. The most frequent comutations with
mtRUNX1 observed in decreasing frequency were in ASXL1,
FLT3-ITD, TET2, DNMT3A, IDH1/2, RAS, PTPN11, JAK2, P53,

Figure 1 (continued) bands represent densitometry analysis. (C) Colony growth of OCI-AML5 and OCI-AML2 cells transduced with sh NT or RUNX1 shRNA for 72 hours.
***P, .005 compared with sh NT–transduced cells. (D) Percent apoptosis in OCI-AML5 andOCI-AML2 cells transduced with sh NT or RUNX1 shRNA for 72 hours. ***P, .005 compared
with sh NT-transduced cells. (E) qPCR analysis for RUNX1 expression in PD mtRUNX1 AML cells (n5 3) and wtRUNX1 AML (n5 2) transduced with sh NT or RUNX1 shRNA for
72 hours. Relative mRNA expression was normalized to GAPDH and compared with sh NT expression levels. (F) PD CD341 mtRUNX1 (n5 3) and wtRUNX1 AML (n5 2) samples
were transduced with sh NT or RUNX1 shRNA for 72 hours. The percentage of nonviable cells was determined by using flow cytometry. *P , .05, ***P , .005 relative to sh
NT cells. (G) Immunoblot analysis after 72 hours of 100 ng/mL doxycycline (DOX) treatment in OCI-AML5 cells expressing a DOX-inducible shRNA against RUNX1.
(H) OCI-AML5 i-sh-RUNX1 cells were induced with the indicated concentrations of DOX for 96 hours. At the end of treatment, cells were stained with propidium iodide, and the
percent nonviable cells were determined according to flow cytometry. Columns, mean of 3 experiments; bars, standard error of the mean. *P , .05, **P , .01 relative to no-DOX
treatment. (I) Bioluminescent imaging of mice after infusion of OCI-AML5/GFP-Luc cells transduced with DOX-inducible RUNX1-shRNA (i-sh-RUNX1) and treated daily with 10 mg/kg
of DOX. Mice were also infused with OCI-AML5/GFP-Luc cells that had been ex vivo treated with DOX for 72 hours, then treated daily with 10 mg/kg of DOX to further suppress
leukemia engraftment. The box plots beneath show the total bioluminescent flux for themice treated withDOX vs no DOXover 5 weeks of treatment. (J) The survival of themice in the
3 cohorts is represented by a Kaplan-Meier survival plot. n.s., not significant.
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and EZH2 genes (supplemental Figure 1B). The Circos plot
depicting mutations and comutations with mtRUNX1 in this
M.D. Anderson Cancer Center cohort is shown in supplemental
Figure 1C. Patients aged ,60 years with AML expressing
mtRUNX1 exhibited significantly inferior median survival (18.4
months) than those without mtRUNX1 (48.4 months) (P , .001)
(supplemental Figure 1D). However, the presence of mtRUNX1
did not significantly affect the median survival in patients aged
.60 years (P . .1). These findings are consistent with those
reported by others in patients with AML of comparable de-
mographic and disease characteristics.21-23

RUNX1 knockdown inhibits growth and induces
apoptosis of AML cells expressing mtRUNX1
We next transduced 2 separate shRNAs targeting RUNX1 into
OCI-AML5 cells. These cells express mtRUNX1, along with co-
mutations in ASXL1, EZH2, IKZF2, and PTPN11 (supplemental
Figure 1E-F). The 2 shRNA target sequences in RUNX1 are
shown in supplemental Figure 1G and do not distinguish be-
tween mutant versus wild-type transcripts of RUNX1 in the
AML cells studied here. RUNX1 shRNA treatment significantly
inhibited RUNX1 messenger RNA (mRNA) and protein levels, as
well as reduced the mRNA and/or protein expression of RUNX1
target genes, includingMYC, MYB, PU.1, and BCL2, as well as of
myeloperoxidase (MPO); cell cycle inhibitor p27 levels were
concomitantly upregulated in OCI-AML5 cells (Figure 1A-B).
Reversed phase protein array analysis also showed that shRNA
to RUNX1 downregulated 52 proteins and upregulated 31 pro-
teins, which included reduction in p-RB, c-Myc, BCL-2, and
NOTCH1 levels, with concomitant induction of p27 levels in OCI-
AML5 cells (supplemental Figure 2A). Consistent with this finding,
knockdown of RUNX1 induced myeloid differentiation, including
an increase in the percentage of cells expressing CD11b and CD86
(supplemental Figure 2B-D). shRNA to RUNX1 also repressed
RUNX1 expression, induced phenotypic markers of differentiation,
and induced apoptosis of mtRUNX1-expressing Mono-Mac-1 cells
(supplemental Figure 2E-F). Although shRNAs to RUNX1 repressed
RUNX1 mRNA and protein levels to a similar extent in OCI-AML2,
THP1, and HEL92.1.7 cells, all expressing wtRUNX1 (supplemental
Figure 2G-H), they induced significantly more apoptosis in OCI-
AML5 and Mono-Mac-1 (Figures 1D; supplemental Figure 2E,I).

