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KEY PO INT S

l CD8+ T cells from CLL
patients display
aberrations in
mitochondrial and
glucose metabolism
prior to and after
stimulation.

l CD8+ CD19-CAR T cells
have enhanced
mitochondrial
biogenesis in
complete responding
CLL patients
correlating to
expansion and
persistence.

In chronic lymphocytic leukemia (CLL), acquired T-cell dysfunction impedes development of
effective immunotherapeutic strategies, through as-yet unresolved mechanisms. We have
previously shown that CD8+ T cells in CLL exhibit impaired activation and reduced glucose
uptake after stimulation. CD8+ T cells in CLL patients are chronically exposed to leukemic
B cells, which potentially impacts metabolic homeostasis resulting in aberrant metabolic
reprogramming upon stimulation. Here, we report that resting CD8+ T cells in CLL have
reduced intracellular glucose transporter 1 (GLUT1) reserves, and have an altered mito-
chondrial metabolic profile as displayed by increasedmitochondrial respiration, membrane
potential, and levels of reactive oxygen species. This coincided with decreased levels of
peroxisome proliferator-activated receptor g coactivator 1-a, and in line with that, CLL-
derived CD8+ T cells showed impairedmitochondrial biogenesis upon stimulation. In search
of a therapeutic correlate of these findings, we analyzedmitochondrial biogenesis in CD19-
directed chimeric antigen receptor (CAR) CD8+ T cells prior to infusion in CLL patients
(who were enrolled in NCT01747486 and NCT01029366 [https://clinicaltrials.gov]). In-
terestingly, in cases with a subsequent complete response, the infused CD8+ CAR T cells
had increased mitochondrial mass compared with nonresponders, which positively correlated

with the expansion and persistence of CAR T cells. Our findings demonstrate that GLUT1 reserves andmitochondrial fitness
ofCD8+ T cells are impaired inCLL. Therefore, boostingmitochondrial biogenesis in CART cellsmight improve theefficacyof
CAR T-cell therapy and other emerging cellular immunotherapies. (Blood. 2019;134(1):44-58)

Introduction
The therapeutic possibilities for chronic lymphocytic leukemia
(CLL) have greatly increased over the last few years. Novel
agents such as ibrutinib and venetoclax induce high response
rates and are generally well tolerated, but their use as mono-
therapeutic agents is not curative. As a consequence, continuous
therapy is required, leading not only to long-lasting remissions1,2

but also to high costs, toxicity, lower compliance, and an in-
creased risk of resistance. Indeed, for both drugs, mechanisms of
resistance have now been described that are directly attributable
to long-term drug exposure.3,4 Promising results are obtained
with novel agents in combination strategies allowing for long-
lasting treatment-free responses, but are at this point not
expected to be curative.5,6 Therefore, an unmet need exists for
the development of additional effective yet tolerable treatment

options with alternative mechanisms of action. In contrast to
the aforementioned approaches, T-cell–mediated therapy has
promising potential in CLL.7-10 Current autologous T-cell–based
therapies, such as immune checkpoint inhibition and chimeric
antigen receptor (CAR) T cells yield remarkable responses in
some patients with advanced relapsed/refractory (R/R) CLL, but
only in the minority of patients.11-16 Results of recent trials in-
dicate that CAR T-cell therapy has the potential of inducing
sustained remissions in CLL, but does so only in one-third of
patients.14 However, the underlying reason for this poor re-
sponse is unknown.

A likely factor in the limited responses of CAR T-cell therapy in
CLL is the acquired T-cell dysfunction that progresses
throughout the disease.17-19 T-cell abnormalities include
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impaired proliferative capacity, an exhaustion phenotype, and
diminished CD8+ T-cell cytotoxicity.19-21 CLL patients also
display a subset distribution skewed toward an effector
memory phenotype, particularly in cytomegalovirus-positive
patients.22,23 Increasing evidence suggests that T-cell dys-
function in CLL occurs through direct and indirect inter-
actions of CLL cells with both CD4+ and CD8+ T cells. CLL
cells express high levels of inhibitory molecules including
programmed death ligand 1, B7-H3, CD270, and the immune-
regulatory molecule CD200.24 These molecules have been
shown to be key mediators of acquired T-cell synapse defects
through CD200R, programmed death 1 (PD-1), and B- and
T-lymphocyte attenuator binding to cognate receptors on
T cells.21,23,24 Furthermore, molecular and functional defects
are also acquired by coculture of previously healthy T cells
with CLL cells, implicating a direct immunosuppressive effect
by leukemic B cells.20,25,26

Recent studies have shown an intricate relationship between
T-cell function and cellular metabolism.27-31 Quiescent T cells
primarily use mitochondrial oxidative phosphorylation (OXPHOS)
to meet their energy demands. When T cells receive activating
signals, a rapid switch to the dominant use of glycolysis takes
place.32,33 The conversion to anabolic metabolism is required for
full effector function.27 In nutrient-restricted niches, such as in
the tumor microenvironment of solid tumors, T cells can become
deprived of sufficient amounts of glucose required to execute
effector functions.34,35 In CLL, secondary lymphoid organs
function as the tumor microenvironment, where T cells are in
close contact with CLL cells.36,37 We have previously demon-
strated glycolytic impairment in activated CD8+ T cells from CLL
patients.38 However, the chronic exposure of CD8+ T cells to
leukemic B cells in these patients can potentially impact met-
abolic homeostasis in resting T cells, which can have con-
sequences for metabolic reprogramming upon stimulation.
Because mitochondrial OXPHOS is required for the first steps of
T-cell activation upon stimulation,27,39 and for the rapid switch to
glycolysis,29 we aimed to determine whether CLL cells impair
mitochondrial function. Our findings indicate that CD8+ T cells
display a CLL-mediated impairment of mitochondrial biogenesis
and fitness, accompanied by reduced glucose transporter 1
(GLUT1) reserves. The translational relevance of these findings
was demonstrated by increased mitochondrial biogenesis in
CD19-directed CAR+CD8+ T cells in infusion products of CLL
patients that show a complete response compared with non-
responders (NRs). Furthermore, mitochondrial biogenesis cor-
related with the persistence of these cells after infusion and with
clinical outcome.

