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KEY PO INT S

l Burkitt-like lymphoma
with 11q aberration
harbors a mutational
landscape distinct
from sporadic BL.

l Biallelic inactivation
indicates a pathogenic
role of the INO80
complex-associated
NFRKB gene in
mnBLL,11q.

The new recently described provisional lymphoma category Burkitt-like lymphoma with
11q aberration comprises cases similar to Burkitt lymphoma (BL) on morphological,
immunophenotypic and gene-expression levels but lacking the IG-MYC translocation. They
are characterized by a peculiar imbalance pattern on chromosome 11, but the landscape of
mutations is not yet described. Thus, we investigated 15 MYC-negative Burkitt-like lym-
phoma with 11q aberration (mnBLL,11q,) cases by copy-number analysis and whole-exome
sequencing. We refined the regions of 11q imbalance and identified the INO80 complex-
associated gene NFRKB as a positional candidate in 11q24.3. Next to recurrent gains in
12q13.11-q24.32 and 7q34-qter as well as losses in 13q32.3-q34, we identified 47 genes
recurrently affected by protein-changingmutations (each ‡3 of 15 cases). Strikingly, we did
not detect recurrent mutations in genes of the ID3-TCF3 axis or the SWI/SNF complex that
are frequently altered in BL, or in genes frequently mutated in germinal center–derived

B-cell lymphomas likeKMT2D or CREBBP. An exception isGNA13, which was mutated in 7 of 15 cases. We conclude
that the genomic landscape of mnBLL,11q, differs from that of BL both at the chromosomal and mutational levels.
Our findings implicate that mnBLL,11q, is a lymphoma category distinct from BL at the molecular level. (Blood.
2019;133(9):962-966)

Introduction
Recently, a subgroup of germinal center–derived B-cell (GCB)
lymphomas has been described that resembles Burkitt lym-
phoma (BL) with regard to morphology, immunophenotype,
and gene-expression profile but it lacks the IG-MYC trans-
location typical for BL.1-5 Instead, these cases are cytogenet-
ically characterized by a peculiar pattern of an 11q aberration
consisting of a gain in 11q23.2-23.3 followed by a telomeric
loss in 11q24.1-qter. According to the revised 4th edition of
the WHO Classification of Tumours of Haematopoietic and
Lymphoid Tissue, these lymphomas have been described as
a new provisional entity called “Burkitt-like lymphoma with
11q aberration” (abbreviated herein as “mnBLL,11q,”).6 In

addition to the 11q aberration, mnBLL,11q, shows various
secondary imbalances and harbors a more complex karyotype
than BL.2

Recently, the mutational landscape of IG-MYC–translocated BL
has been thoroughly investigated7-10 and MYC, ID3, TP53,
SMARCA4, and GNA13, for example, have been identified as
recurrently mutated genes. In contrast, mutational analyses of
mnBLL,11q, have mainly focused on single genes, showing, for
example, lack of ID3 mutations in 14 mnBLL,11q, cases.2 This,
together with the lack of IG-MYC translocations and the different
imbalance patterns, suggests that mnBLL,11q, shows a genetic
makeup quite different from IG-MYC–translocated BL.
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To more comprehensively delineate the profile of copy-number
alterations (CNAs), single-nucleotide variants (SNVs) as well as
small insertions and deletions (indels) of mnBLL,11q, we per-
formed array-based imbalance mapping and whole-exome se-
quencing (WES) in 15 mnBLL,11q.

Study design
In this retrospective analysis, tumor samples of 15 patients
were included that had been diagnosed as BL, atypical
BL/BL-like or other aggressive B-cell lymphomas, and lacking an
IG-MYC translocation. In all cases, the diagnosis of mnBLL,11q,
had been considered (refer to supplemental Methods [avail-
able on the Blood Web site] for detailed description) and
an 11q aberration pattern was detected by fluorescence
in situ hybridization and imbalance profiling applying the
OncoScan CNV FFPE assay (12 cases). For 3 of these cases,
the clinical, immunophenotypical, and copy-number data
have been published previously.1,2,5 DNA extracted from
formalin-fixed paraffin-embedded tissue of all 15 patients
was subjected to WES. Refer to supplemental Methods for
details.