In addition, knockdown of RUNX1 had no significant effects
on cell proliferation and phenotypic markers of differentiation
in OCI-AML2 (supplemental Figure 2J-K). shRNA-mediated
knockdown of RUNX1 in 3 samples of patient-derived (PD)
CD341 primary AML blast progenitor cells (BPCs) expressing
mtRUNX1 (samples 2, 12, and 15 in supplemental Figure 1E) vs 2
samples expressing wtRUNX1 (samples 1 and 2 in supplemental
Figure 1H) inhibited mRNA expression of RUNX1 (Figure 1E) but
induced significantly more lethality in the primary AML BPCs
expressing mtRUNX1 compared with wtRUNX1 (Figure 1F).
Doxycycline exposure of OCI-AML5 cells transduced with lu-
ciferase and a doxycycline-inducible construct of shRNA to
RUNX1 (i-sh-RUNX1) inhibited mRNA expression of RUNX1
(supplemental Figure 2L) and of its target genes MYC, PU.1, and
MPO (Figure 1G). This outcome was again associated with in-
duction of cell lethality (Figure 1H). Notably, treatment of NSG
mice engrafted with i-sh-RUNX1–transduced OCI-AML5 cells
with doxycycline markedly inhibited AML growth, as well as sig-
nificantly improved survival of the mice (P 5 .001) (Figure 1I-J).

Moreover, ex vivo exposure to doxycycline before infusion of
the i-sh-RUNX1–transduced OCI-AML5 cells into NSG mice,
followed by additional in vivo treatment with doxycycline after
engraftment, resulted in further improvement of survival of the
mice (P 5 .0004). We also determined the effects of AI-10-104,
a small molecule inhibitor of CBFb binding to RUNX1 that also
reduces binding of RUNX1 to target genes and represses tar-
get gene expressions,40,41 on survival of AML cells expressing
mtRUNX1 vs wtRUNX1. As shown in Figure 2A-B, treatment with
AI-10-104 but not AI-4-88 (inactive counterpart) induced sig-
nificantly more lethality in cultured AML cell lines expressing
mtRUNX1 (OCI-AML5 and Mono-Mac-1) compared with
wtRUNX1 (OCI-AML2). AI-10-104 also induced greater lethality
in primary AML BPCs expressing mtRUNX1 compared with
wtRUNX1 (P , .05) (Figure 2C).40