Materials and methods
Patients and HD materials
Peripheral blood mononuclear cells (PBMCs) were isolated from
peripheral blood samples from untreated CLL patients (CD19+/
CD5+/CD23+ lymphocytosis and a white blood cell count.203
109 cells per liter; Table 1) or age-matched healthy donors
(HDs; Table 2; Sanquin, Amsterdam, The Netherlands), and
cryopreserved as described previously.22 CAR T-cell infusion
products were obtained from CLL patients enrolled in 2 clinical
trials of single-agent CTL019 therapy at the University of
Pennsylvania (registered at clinicaltrials.gov: NCT01029366, and

NCT01747486; Table 3), and generated from R/R CLL patients
as previously described.14 Response to CAR T-cell therapy was
based on criteria provided by the International WorkshopGroup
on CLL.40 Blood was obtained following written and informed
consent. The medical ethical and biobank committees at the
Academic Medical Center and the University of Pennsylvania
confirmed ethical approval in accordance with the Declaration of
Helsinki.

Flow cytometry and cell culture
PBMCs were stained with antibodies (details in supplemental
Methods and supplemental Table 1, available on the BloodWeb
site), measured on an LSR Fortessa (BD Biosciences), and ana-
lyzed using FlowJo 10.5.3. CD8+ T cells were positively sorted by
using a FacsAriaII, or enriched by using an EasySepHuman TCell
Enrichment kit (Stemcell). T cells were analyzed either directly
ex vivo, or stimulated using CD3 (clone 1XE) and CD28 (clone
15E8) antibodies for 2 to 5 days.

Extracellular flux analysis
Seahorse XF96 or XFp extracellular flux analyzers (Agilent)
were used to analyze sorted CD8+ T cells, as previously
described.41 Spare respiratory capacity (SRC) was calculated
as the ratio between maximum and basal oxygen consump-
tion rates (OCR). Results were analyzed using Seahorse Wave
version 2.4.

Gene-expression profiling
A publicly available microarray data set was used to perform
Kyoto Encyclopedia of Genes and Genomes (KEGG)-pathway
analysis (GSE8835),25 using the statistical software package R2.
Mitochondrial (ND1) and nuclear (b-globulin) DNA, and GLUT1
messenger RNA (mRNA) were measured by quantitative poly-
merase chain reaction (qPCR) using a StepOnePlus Real-Time
PCR system, or a Quantstudio 3 (Applied Biosystems/Thermo
Fischer Scientific). Data were analyzed using StepOne v2.1, or
Quantstudio Design&Analysis v1.4.3.

Glucose and lactate quantification
Glucose and lactate in supernatants were measured turbidi-
metrically on a Cobas8000 (Roche).

Data presentation and statistical analysis
Flow analysis data obtained from multiple independent ex-
periments were pooled and shown as percentages of positive
cells. Data measured within 1 experiment are plotted as mean
fluorescence intensity (MFI). For some experiments, both per-
centages and MFI are shown. Normality of distribution of data
were determined by performing a D’Agostino-Pearson omnibus
test. For nonparametric distributions, P values were calculated
by a Mann-Whitney U test for unpaired data, and the Wilcoxon
T test for paired data. For parametric and unpaired data,
a Student t test with a Welch correction was used if unequal
variance was significant as determined by an F test. A paired
Student t test was used for parametric distributed paired data.
Pearson correlation coefficients were calculated to determine
correlations between 2 pairs of data sets. All statistical tests were
2-tailed and performed using Graphpad PRISM version 7.03.
Differences were considered statistically significant if P , .05.
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Table 1. Characteristics of treatment-naive CLL patients included in this study

ID Sex Age, y Rai stage Mutation status Leukocyte count, 3109/L % CD5+CD19+ % CD3+ CMV status

1 Male 58 II M 43.0 93.0 6 +

2 Male 58 II ? 27.8 96.0 0 2

3 Male 50 0 UM 77.7 73.1 14.74 +

4 Male 75 ? M ? 89.6 5.75 2

5 Female 63 II M 113.0 88.3 4.35 +

6 Female 62 0 M 24.7 88.0 4.17 2

7 Male 60 0 UM 21.9 99.2 8.7 ?

8 Female 62 ? UM 74.6 99.7 2.7 ?

9 Female 62 0 M 46.1 91.1 6.7 +

10 Female 65 0 UM 51.4 64.9 5.3 ?

11 Male 74 II ? 68.9 88.4 1.8 +

12 Female 64 I M 33.0 86.6 10.1 2

13 Female 67 0 P 45.7 85.4 9.6 +

14 Male 66 I ? 32.1 78.1 11.7 +

15 Female 56 0 UM 90.3 96.4 3.1 2

16 Male 79 0 M 65.1 92.5 2.1 +

17 Male 41 I M 40.0 91.4 6 2

18 Male 79 0 UM 100.0 94.1 6.4 2

19 Male 55 0 M 85.6 84.0 9.6 ?

20 Female 69 0 P ? ? ? +

21 Male 56 0 M 93.9 84.3 3.5 +

22 Male 85 0 ? 36.5 86.1 10.5 +

23 Male 61 0 M 74.5 ? ? +

24 Male 80 0 M 86.4 93.4 2.8 +

25 Female 57 0 ? 52.9 80.9 11.6 +

26 Female 60 0 UM 52.6 87.3 9 +

27 Male 61 0 UM 60.2 92.8 4 +

28 Female 67 0 P 48.3 93.6 5.8 2

29 Male 75 ? ? 33.7 10.6* 8.3 +

30 Female 75 0 UM 50.0 78.3 3.6 2

31 Male 67 II M 122.1 85.3 1.7 +

32 Female 64 II M 30.8 76.7 10.7 ?

33 Male 63 0 M 72.1 94.7 4 +

34 Male 55 I UM 51.7 65.2 8.5 2

+, positive; 2, negative; ?, unknown; CMV, cytomegalovirus; M, mutated; P, polyclonal; UM, unmutated.