Results and discussion
We analyzed tumor samples of 15 patients retrospectively di-
agnosed with mnBLL,11q. The median age at diagnosis was
15.5 years (range, 4-52 years) and the male-to-female ratio was
2.75:1. An underlying immunodeficiency was clinically reported
in 2 of the cases, both of which had no evidence for an Epstein-
Barr virus infection. The characteristics of the cohort are sum-
marized in supplemental Table 1.

As a part of the retrospective workup, we analyzed the CNAs
in 12 cases not reported before (excluding the 3 cases
reported in Salaverria et al2). The median number of CNAs in
these 12 cases (gains, losses, and copy-number neutral losses
of heterozygosity) was 6.5 (range, 3-38), not significantly
differing from the findings reported by Salaverria et al using
a different array platform (median, 12.2; range, 2-28).2

Considering the 12 novel CNA profiles and those of the
3 cases previously reported,2 the typical pattern of chro-
mosome 11q gain/loss was observed in 13 of 15 mnBLL,11q,
cases (supplemental Figure 1; supplemental Table 2). In the
remaining 2 cases, in agreement with fluorescence in situ
hybridization studies (supplemental Table 1), only a telomeric
loss in 11q24.1-qter was detected without concomitant gain in
11q23. We consider such alterations, which have also recently
been reported in 1 mnBLL,11q, case,2 as a variant 11q aber-
ration. This might point to a more pronounced pathogenic
role of the genes in the deleted rather than in the gained re-
gion. Besides the changes on chromosome 11, other recurrent
imbalances included (partial) trisomy 12 (7 of 15 cases, mini-
mally gained region in 12q13.11-q24.32), and gain in 7q34-
qter and loss in 13q32.3-q34 (both 3 of 15 cases) (supplemental
Figure 1).

Next, we analyzed the mutational profile (SNVs and indels) of
mnBLL,11q, using WES. We identified 47 genes showing
potentially protein-changing SNVs in $3 of 15 mnBLL,11q,
cases (Figure 1A; supplemental Table 3). Strikingly, the
genes recurrently mutated in BL (.15% of BL patients
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SMARCA4 were not recurrently (.15%) or not at all mutated
in any of the mnBLL,11q, cases (Figure 1B; supplemental
Figures 2 and 3). The notable exceptions were GNA13 and
DDX3X, mutated in 7 and 4 of the 15 mnBLL,11q, respectively.
The almost complete absence of the BL-associated mutational
pattern prompted us to compare the mutational profile of
mnBLL,11q, to that of diffuse large B-cell lymphoma (DLBCL)
and follicular lymphoma (FL) (www.icgc.org and Morin et al11).
Again, we observed only a minor overlap in genes recurrently
mutated in both mnBLL,11q, and DLBCL/FL (.15% of cases)
including GNA13, TTN, and EZH2. Notably, the mutations in
EZH2 affected, in all 3 cases, the Y641 mutational hotspot.12 In
contrast, genes like KMT2D orCREBBPmost frequently mutated
in GCB-like non-BL, which share with mnBLL,11q, a GCB-like
gene-expression signature, were not at all mutated in our case
series (supplemental Figures 4 and 5). Accordingly, our findings
show the mutational profile of mnBLL,11q, to be overall dis-
tinct from that of BL as well as FL and DLBCL with only a few
exceptions.

Among the most frequently mutated genes in mnBLL,11q, were
GNA13 and TTN, mutated in each 7 of 15 cases. GNA13 muta-
tions, which frequently occur in GCB lymphomas like BL7,9 and
GCB-DLBCL,13 lead to a loss of protein function.14 In line, 5 of
11 GNA13 mutations detected in 7 mnBLL,11q, were likely del-
eterious (frameshift, stop-gain, stop-loss, splice-site), whereas the
remaining 6 mutations were nonsynonymous mutations located
in functional domains of the protein (supplemental Figure 6A-B).
We could verify 9 of 11GNA13mutations by Sanger sequencing.
In line, in silico modeling of the GNA13 mutations confirmed
the deleterious nature of the mutations leading to a loss of
function or destabilizing the G-protein’s function (supple-
mental Table 3; supplemental Figure 6A-B). Extending the
analysis to all genes belonging to theGa13-signaling pathway,
we identified, in 8 of 15 mnBLL,11q, cases, mutations in 1 of the
pathway genes (supplemental Figure 6C) with GNA13 being
the most frequently affected (7 of 8 cases). Most of the
mutations in the other genes co-occurred with the GNA13
mutations (3 of 4 cases).