BRD4 knockdown and BETP antagonists repress
RUNX1 and its targets, causing growth inhibition
and apoptosis
Using publicly available ChIP-Seq data, we determined that the
RUNX1 P1 and P2 promoters and 124 kb enhancer in AML
MOLM14 cells exhibited high BRD4 occupancy, which was at-
tenuated by treatment with BETi (I-BET151) (supplemental
Figure 3A).42 In addition, the heat map of interaction scores from
a Hi-C analysis (a genome-wide version of the chromosome
conformation capture [3C] method) in the CML-blast crisis K562
cells showed high interaction scores within the RUNX1 topo-
logically associated domain, especially between the 124 kb-
enhancer (eR1) and the P2 and P1 promoter regions of RUNX1
(supplemental Figure 3B).6 Using ChIP-Seq with H3K27Ac an-
tibody, a sequence density plot generated in Integrated Ge-
nome Viewer revealed a significant H3K27Ac signal, consistent
with active chromatin in the eR1, enhancers, and promoters of
RUNX1 in OCI-AML5 cells (Figure 3A, right panel; supplemental
Figure 3C). ATAC-Seq analysis showed the presence of acces-
sible chromatin in the RUNX1 eR1 and promoters in OCI-AML5
cells. Using the sequence-tag density from H3K27Ac ChIP-Seq
analysis, a ranked-ordering of super-enhancers plot also con-
firmed the presence of a super-enhancer within the RUNX1 gene
(Figure 3A, left panel). To functionally validate the interaction of
the 124 kb enhancer with RUNX1 P2 promoter, we cloned and
transfected a luciferase reporter containing DNA constructs of
the RUNX1 P2 promoter with or without the 124 kb-enhancer
into HEK293 cells (supplemental Figure 3D). Compared with
the promoter or enhancer alone, the 124 kb enhancer–driven
P2 promoter exhibited superior luciferase induction and tran-
scriptional activity (P , .05) (Figure 3B). In addition, ChIP-qPCR
analysis revealed that treatment with the chromatin evictors of
BETPs (eg, BETi OTX015) or with BETP-PROTAC ARV-771 that
degrades and depletes levels of BETPs (eg, BRD4) inhibited
occupancy of BRD4, EP300, c-Myc, PU.1, and p-RNAP2 at the
RUNX1 eR1 (Figure 3C). Consistent with this finding, a marked
reduction occurred in mRNA expression of RUNX1 and MYC,
with concomitant induction of the mRNA levels of HEXIM1 and
p21, as previously reported in other AML cell types (Figure 3D).39,43

shRNA-mediated knockdown of BRD4 also markedly reduced
BRD4 and c-Myc occupancy at the eR1 of RUNX1, while in-
creasing PU.1 occupancy and having no effect on EP300 occu-
pancy (supplemental Figure 3E). Transduction of 2 BRD4 shRNAs
led to attenuation of the mRNA levels of BRD4, RUNX1, andMYC
(supplemental Figure 3F).
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Figure 3E shows that BRD4 shRNAs also attenuated protein
levels of BRD4 (but not BRD2), as well as reduced levels of
RUNX1, c-Myc, c-Myb, and PU.1, with concomitant increases in
the protein levels of p21 and p27. This outcome was associated

with inhibition of colony growth and induction of apoptosis of
OCI-AML5 cells (Figure 3F; supplemental Figure 3G). Treatment
with the PROTACs ARV-825 and ARV-771 (but not its inactive
counterpart ARV-766) (Figure 4A; supplemental Figure 4A-B) or
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Figure 2. Treatment with CBF-b-RUNX1 inhibitor induces
greater lethality in mtRUNX1 expressing AML cells than
wtRUNX1 AML cells. (A) OCI-AML2, OCI-AML5, and Mono-Mac-1
cells were treated with the indicated concentrations of CBF-
b-RUNX1 inhibitor AI-10-104 for 72 hours. The percent cell viability
was then determined by using a 3-(4,5-dimethylthiazol-2-yl)-2,5-
dimethyltetrazolium bromide assay. Columns, mean of 3 experi-
ments; bars, standard error of the mean. *Indicates values that are
significantly less than untreated cells (P , .05). †Indicates values
significantly less in mtRUNX1 AML cells vs than wtRUNX1 AML cells
(P , .05). (B) Mono-Mac-1 and OCI-AML2 cells were treated with
the indicated concentrations of inactive inhibitor AI-4-88 or active
AI-10-104 for 96 hours. The percentage of annexin V–positive,
To-Pro-3 iodide-positive apoptotic cells were determined by using
flow cytometry. Representative scatter plots are shown. (C) PD CD341