*CLL cells in this patient had low CD5 expression. CD19+ fraction in this patient is 84.7%
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Results
Impaired activation and reduced glucose uptake by
CLL-derived CD8+ T cells upon stimulation
To compare the response of CD8+ T cells derived from un-
treated CLL patients to age-matched HDs to T-cell receptor
triggering, we stimulated PBMCs with anti-CD3/CD28 anti-
bodies. Following stimulation, CLL-derived CD8+ T cells

displayed reduced expression of the activation markers
CD25, CD38, and CD71 (Figure 1A; supplemental Figure 1A),
as well as the degranulation marker CD107a (lysosome-
associated membrane protein 1) as compared with HDs
(Figure 1B). In addition, the frequency of PD-1+ cells before
and after stimulation was significantly higher in CLL-derived
CD8+ T cells compared with HDs (Figure 1C; supplemental
Figure 1B). As previously reported,21 interferon-g and tumor

Table 1. (continued)

ID Sex Age, y Rai stage Mutation status Leukocyte count, 3109/L % CD5+CD19+ % CD3+ CMV status

35 Male 74 0 M 105.7 92.7 2.8 +

36 Male 50 I UM 47.4 70.9 6.3 2

37 Male 51 I UM 51.3 85.1 3.5 +

38 Male 58 I UM 42.1 91.5 4.9 +

39 Female 88 0 M 177.6 95.4 2.4 2

40 Female 76 0 ? 31.1 ? ? ?

41 Female 80 0 ? 142.2 95.1 1.4 2

42 Male 57 II UM 84.7 90.7 3.6 +

43 Male 83 ? M 60.6 96.9 2.4 2

44 Male 74 0 M 61.3 87.7 5.2 +

45 Male 81 II ? 88.7 95.5 2.5 +

46 Female 63 0 M 43.9 94.3 4.8 +

47 Male 66 II M 23.1 90.5 7.9 +

48 Male 79 0 ? 39.0 92.0 3.4 2

49 Male 65 I ? 132.7 96.9 1.2 ?

50 Male 79 0 ? 127.8 97.1 2.1 +

51 Male 46 I UM 180.0 93.9 1.2 2

52 Male 64 I ? 155.8 94.6 3.6 +

53 Female 64 I M 113.3 93.5 5.2 ?

54 Female 72 ? ? 745.0 79.5 4.4 +

55 Female 79 0 M 83.8 93.5 4 +

56 Male 72 0 M 202.0 95.0 2 2

57 Male 68 ? UM 268.4 97.2 1.5 +

58 Female 80 I M 65.3 93.7 4.9 +

59 Female 56 ? M 87.2 94.3 4 ?

60 Male 68 0 ? 119.0 98.0 1.55 2

61 Male 69 0 ? 145.7 95 3.2 ?

62 Female 81 0 UM 63 85.9 14.3 ?

+, positive; 2, negative; ?, unknown; CMV, cytomegalovirus; M, mutated; P, polyclonal; UM, unmutated.

*CLL cells in this patient had low CD5 expression. CD19+ fraction in this patient is 84.7%
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necrosis factor-a production was not impaired (supplemental
Figure 1C), whereas proliferation was diminished in CLL-
derived CD8+ T cells (supplemental Figure 1D). Because
adequate T-cell effector function requires a rapid switch to
glycolysis,27 and glucose uptake is mediated by expression
of the glucose transporter GLUT1,42 we investigated GLUT1
expression by CD8+ T cells in PBMCs 2 days after stimulation
with anti-CD3/CD28. Although surface expression of the
glucose transporter GLUT1 was comparable between resting
CLL and HD CD8+ T cells, CLL-derived CD8+ T cells had lower
surface GLUT1 expression after stimulation (Figure 1D; sup-
plemental Figure 1E-F). In line with these data, we found
impaired glucose uptake in CLL-derived CD8+ T cells 2 days
after stimulation, but not in unstimulated CD8+ T cells
(Figure 1E; supplemental Figure 1A). Interestingly, a small
group of CLL patients showed similar glucose uptake upon
stimulation as in HD T cells, and we compared disease pro-
gression (percentage of CLL or white blood cell counts) of the
good responders vs poor responders (cutoff: 40% 2-NBDGhi),
but we did not observe any significant differences (supple-
mental Figure 1G). To exclude the possibility that these
results were due to different percentages of CD28+ cells or

lower expression levels of CD28 per cell between HDs and
CLL CD8+ T cells (supplemental Figure 1H), we also stimu-
lated PBMCs from HDs and CLL patients with anti-CD3 alone
because CD3 levels were similar in both groups (supple-
mental Figure 1H).43 We again found impaired GLUT1 surface
expression and glucose uptake in CLL-derived CD8+ T cells
when stimulated with anti-CD3 alone (supplemental Figure 1I-J).
Upon stimulation, CLL-derived CD8+ T cells did not show
changes in phosphorylation on AKT on residue S473 (sup-
plemental Figure 2A), phosphatidylinositol 3-kinase (sup-
plemental Figure 2B), or pS6 (supplemental Figure 2C).
However, decreased phosphorylation of AKT on residue T308
(supplemental Figure 2D), and 4E-BP1 (indicating reduced
translation of proteins) (supplemental Figure 2E) was ob-
served after T-cell stimulation, as well as a clear trend toward
reduced expression of hypoxia-inducible factor 1a (HIF-1a)
(supplemental Figure 2F). Taken together, these data dem-
onstrate that, upon stimulation, CLL-derived CD8+ T cells
have an impaired ability to become activated, and to suffi-
ciently increase their glucose uptake, which is at least in part
due to a lower expression of GLUT1 on the cell surface.