The role of TTN mutations in mnBLL,11q, is unclear. It needs to
be considered that several other large and/or late replicating
genes are contained within the list of recurrently mutated genes
in mnBLL,11q, besides TTN (Figure 1A). Such genes are mutated
in several cancer types (refer to supplemental Results and dis-
cussion) but their pathogenic role in tumor development is
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Figure 1. Mutational landscape of mnBLL,11q, showing recurrentGNA13mutations. (A) Depicted are the potentially protein-changing SNVs and indels. Columns encode
samples and rows different genes. Different mutation types are color-coded in the oncoprint, where different types of mutation can coexist in 1 sample. *Mutations within these
genes are considered as dubious hits as reported by Lawrence et al.15 (B) Overall, the mutational profile differs between the 2 lymphoma entities, and only a few genes
are frequently mutated in both including GNA13 and DDX3X. Included are those genes that are mutated in $4 of 15 mnBLL,11q, cases and the 13 genes recurrently mutated
in .6 of 39 (.15%) BL cases (median age at diagnosis 8 years [range, 2-18 years]) based on whole-genome sequencing data accessible at www.icgc.org.
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unclear.15 Modeling of the TTN mutations confirmed the
mutations to be rather nononcogenic and, hence, constitute
most likely passenger variants (supplemental Table 3).

Next, we asked whether genes in the minimal regions of gain
and loss were targeted by mutations in addition to imbalances.
Three of 45 genes (PCSK7,DSCAML1, TMEM25) mapping to the
minimal region of gain were mutated in each only 1 mnBLL,11q,
case. With regard to genes located in the minimally deleted
region, we confirmed previous findings of recurrent mutations
in ETS1 (2 of 15 cases, including 1 published mutation2) and
detected recurrent mutations in NFRKB (4 of 15), which were
verified by Sanger sequencing (supplemental Table 3). Inter-
estingly, 3 of 4 NFRKBmutations were stop-gain mutations and,
accordingly, NFRKB function is supposed to be biallelically lost
in these 3 cases, that is, by deletion of 1 allele and mutation of the
other. In silico modeling of the mutations further supported the
deleterious character of the mutations (Figure 2; supplemental
Table 3; supplemental Results and discussion). In line, NFRKB
expression was described to be significantly lower in mnBLL,11q,
compared with BL based on expression-array analysis (P , .007;
supplemental Figure 7).2 NFRKB encodes a nuclear factor related
to the kB-binding protein, belonging to the INO80 chromatin-
remodeling complex,16 which plays a role in transcriptional
regulation.17 Extending the analysis to all genes of the INO80
complex showed mutations in 5 of 15 mnBLL,11q, cases. Given
the absence of recurrent mutations in genes of the SWI/SNF
chromatin-remodeling complex in mnBLL,11q, it is intriguing to
speculate that mutations in the INO80 complex in mnBLL,11q,
have a comparable function as the mutations in the SWI/SNF
complex in BL.

Finally, besides NFRKB, only MACF1, UBE2A, and DST, each
mutated in 3 of 15 mnBLL,11q, have been reported to be dif-
ferentially expressed in comparison with BL.2

Taken together, our data clearly show that besides the chromosomal
translocation and imbalance patterns, the mutational profile of
mnBLL,11q, is also strikingly different from BL and non-BL. Our
findings suggest a role of GNA13 in the pathogenesis of
mnBLL,11q, and identify the INO80 complex-associated gene
NFRKB as a candidate gene in the deleted region in 11q24.3.
Moreover, our findings support the recognition of mnBLL,11q,
as an entity distinct from not only MYC-positive BL but also
from other aggressive GCB lymphomas like DLBCL. Finally,
the observations presented, particularly the lack of a BL-specific
mutation pattern, combined with lack of an IG-MYC fusion, might
aid in the differential diagnostic process distinguishing IG-MYC–
translocated BL from mnBLL,11q.
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