wtRUNX1 AML (n5 7), and mtRUNX1 AML (n5 7) cells were treated
with the indicated concentrations of AI-4-88 or AI-10-014 for
48 hours. At the end of treatment, the percentage of To-Pro-3 iodide-
positive, nonviable cells were determined by using flow cytometry
(*P , .01 by Kruskal-Wallis test).
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treatment with the BETi’s OTX015 and JQ1 (but not R-JQ1)
induced apoptosis in OCI-AML5 and Mono-Mac-1 cells (Figure
4B-C).44,45 Apoptotic effects of BETi (JQ1 but not R-JQ1) or
ARV-771 (but not ARV-766) were also associated with marked
reduction in the protein levels of RUNX1, PU.1, c-Myc, and
c-Myb in OCI- AML5 cells (supplemental Figures 4C-D). BETP-
PROTAC treatment also exerted relatively higher lethality against
mtRUNX1-expressing PD CD341 AML BPCs vs normal CD341

HPCs (supplemental Figures 4E-F).

We also determined the in vivo activity of OTX015 and ARV-771
against luciferase-transduced OCI-AML5 cells engrafted into
NSG mice. Figure 4D shows that, compared with the vehicle
control mice or mice treated with OTX015, treatment with ARV-
771 was more effective in reducing AML burden, as determined
by reduction in quantifiable bioluminescence imaging of the
mice or by estimating percentage of green fluorescent protein
(GFP)-positive cells in the spleen (supplemental Figure 4G). In
addition, treatment with ARV-771 was significantly more effec-
tive in improving median and overall survival of the mice, es-
pecially at the 30 mg/kg dose level, with no co-occurrence of
significant weight loss or toxicity during the time span of the
study (Figure 4E). Figure 4F shows that, compared with the NSG
mice engrafted with luciferase-transduced Mono-Mac-1 cells
treated with vehicle control, or with OTX015 alone, mice in
which RUNX1 was depleted with doxycycline-inducible shRNA
alone or cotreated with OTX015 exhibited greater reduction in
AML burden and improvement in median and overall survival
(P , .005) (Figure 4F-G). We also determined the activity of
cotreatment of BETi with other agents of known anti-AML ac-
tivity. Cotreatment with OTX015 and the BCL2 inhibitor ven-
etoclax (ABT-199) exerted synergistic lethality (combination
indices ,1.0) against AML cells expressing mtRUNX1, including
6 samples of PD CD341 AML BPCs expressing mtRUNX1
(supplemental Figure 5A). Supplemental Figure 5B-D illustrates
that cotreatment with OTX015 and the DNMT1 inhibitor deci-
tabine, or with the nucleoside analogue cytarabine (AraC), is also
synergistically lethal against AML cells expressing mtRUNX1
(combination indices ,1.0).

To assess whether loss of BRD4 occupancy at the RUNX1 eR1 is
a major contributory mechanism by which the BETP antagonist
elicits its lethal effects in AML cells expressing mtRUNX1, we
determined the effects of CRISPR/Cas9-mediated gene editing
of the eR1 in OCI-AML5 cells. Confirmed according to ATAC-
Seq analysis to be within a Tn5 transposase-accessible region
(Figure 5A), eR1 also showed binding sites for multiple tran-
scriptional regulators documented in the ENCODE transcription
factor ChIP-Seq data sets. Figure 5A also shows the pool of
9 guide RNAs (gRNAs) that were tiled and selected against the

BRD4-occupied eR1 region of RUNX1. gRNAs were cloned into
a lentiviral vector (pLenti–single gRNA [sgRNA]), and pooled
lentiviral particles were transduced into OCI-AML5 cells, fol-
lowed by introduction of Cas9 into the stably selected gRNA-
expressing OCI-AML5 cells. After in vitro growth for 5 days and
following 10 passages, clones were evaluated for cell pro-
liferation and RUNX1 expression. As shown in supplemental
Figure 6A-F, after 5 days in suspension culture, post-Cas9
transfection, the 124 kb enhancer-edited OCI-AML5 cells
exhibited reduced cell proliferation, increased myeloid differ-
entiation, and apoptosis, as well as depletion of the protein
levels of RUNX1, c-Myc, and c-Myb, and markedly decreased
colony growth. Figure 5B-C shows that the surviving clones of
cells revealed after 10 passages exhibited markedly reduced
expression of RUNX1 and a lower percentage of cells in the
S phase of the cell cycle. They also exhibited slower growth, with
an increased doubling time (Figure 5D). We sequenced the
genomic DNA of RUNX1 eR1 from the surviving clones of cells,
which revealed that the gRNA-directed Cas9 had introduced
multiple indels. OCI-AML5 cells that experienced total editing-
out of the RUNX1 eR1 and complete loss of RUNX1 expression
were likely eliminated.