Reduced glucose uptake in CLL-derived CD8+

T cells is reversible and induced by a soluble factor
To investigate whether the metabolic alterations in T cells
were imposed by CLL cells, we stimulated purified CD8+

T cells or CD8+ T cells in their PBMC pool, which in our
experiments consist of, on average, 88% CLL cells, with anti-
CD3/CD28 antibodies. In contrast to CD8+ T cells stimulated
in their PBMC pool, purified CLL-derived CD8+ T cells had
similar surface GLUT1 expression, glucose uptake, and CD71
expression after stimulation as HD CD8+ T cells (Figure 2A-C).
To elucidate whether CLL cells were directly responsible for
the dampening effects on activation and glucose uptake of
T cells, we performed coculture experiments of autologous
purified CD8+ T cells and purified CLL cells, whether sepa-
rated by a transwell membrane or not. Upon stimulation, CLL-
derived CD8+ T cells cultured in the presence of CLL cells
showed impaired glucose uptake compared with CLL-derived
CD8+ T cells cultured alone, independent of direct cell-cell
contact (Figure 2D). These data suggest that in the presence
of CLL cells a soluble factor is responsible for the impaired
glucose uptake by CD8+ T cells. Because CLL cells might
compete with T cells for glucose, as has been shown in a solid
tumor model,34 and given the fact that lactate can inhibit
glycolysis,34,44,45 we tested whether glucose or lactate con-
centrations were a limiting factor in PBMC cultures from CLL
patients. As expected, glucose levels decreased and lac-
tate levels increased in supernatants from HD PBMCs upon
stimulation as compared with unstimulated PBMCs (Figure
2E). In contrast, in PBMC cultures derived from CLL patients,
glucose and lactate concentrations did not, or only mar-
ginally, change compared with unstimulated PBMCs. This
observation suggests that the reduced glucose uptake by
CLL-derived CD8+ T cells cannot be explained by reduced
glucose availability in the media or by repressive levels of
lactate. Together, these data indicate that the suppression of
glucose uptake in CD8+ cells fromCLL patients upon stimulation
is not T-cell intrinsic, but rather a consequence of exposure
to CLL cells.

Table 2. Characteristics of HDs included in this study

ID Sex Age, y ID Sex Age, y

1 ? 59 21 Male 72

2 Female 77 22 Female 71

3 Male 68 23 Male 70

4 Male 64 24 Female 71

5 Female 65 25 Male 65

6 Male 65 26 Female 66

7 Male 63 27 Male 66

8 Male 65 28 Female 63

9 Male 67 29 Male 70

10 Female 65 30 Male 66

11 Male 64 31 Female 65

12 Male 71 32 Female 67

13 Male 69 33 Female 70

14 Male 66 34 Female 69

15 Male 65 35 Female 61

16 Male 67 36 Female 63

17 Male 64 37 Female 66

18 Male 68 38 ? 64

19 Male 63 39 ? 64

20 Male 66

?, unknown; ID, identifier.
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Diminished GLUT1 reserves prior to stimulation
Because the effects of CLL cells on T cells can already have an
impact on resting T cells during disease progression, we next
focused on the metabolic status of CLL-derived CD8+ T cells
prior to stimulation. We found no differences in the extra-
cellular acidification rate (ECAR; Figure 3A) an indicator of
glycolysis, between resting CD8+ T cells from CLL and HDs,
which was in line with similar surface expression of GLUT1
(Figure 1D) and glucose uptake (Figures 1E and 3B) in
unstimulated CD8+ T cells from CLL and HDs. In contrast,

total GLUT1 (including intravesicular reserves) in resting CLL-
derived CD8+ T cells was diminished (Figure 3C). HIF-1a is the
main regulator of GLUT1 transcription,46 and lower intracellular
GLUT1 reserves could potentially result from low HIF-1a expression.
However, we found higher expression of HIF-1a in CD8+ cells from
CLL patients (unstimulated CD8+ T cells; Figures 1F and 3D), and
similar GLUT1mRNA levels in CD8+ cells fromCLL patients and HDs
(Figure 3E). Together, these data suggest that reduced availability of
intracellular GLUT1 reserves prior to stimulation can at least in part
explain the reduced surface expression of GLUT1 after stimulation.

Table 3. Characteristics of CLL patients included in CAR T-cell trial NCT01029366 or NCT01747486, and included in
this study

No. Clinical protocol Sex Age, y Overall response MRD (apheresis) Infused CAR T cells