Expression signatures of RUNX1 knockdown or
inhibition in AML cells expressing mtRUNX1
Using RNA-Seq analysis, we next determined the mRNA ex-
pression signature associated with RUNX1 knockdown in OCI-
AML5 cells. The goal here was to perform LINCS 1000-CMap
analysis queried with this signature (discussed later) to discover
EMs from a library of US Food and Drug Administration–
approved drugs or other agents. Figure 6A shows a heat map of
upregulated and downregulated mRNA expressions due to
shRNA-mediated knockdown of RUNX1. Notable perturbations
in gene expression are shown in Figure 6B, among which were
downregulated RUNX1, IL2RA, IL7R, MPO, GLI2, BCL2, and
c-MYC, as well as upregulation of P2RY14 (a member of the
purinergic receptor family), ZNF460 (a member of the zinc finger
family of proteins), ITGAM (CD11b integrin, a marker of differ-
entiation in AML), RGS2 (a regulator of G protein–coupled re-
ceptor signaling involved in AML cell differentiation), DAPK1 (a
tumor suppressor repressed in AML), GATA2 (a tumor suppressor
in myeloid malignancies), and CDKN1B (a tumor suppressor in
AML). Supplemental Figure 7A shows the 50 most significantly
upregulated and downregulated mRNAs. Perturbations of some
of thesemRNAwere also confirmedby using qPCR (supplemental
Figure 7B). A notable number of mRNA expression perturbations
mediated by RUNX1 shRNA were altered in a directionally op-
posite manner to those reported when wtRUNX1 was restored
through gene editing in induced pluripotent stem cells generated
from skin fibroblasts of a patient with germline RUNX1 mutation

Figure 3. Treatment with BETi reduces BRD4 occupancy on the enhancers of RUNX1 and in AML cells, and knockdown of BRD4 depletes RUNX1 expression and
induces apoptosis of AML cells. (A) Ranked ordering of super-enhancers analysis in OCI-AML5 cells (left). Total H3K27Ac ChIP-Seq signal in units of reads per million in
enhancer regions for all enhancers in OCI-AML5. Enhancers are ranked by increasing H3K27Ac ChIP-Seq signal. ChIP-Seq signal density plots for H3K27Ac and ATAC-Seq
accessibility profiles in the RUNX1 locus of OCI-AML5 cells (right). The locations of the P1 and P2 promoter,124 kb enhancer, P2 proximal enhancer (corresponds to the mouse
1110 enhancer reported by Marsman et al62), and the intronic super-enhancer are noted. (B) Reporter constructs containing the RUNX1 P2 promoter and/or a portion of the
124 kb enhancer were transfected into HEK293 cells utilizing polyethylenimine (PEI) and incubated for 48 hours. Relative luciferase activity for each construct was quantified and
is reported as total luminescence. *P, .05 compared to P2 promoter or124 kb enhancer-alone transfected cells. (C) ChIP qPCR of BRD4, c-Myc, p300, PU.1, and pSer2-RNAP2
occupancy in the RUNX1 124 kb enhancer after treatment with 1000 nM of OTX015 or 250 nM of ARV-771 for 16 hours in OCI-AML5 cells. (D) Relative mRNA expression of
RUNX1, MYC, PU.1, HEXIM1, and p21 in OCI-AML5 cells treated with ARV-771 or OTX015 for 4 hours. Expression of each mRNA was normalized to GAPDH and to the untreated
control cells. (E) Immunoblot analysis of OCI-AML5 cells transduced with sh NT or BRD4 shRNAs and incubated for 72 hours. (F) Percent apoptosis induced in OCI-AML5 cells
transduced with sh NT or BRD4 shRNA for 72 hours.
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(Figure 6C).46 Using RNA-Seq, we also determined alterations in
mRNA expression in OCI-AML5 cells treated with equimolar
concentrations of OTX015 vs ARV-825. Consistent with a previous
report,32 BETP-PROTAC treatment induced greater numbers
of mRNA alterations compared with OTX015 (Figure 6D).
Specifically, expressions of 41 mRNAs were upregulated and
30 downregulated that were common to mRNA alterations
due to treatments with RUNX1 shRNA, ARV-825, and OTX015
(supplemental Table 2A-B). Exposure to a lower concentration of
ARV-825 than OTX015 also, in a sustained manner, depleted
BETPs and caused greater attenuation in the protein expressions
of RUNX1 and its target proteins, while inducing p21 levels
in OCI-AML5 and PD AML BPCs expressing mtRUNX1
(supplemental Figure 8A-C).