1 NCT01747486 Male 56 CR 2.96E+11 1.78E+08

2 NCT01747486 Male 51 CR 1.02E+03 2.46E+07

3 NCT01747486 Male 63 CR 6.57E+08 2.52E+07

4 NCT01747486 Male 62 CR 5.57E+09 2.53E+08

5 NCT01747486 Female 60 CR 2.51E+10 2.65E+08

6 NCT01747486 Male 60 NR 2.95E+10 3.06E+08

7 NCT01747486 Male 63 NR 2.14E+11 1.23E+07

8 NCT01747486 Female 59 NR 1.11E+09 1.38E+07

9 NCT01747486 Male 62 NR 6.65E+10 7.00E+07

10 NCT01747486 Female 54 NR 1.93E+10 2.69E+08

11 NCT01747486 Male 55 NR 8.95E+09 3.86E+07

12 NCT01747486 Male 72 NR 2.16E+10 2.55E+07

13 NCT01747486 Female 58 NR 6.00E+09 3.18E+06

14 NCT01747486 Male 68 NR 8.42E+09 1.92E+08

15 NCT01747486 Male 54 NR 1.64E+09 2.18E+07

16 NCT01747486 Female 64 NR 1.12E+11 1.93E+07

17 NCT01747486 Female 59 NR 5.77E+04 1.00E+09

18 NCT01747486 Male 69 NR 3.44E+04 5.00E+08

19 NCT01747486 Male 76 NR 1.62E+10 2.88E+08

20 NCT01747486 Male 67 NR 1.53E+08 1.08E+07

21 NCT01747486 Female 61 NR 3.60E+10 1.83E+07

22 NCT01029366 Male 59 CR 2.00E+05 1.70E+08

23 NCT01029366 Male 78 CR 2.55E+10 9.36E+08

24 NCT01029366 Male 78 NR 2.64E+10 1.03E+08

25 NCT01029366 Female 64 NR 5.45E+10 2.77E+08

26 NCT01029366 Female 75 NR 1.08E+11 2.71E+08

27 NCT01029366 Male 70 NR 3.20E+11 1.56E+08

MRD, minimal residual disease.
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Elevated mitochondrial membrane potential and
mitochondrial reactive oxygen species levels in
CLL-derived CD8+ T cells
Because mitochondrial metabolism is instrumental in engaging
the first steps of glycolysis upon T-cell stimulation by enabling
the conversion of glucose into glucose-6-phosphate,29 we next
investigated OXPHOS in CD8+ T cells prior to stimulation. Using
a publicly available database,25 we analyzed gene-expression
profiles of CLL patient and HD-derived CD8+ T cells using KEGG
pathway analysis, and found OXPHOS as the second most
differentially expressed pathway (Figure 4A). Specifically, genes
encoding subunits of the electron transport chain complexes I,
III, IV, and V, and the mitochondrial-associated protein phos-
phatase 2 were expressed at a higher level in CLL-derived CD8+

T cells (Figure 4A). Accordingly, we found increased OXPHOS
levels as indicated by higher OCR (Figure 4B; supplemental
Figure 3A), and increased adenosine triphosphate production in
CLL-derived CD8+ T cells (supplemental Figure 3B). This in-
crease in OXPHOS was not attributable to higher mitochondrial
mass as measured byMitotracker Green staining and the relative
levels of mitochondrial DNA (Figure 4C).47 We did not observe
any significant differences between HD or CLL-derived CD8+

T cells when analyzing proton leak or maximum respiration
(supplemental Figure 3B). The SRC, indicating the capacity of
a cell to deal with increased cellular bioenergetic demands such
as T-cell activation,28,48 however, was reduced in CLL-derived
CD8+ T cells (Figure 4D).

Mitochondrial membrane potential (DCm) has been shown to be
a good indicator of mitochondrial fitness, and low DCm CD8+

T cells display enhanced in vivo persistence, and greater anti-
tumor immunity relative to highDCmcells.49 In line with this, CLL-
derived CD8+ T cells showed higher DCm (Figure 4E), which was
accompanied by increased mitochondrial reactive oxygen spe-
cies (ROS) but not total cellular ROS production (Figure 4F;
supplemental Figure 3C-D). Additionally, magnetic-activated cell
sorted HD-derived CD8+ T cells displayed increased mitochon-
drial ROS and DCm when cocultured together with CLL cells
compared with healthy B cells (Figure 4G), again indicating that
CLL cells induce metabolic changes at the mitochondrial level in
T cells. Peroxisome proliferator-activated receptor g coactivator
1-a (PGC-1a) is the main regulator of mitochondrial biogenesis,
and the expression of mitochondrial enzymes like superoxide
dismutase 2 (SOD2), which is essential in suppressing ROS in the
form of O2

2 generated by mitochondria.50,51 In accordance with
increased levels of mitochondrial ROS, we found reduced PGC-
1a protein levels in CLL-derived CD8+ T cells, and lower ex-
pression of SOD2, but not the cytosolic/intermembrane form
SOD1 (Figure 4H). Furthermore, expression of antioxidant heme
oxygenase 1 (HO-1), and its regulator nuclear factor erythroid
2–related factor 2 (NRF-2) were lower in CLL-derivedCD8+ T cells,
whereas expression of estrogen-related receptor a (ERRa) was
unchanged (Figure 4H; supplemental Figure 3E). Together, these
data indicate that mitochondrial fitness is impaired in CLL-derived
CD8+ T cells.