Agents identified through LINCS 1000-CMap
analyses and their activity in inhibiting RUNX1
expression in AML cells expressing mtRUNX1
We next used the RNA-Seq signature following treatment of
OCI-AML5 cells with RUNX1 shRNA to query the LINCS 1000-
CMap data sets of .1 million gene expression signatures.34 A
rank-ordered list of the top 45 hits or EMs is shown in supple-
mental Table 3. Among the EMs not previously categorized
as genotoxic anticancer agents were narciclasine, anisomycin,
fenbendazole, and cinobufagin (#5, #7, #30 and #37, re-
spectively, on the list). Figure 7A shows that these agents dose
dependently induced apoptosis of OCI-AML5 cells. These
agents also induced apoptosis in Mono-Mac-1 cells (supple-
mental Figure 9A). Concurrently, exposure to anisomycin or
cinobufagin, but not CD-1530 (#10 on the list), also inhibited
mRNA expression of RUNX1 and its targets c-Myc and PU.1
while inducing p21 expression in OCI-AML5 cells (supplemen-
tal Figure 8B). Treatment with anisomycin, cinobufagin, and
narciclasine, but not CD-1530 and mevastatin (#45 on the list), also
attenuated protein expressions of RUNX1, c-Myc, PU.1, and
c-Myb in OCI-AML5 cells (Figure 7B-C). We also evaluated the
effects of treatment with the nonspecific cytotoxic chemother-
apy agents AraC and etoposide in mtRUNX1 expressing AML
cells. Supplemental Figure 10 shows that treatment with eto-
poside but not AraC dose-dependently induced apoptosis in
OCI-AML5 cells; however, only higher concentrations of eto-
poside reduced the protein expression of c-Myc and c-Myb. We
next evaluated the in vivo activity of narciclasine, cinobufagin,
and fenbendazole against luciferase-expressing OCI-AML5 cells
engrafted into NSG mice. As shown in supplemental Figure 9C
and Figure 7D, these EMs reduced AML burden as well as
significantly increased survival of the NSG mice.

We next determined the activity of narciclasine, anisomycin, and
cinobufagin against PDAMLBPCs expressing somatic mtRUNX1
(.6 samples, including AML #9 to #13 and #16 in supplemental

Figure 1E-F), samples of AML expressing germline mtRUNX1,
and against samples of FPD HPCs. We also determined the
activity of these agents against 7 samples of AML expressing
wtRUNX1 (supplemental Figure 1H) and 3 samples of CD341

cord blood normal HPCs. As shown in Figure 7E-F, cinobufagin,
narciclasine, and anisomycin treatments dose dependently
caused loss of cell viability in AML samples with somatic or
germline mtRUNX1. In contrast, these agents were relatively less
active against AML samples expressing wtRUNX1 and FPDHPCs
(Figure 7F-G) or against CD341 normal cord blood HPCs
(Figure 7H). Collectively, these findings highlight that among the
EMs evaluated, cinobufagin, fenbendazole, and narciclasine
exert in vitro as well as in vivo anti-AML efficacy against AML
expressing mtRUNX1.

Discussion
In AML BPCs expressing somatic or germlinemtRUNX1, whether
the remaining levels and/or activity of wtRUNX1 is a dependency
and essential for growth and survival had not been previously
interrogated. Findings presented here show that repression of
RUNX1 (mutant and wild-type), or inhibition of CBFb-binding to
RUNX1 by AI-10-104 (which represses RUNX1 target genes),
exerts greater efficacy against AML BPCs expressing somatic or
germline mtRUNX1 vs those expressing wtRUNX1. Although
similar in its in vitro lethal effects to RUNX1 shRNA, more potent
analogues of AI-10-104 with greater in vivo efficacy are not yet
available.40,41 Confirmed by using ATAC-Seq, our findings
revealed the accessibility of the chromatin at the 124 kb en-
hancer, eR1, of RUNX1. Several reports have documented the
role of BRD4 occupancy at super-enhancers as essential for
mRNA transcript elongation of master regulators and hemato-
poietic transcription factors, as well as of important oncogenes,
including MYC, CDK4/6, BCL2, BCL-xL, and PIM1.47-53 We also
discovered that shRNA-mediated knockdown of BRD4 re-
pressed RUNX1 and its targets and induced lethality in AML cells
expressing mtRUNX1. BETi treatment reduced the occupancy of
BRD4 at the eR1 and promoter of RUNX1, repressing RUNX1
and its targets. This action led to colony growth inhibition, in-
duction of differentiation markers and apoptosis in cultured AML
cell lines, and loss of viability of PD AML BPCs expressing
mtRUNX1. However, it is likely that an accompanying strong
reduction in c-Myc, c-Myb, and PU.1 expressions also contrib-
uted toward the lethal outcome. Synergistic lethal effects of
cotreatment with BETi and venetoclax or decitabine or cytarabine
highlight the BETi-based combinations that could poten-
tially be tested against AML expressing mtRUNX1. After BETi
treatment, the depletion of MYC levels observed here is not only
likely due to repression of RUNX1, of which MYC is a target, but
also through inhibition of BRD4 occupancy on the MYC super-
enhancer.47-50 Unlike BETi’s, PROTACs can facilitate multiple

Figure 4 (continued)were infused with luciferase-expressing OCI-AML5 cells and monitored for 7 days. Engraftment of leukemia was documented by bioluminescent imaging.
Mice were then treated for 2 weeks with vehicle, OTX015, or ARV-771 as indicated.Mice were then imaged by using a Xenogen camera to determine treatment efficacy. Total flux
(photons/second) in vehicle-, OTX015-, or ARV-771–treatedmice as determined by bioluminescent imaging. *Total photon counts that were significantly less in theOTX015- and
ARV-771–treated mice compared with the vehicle-treated mice (*P , .05, ***P , .005). (E) Kaplan-Meier survival plot of the in vivo activity of OTX015 or ARV-771 against OCI-
AML5-Luc xenografts treated for 3 weeks in NSGmice. Significance betweenOTX015- and ARV-771–treated vs vehicle-treatedmice was determined by using aMantel-Cox rank
sum test. (F) NSG mice were infused with luciferase-expressing Mono-Mac-1 cells transduced with doxycycline (DOX)-inducible RUNX1 shRNA and monitored for 4 days. Mice
were imaged to document engraftment of leukemia and then treated with vehicle, 10mg/kg of DOX, and/orOTX015 as indicated for 2 weeks.Mice were imagedwith a Xenogen
camera, and total photon counts were recorded. *Indicates total flux (photons/second) that were significantly less in the RUNX1 shRNA and RUNX1 shRNA 1 OTX015-treated
mice compared with the vehicle-treated mice (**P, .01). (G) Kaplan-Meier survival plot of the in vivo activity of DOX and/or OTX015 against Mono-Mac-1/GFP-Luc-i-sh-RUNX1
xenografts in NSG mice. Significance between vehicle and DOX and/or OTX015 was determined by using a Mantel-Cox rank sum test.
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rounds of sub-stoichiometric catalysis and BETP degradation.32,44,54