Impaired induction of mitochondrial biogenesis in
CLL-derived CD8+ T cells
When healthy T cells become activated, mitochondrial mass
increases to be able to deal with enhanced demands of several
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Figure 1. Impaired activation and reduced glucose uptake by CLL-derived CD8+ T cells upon stimulation. PBMCs from CLL patients and age-matched HDs were thawed
and cultured for 2 (A-B,D-F) or 5 (C) days in the presence or absence of anti-CD3/CD28 antibodies. Cells were analyzed for (A) activation markers (CLL, n = 15-19; HD, n = 16-22),
(B) degranulation (CLL, n = 12; HD, n = 12), (C) PD-1 expression (CLL, n = 8; HD, n = 8), (D) surface glucose transporter GLUT1 (measured by GLUT1 Ras-binding domain [RBD]
green fluorescent protein [GFP] construct) (CLL, n = 6; HD, n = 4; data are the same as in supplemental Figure 1G), and (E) glucose uptake (2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)
Amino)-2-Deoxyglucose [2-NBDG]; CLL, n = 23; HD, n = 20; data are the same as in supplemental Figure 1F), and expression of (F) HIF-1a (CLL, n = 6; HD, n = 4). Normality was
determined by a D’Agostino and Pearson normality test. The P value was calculated by an unpaired Student t test (A-C,E), or a Mann-Whitney test (A,D,F). Data are presented as
mean plus or minus standard error of the mean (SEM). *P , .05; **P , .005; ****P , .0001.
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metabolic needs.52,53 No differences were found in mitochon-
drial mass between naive CLL- or HD-derived CD8+ T cells
(Figure 5A). As expected, antigen-experienced cells displayed
increased mitochondrial mass compared with naive CD8+ T cells
derived from HDs (Figure 5A). In contrast, in CLL patients, no
increase in mitochondrial mass was found in antigen-
experienced compared with naive CD8+ T cells (Figure 5A;
supplemental Figure 4A). In addition, the reduced expression
of PGC-1a and SOD2 in CLL-derived CD8+ T cells was primarily
found in antigen-experienced T cells (Figure 5B). These data
hint to impaired mitochondrial biogenesis in CLL CD8+ T cells
upon T-cell receptor triggering. Indeed, when we stimulated
CD8+ T cells in vitro, we found that mitochondrial biogenesis
was reduced in CLL-derived CD8+ T cells (supplemental
Figure 4B), which could be rescued by depletion of CLL cells
(Figure 5C). Moreover, DCm and ROS production was already
higher in unstimulated CLL-derived CD8+ T cells compared with
HDs (Figure 4E-F), and remained higher after stimulation (Figure
5D-E). Together, these data indicate that CLL-derived CD8+

T cells have impaired mitochondrial biogenesis, which might at
least in part explain the hampered activation upon stimulation.

Increased mitochondrial biogenesis in
CD19-directed CAR T cells from CLL patients
showing a complete response
CAR T-cell therapy is a promising therapy to treat B-cell ma-
lignancies such as acute lymphoblastic leukemia and diffuse
large B-cell lymphoma. However, only limited successes have
been obtained in the treatment of CLL with this approach. We
asked whether reduced metabolic fitness of autologous CD8+

T cells could also be observed in transferred CAR T cells to
provide a mechanistic basis for the low response rates observed
in 2 trials investigating efficacy of CD19 CAR T-cell therapy in
CLL patients.14 We analyzed CAR+CD8+ T cells in infusion
products of 27 R/R CLL patients enrolled in these CAR T-cell
trials for mitochondrial mass, glucose uptake, mitochondrial
ROS, and DCm. Although glucose uptake, DCm, and mito-
chondrial ROS were comparable between complete responders
(CRs) and NRs, mitochondrial mass was significantly higher in
patients who had a complete response (Figure 6A; supplemental

Figure 5). It is important to note that in the process of CAR T-cell
generation, T cells are stimulated, thus these data on mito-
chondrial mass represent mitochondrial biogenesis in response
to stimulation. Recent studies provided a strong link between
indicators of CAR T-cell persistence and clinical outcome.54-56

A variety of markers used to indicate persistence, including
fold expansion of CAR T cells in vitro, expansion peak of CAR
T cells at days 0 to 35 using qPCR, area under the curve (AUC)
of the CAR T-cell qPCR calculated for days 0 to 35, and peak
percentage of CD3+CD8+ cells in the first 28 days post-
infusion, indeed showed significant correlations with clinical
responses.56 We found positive correlations between mito-
chondrial mass of CAR+CD8+ T cells in infusion products and
those 4 indicators of persistence (Figure 6B). In addition, we
observed that mitochondrial mass correlated positively with
the presence of nonexhausted CD27+ T cells that were neg-
ative for the expression of inhibitory receptors PD-1, T-cell im-
munoglobulin and mucin-domain containing 3 (TIM-3), and
lymphocyte activation gene 3 (LAG-3), but not with presence
of CD27+ T cells alone (Figure 6C). Taken together, our data
indicate that clinical outcome of R/R CLL patients following
CAR T-cell therapy is linked to mitochondrial mass of the
infused CAR+CD8+ T cells. Thus, enhancing mitochondrial
biogenesis during CAR T-cell production may ultimately lead
to more durable clinical responses in CAR T-cell therapy
in CLL.

Discussion
T cells in CLL acquire a dysfunctional state as CLL progresses
through as-yet not fully elucidatedmechanisms.57We and others
have previously shown that T-cell metabolism is tightly linked to
T-cell differentiation and function.27-31,47 Furthermore, we have
demonstrated that CD8+ T cells in CLL exhibit reduced glycolytic
activity after stimulation.38 Here, we focused on the metabolic
aspects of resting CD8+ T cells that might impact on the met-
abolic reprogramming upon stimulation, and found that CD8+

T cells in CLL have lower GLUT1 reserves and exhibit a skewed
mitochondrial metabolic profile prior to stimulation, which is
maintained after stimulation.
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Figure 4. Altered mitochondrial homeostasis in CLL-derived CD8+ T cells. (A) KEGG pathway analysis showing top 10 of most significantly different pathways in CD8+ T cells
from HDs vs CLL, and heatmap of differentially expressed genes in OXPHOS pathway (Gene Expression Omnibus [GEO] accession number GSE8835; P = 3.4 3 10215 for
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Previous work has shown that tumor cells can compete in
a metabolic “tug of war” with tumor-infiltrating lymphocytes
(TILs) for nutrients, which impedes glucose uptake by T cells.34