Similar to their efficacy observed in another AML type,32 our
findings here show for the first time that BETP-PROTACs are

significantly more potent than BETi not only in depleting BETP
levels but also in repressing RUNX1 and its targets, as well as
demonstrating greater in vivo efficacy against mice engrafted
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a P value, .05 in the ARV-825 (1395 down/821 up) andOTX015 (911 down/598 up) treated cells were used to construct a Venn diagram. The Venn diagram shows the expression
overlaps between RUNX1 shRNA and treatment with OTX015 or ARV-825.
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Figure 7. Treatmentwith EMs induces apoptosis, loss of cell viability of PD somatic and germlinemtRUNX1 expressingAML, depletes RUNX1protein expression, and
improves the survival of mice engrafted with mtRUNX1 expressing AML cells. (A) OCI-AML5 cells were treated with anisomycin, cinobufagin, CD1530, narciclasine,
fenbendazole, or mevastatin at concentrations ranging from 10 nM to 20 mM for 48 hours. The IC50 dose of each drug was calculated and is shown. (B-C) Immunoblot analysis of
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determined by using flow cytometry.
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with mtRUNX1-expressing AML. However, these observations
raise the issue of how much of the growth inhibitory and lethal
effects of these agents are due to depletion of BRD4 occupancy
at the RUNX1 eR1 vs the super-enhancers regulating other
oncogenes involved in growth and survival of AML BPCs. Our
findings show that gene editing of the RUNX1 eR1 eliminated
a majority of AML cells via apoptosis, while significantly de-
pleting RUNX1 expression and inhibiting growth of the surviving
minority of AML cells. These findings confirm that abrogation of
BRD4 occupancy on eR1 contributes to repression of RUNX1,
thereby mediating growth inhibition and loss of viability of AML
cells expressing mtRUNX1. Thus, until a specific RUNX1 de-
grader is developed, the priority must be to evaluate the effects
of repressing RUNX1 transcription with either BETi or BETP-
PROTAC treatment or with the EMs described here.

By acquiring other driver somatic mutations, the HPCs in FPD
transform into FPD-MM.20,27 We therefore focused on discov-
ering novel agents with an expression signature mimicking the
expression signature of RUNX1 knockdown but without geno-
toxic effects on normal HPCs. Using LINCS analysis, we un-
covered 45 EMs as top hits. Notably, among these were BETP
inhibitors (eg, TG-101348 and LY-303511 [dual JAK2 or PI3K and
BRD4 inhibitor]).55 The list also included anticancer agents that
engage other targets; for example, QL-X-138 (BTK/MNK inhibitor),
TGX-115 and PI-828 (PI3K inhibitors), MK-1775 (WEE1 kinase in-
hibitor), PNU-74654 (b-catenin/T-cell factor inhibitor), and NU-7441
(DNA-PK inhibitor).56-61 Whether any of these agents can be safely
used to achieve remission in FPD/MM expressing germline
mtRUNX1 remains to be evaluated. EMs not known to be genotoxic
anticancer agents included narciclasine, cinobufagin, anisomycin,
and fenbendazole,which inhibited in vitro expression of RUNX1and
its targets. They also induced greater in vitro lethality in AML BPCs
expressing somatic mtRUNX1 compared with wtRUNX1, while
relatively sparing normal CD341 HPCs. In addition, these EMs
exerted in vivo efficacy against AML cells expressing mtRUNX1
engrafted inNSGmice,without exhibiting host toxicity. Importantly,
these EMs were differentially less toxic in vitro against FPD HPCs
that had not fully transformed into FPD/MM cells. This finding raises
the possibility that treatment with these EMs may be effective in
eliminating FPD/MM, causing return to hematopoiesis sustained
by FPDHPCs that lack comutations responsible for transformation
into FPD/MM. This finding essentially highlights the first poten-
tially preventive strategy for FPD/MM developing in FPD patients
in the pedigrees of germline mtRUNX1. Taken together, our
findings document BETP antagonists as mechanistically targeted
effective agents that deplete RUNX1 levels and induce lethality
in AML cells expressing somatic or germline mtRUNX1. They also
identify previously unrecognized EMs that attenuate expression
of RUNX1, demonstrating efficacy against AML cells expressing
somatic or germline mtRUNX1.
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