Although we observed impaired glucose uptake in CD8+ T cells
when exposed to CLL cells, we found that the impaired glycolytic
response upon stimulation could not be attributed to compe-
tition for glucose, nor to suppressive effects of lactate. This is
supported by the fact that surface GLUT1 expression is restored
when CLL cells were depleted. These findings indicate that, in
contrast to many other tumor cells, CLL cells themselves are not
highly glycolytic. It has indeed been described that circulating
CLL cells display similar glycolytic activity compared with healthy
B cells,58 which is also supported by the generally low maximum
standardized uptake values as measured by fluorodeoxyglucose
positron emission tomography/computed tomography scanning

in CLL patients.16 Despite the absence of glucose competition
between CD8+ T cells and CLL cells, CLL cells were able to
reduce glycolysis in CD8+ T cells while physically separated but
present in the same culture, suggesting that inhibition of gly-
colysis may be explained by a soluble factor. Immunosuppres-
sive cytokines such as interleukin 10 (IL-10) and transforming
growth factor b have been described to be produced by CLL
cells,59-64 and it was recently reported that transforming growth
factor b represses several metabolic pathways in natural killer
cells.65 Although a direct link between IL-10 and metabolic
plasticity in T cells has not yet been described, this cytokine
opposes the switch to the metabolic program induced by in-
flammatory stimuli in macrophages.66 Interestingly, production
of IL-10 during prolonged treatment with ibrutinib is reduced,
which correlated with improved T-cell numbers and function.67

Figure 4 (continued) (Mitotracker Green; CLL, n = 29; HD, n = 29) and by qPCR by calculating the mitochondrial DNA (mtDNA)-to-nuclear DNA (nDNA) ratio (CLL, n = 8; HD,
n = 5). (D) SRC was calculated as the ratio of maximumOCR over basal OCR (CLL, n = 6; HD, n = 6). (E) DCmwas determined by flow cytometry (Mitotracker Orange; CLL, n = 11;
HD, n = 12; data are the same as unstimulated control in Figure 5D). (F) Mitochondrial ROS (mitoSOX; CLL, n = 11; HD, n = 12; data are the same as unstimulated control in
Figure 5E). (G) Mitochondrial ROS as well as mitochondrial potential were analyzed in HD CD8 T cells cocultured with HD-derived B cells or CLL (HD, n = 8). (H) PGC-1a, SOD1,
and SOD2 (CLL, n = 8; HD, n = 8), HO-1, NRF-2, and ERRa (CLL, n = 8; HD, n = 4). Data were normalized to HD to compilemultiple independent experiments (B,D). Normality was
determinedby aD’Agostino and Pearson normality test. The P value was calculated by aWelch test (E-F),Mann-Whitney test (B-D,G-H), or an unpaired Student t test (H). Data are
presented as mean plus or minus SEM. *P , .05; **P , .005; ****P , .0001.
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Figure 5. Impaired induction of mitochondrial biogenesis in CLL-derived CD8+ T cells. PBMCs from CLL patients and age-matched HDs were thawed and subsets of CD8+

T cells were directly analyzed by flow cytometry. (A) Mitochondrial mass as defined by Mitotracker Green; naive T (Tn) cells: CD27+CD45RA+CCR7+CD952; memory stem cells
(Tscm): CD27+CD45RA+CCR7+CD95+; memory T cells (Tm): CD27+CD45RA2; and effector T cells (Te): CD272CD45RA2/+ (CLL, n = 9; HD, n = 9). (B) PGC-1a and SOD2 expression
in CD8+ T-cell subsets defined as naive (Tn: CD27+CD45RA+), memory (Tm: CD27+CD45RA2), and effector T cells (Te: CD272CD45RA2/+; CLL, n = 8; HD, n = 8). (C-E) PBMCswere
stimulated by using anti-CD3/CD28 antibodies for 2 days and being analyzed for (C) induction of mitochondrial mass, which was calculated by dividing the MFI of Mitotracker
Green of stimulated cells by unstimulated cells (CLL, n = 4; HD, n = 4), (D) DCm (CLL, n = 11-12; HD, n = 11-12; unstimulated control is the same as in Figure 4D), and
(E) mitochondrial ROS (CLL, n = 11-12; HD, n = 11-12; unstimulated control is the same as in Figure 4E). Normality was determined by a D’Agostino and Pearson normality test.
The P value was calculated by a paired Student t test (A), an unpaired Student t test (B, D), a Mann-Whitney test (C), or a Welch test (D-E). Data are presented as mean plus or
minus SEM. *P , .05; **P , .005; ***P , .0005; ****P , .0001.
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Upon T-cell activation, increased amounts of glucose must be
transported into the cell via glucose transporters, of which
GLUT1 is the most abundant.42 Although in resting CD8+ T cells

expression of surface GLUT1 and glucose uptake was compa-
rable between CLL patients and HDs, intracellular vesicular
storages of GLUT1 are reduced in CLL. This observation may
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Figure 6. Increased mitochondrial mass in CAR
T cells from CLL patients showing complete re-
sponse to CD19 CAR T-cell therapy. Patients were
separated into 2 groups based on response to therapy:
CRs and NRs. Viably frozen infusion products from
CLL patients undergoing a CD19 CAR T-cell trial
(NCT01747486, and NCT01029366; CR, n = 7; NR,
n = 20) were thawed and CAR+CD8+ T cells were
analyzed for (A) mitochondrial mass (Mitotracker
Green), glucose uptake (2-NBDG), mitochondrial
membrane potential (Mitotracker Orange), and
mitochondrial ROS (MitoSOX). (B) Mitochondrial
mass of CAR+CD8+ T cells plotted against deter-
minants of clinical outcome including expansion of
the CAR T-cell culture (fold expansion), expansion of
the CAR T cells after infusion (qPCR CAR days 0-35),
persistence of CAR T cells calculated at days 0 to 35
postinfusion (AUC days 0-35), and overall expansion
of CD8+ T cells after infusion (CD3+CD8+ peak days
0-28) (CR, n = 6; NR, n = 18). (C) Mitochondrial mass
of CAR+CD8+ T cells plotted against the percentage
of CD27+ cells negative for PD-1, TIM-3, and LAG-3
(CR, n = 6; NR, n = 18). Normality was determined
by a D’Agostino and Pearson normality test. The
P value was calculated by a Mann-Whitney test (A).
Correlations were determined by a Spearman Rho
test (B-C). Data are presented as mean plus or minus
SEM. *P , .05.
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explain why CLL CD8+ T cells fail to upregulate surface GLUT1
upon stimulation, and therefore have impaired glucose uptake.
The lower GLUT1 reserves could not be explained by reduced
GLUT1 RNA or HIF-1a levels. In contrast, we found higher
HIF-1a expression in CLL-derived CD8+ T cells, which is prob-
ably a result of the higher mitochondrial ROS levels in those cells
because ROS stabilizes HIF-1a.46 These data hint toward post-
transcriptional processes being involved in reduced vesicular
GLUT1 expression in CLL-derived CD8+ T cells.46,68 Our previous
study indeed demonstrated reduced total GLUT1 protein after
stimulation.38 This further implies that a GLUT1 production
problem rather than a trafficking problem causes the reduced
surface expression of GLUT1. Nevertheless, impaired vesicular
trafficking has been described in CLL T cells,25 and whether
GLUT1 trafficking to the cell surface is affected remains to be
determined.

We observed that resting CD8+ T cells in CLL exhibit a skewed
mitochondrial metabolic profile as demonstrated by elevated
OXPHOS, but decreased SRC compared with HDs. Our data
further demonstrate that CD8+ T cells in CLL have high DCmand
produce greater amounts of mitochondrial ROS compared with
HDs, analyzed directly ex vivo and after activation. T cells with
high DCm have been found to be associated with a terminally
differentiated state as these cells exhibit low expansion and poor
tumor-killing capacity.49 In contrast, T cells with low DCm exhibit
a memory phenotype, show robust expansion, and effectively
mediate tumor cell killing.49 Although mitochondrial ROS is
essential for T-cell activation,39 excessive production of ROS by
mitochondria inhibits T-cell development and function.69 Similar
to our observations in CLL-derived T cells, human clear cell renal
cell carcinoma CD8+ TILs were unable to efficiently take up
glucose, and generated large amounts of mitochondrial ROS,
which was associated with downregulated SOD2. Improved
activation of these clear cell renal cell carcinoma TILs was ob-
served by reducing mitochondrial ROS using mitochondrial
antioxidants.70 Similarly, suppressing mitochondrial ROS could
also restore antiviral activity of exhausted hepatitis B virus-
specific CD8+ T cells in chronic hepatitis B, further demon-
strating the importance of improving mitochondrial health to
boost T-cell function.71 These observations and the data we
present in this study suggest that deteriorated mitochondrial
health may be the basis of global dysfunction in T cells in CLL. In
many cell types, PGC-1a is themaster regulator of mitochondrial
function and biogenesis.72,73 We found reduced expression of
PGC-1a in resting CD8+ T cells in CLL. In a mouse model of
melanoma, overexpression of PGC-1a increased mitochondrial
mass in CD8+ T cells and improved tumor-killing capacity.50 In
line with this, mitochondrial mass was reduced in CLL-derived
antigen-experienced CD8+ T cells analyzed directly ex vivo, and
mitochondrial biogenesis was impaired in CLL-derived CD8+

T cells upon stimulation in vitro.

Clinical responses of CD19-CAR T-cell therapy in CLL can be
dramatic but only occur in a minority of patients.11,13-15 Here, we
demonstrate that mitochondrial mass was higher in CRs, and
correlated with expansion of CAR T cells in culture and their
persistence in vivo. Furthermore, we found that mitochondrial
mass correlated with the presence of CD27+ T cells that were
negative for PD-1, TIM-3, and LAG-3. Similar to our results, it
has previously been described that loss of mitochondrial
mass correlates with upregulation of co-inhibitory markers

PD-1, TIM-3, and LAG-3.50 Our data showing impaired mito-
chondrial biogenesis in CAR T cells from NR patients are in line
with our results on CLL-derived CD8+ T cells showing reduced
mitochondrial mass in steady state and impaired mitochondrial
biogenesis upon stimulation. However, we did not observe any
differences in DCm, mitochondrial ROS, and glucose uptake
between CR and NR patients. Differences in observations be-
tween theCAR T cells vs CLL-derivedCD8+ T cells canmost likely
be explained by differences in culturing methods (9-11 days
vs 2 days), cell type composition (absence of CLL cells vs 690%
CLL cells), and treatment status (heavily treated vs untreated
patients). The CAR described in the current studies is a second-
generation CAR containing the 4-1BB domain as a costimulatory
domain. This costimulatory molecule was recently described to
induce mitochondrial biogenesis, promote T-cell central memory
differentiation, and to improve immunotherapeutic approaches
including CAR T-cell therapy.74-76 Moreover, CD19 CAR+CD8+

T cells generated in memory stem cell–enriched conditions pos-
sessed more SRC and provided long-lasting antitumor responses.77

We therefore postulate that strategies that promote mitochon-
drial biogenesis during CAR T-cell generation might ultimately
benefit the efficacy of this therapy in CLL and possibly other
B-cell malignancies. Because the process of CAR T-cell gener-
ation involves transduction of a CAR-encoding construct and has
an vitro expansion phase, these strategies can include both
genetic and pharmacologic interventions on key metabolic
players such as the nicotinamide adenine dinucleotide–sirtuin
1–59 AMP-activated protein kinase–PGC-1a axis.78-80
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