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KEY PO INT S

l Hepatocyte-derived
tPA contributes to
basal circulating tPA
activity and affects
injury-induced
fibrinolysis.

l Hepatocyte tPA is
induced by ATF6 and
subjected to negative
regulation by the
corepressor DACH1.

Tissue-type plasminogen activator (tPA) is a major mediator of fibrinolysis and, thereby,
prevents excessive coagulation without compromising hemostasis. Studies on tPA regu-
lation have focused on its acute local release by vascular cells in response to injury or other
stimuli. However, very little is known about sources, regulation, and fibrinolytic function of
noninjury-induced systemic plasma tPA.We explore the role and regulation of hepatocyte-
derived tPA as a source of basal plasma tPA activity and as a contributor tofibrinolysis after
vascular injury. We show that hepatocyte tPA is downregulated by a pathway in which the
corepressor DACH1 represses ATF6, which is an inducer of the tPA gene Plat. Hepatocyte-
DACH1–knockout mice show increases in liver Plat, circulating tPA, fibrinolytic activity,
bleeding time, and time to thrombosis, which are reversed by silencing hepatocyte Plat.
Conversely, hepatocyte-ATF6–knockout mice show decreases in these parameters. The
inverse correlation between DACH1 and ATF6/PLAT is conserved in human liver. These

findings reveal a regulated pathway in hepatocytes that contributes to basal circulating levels of tPA and to fibrinolysis
after vascular injury. (Blood. 2019;133(7):743-753)

Introduction
Tissue-type plasminogen activator (tPA) is a secreted serine
protease that initiates the dissolution of a fibrin clot in a process
called fibrinolysis.1,2 When a fibrin clot forms on the wall of an
injured vessel, tPA binds to the fibrin and converts plasminogen
to plasmin, which proteolytically degrades the fibrin clot.3,4 tPA
is released locally by vascular endothelial cells in response to
injury, preventing excessive fibrin deposition and thrombosis.5,6

However, freshly isolated blood from healthy subjects
undergoes spontaneous fibrinolysis,7,8 suggesting the pres-
ence of basal tPA (ie, tPA activity present before injury occurs).
In this context, a major gap in fibrinolysis research is cen-
tered on the roles, regulation, and sources of basal plasma
tPA. A key question in this area, and one that raises the
possibility that a nonendothelial source of tPA may be im-
portant, is how medium-sized and large vessels respond to
injury with respect to fibrinolysis. Endothelial cells of these
vessels express less tPA than small vessels,9-11 and the tPA that
is secreted by these cells gets rapidly diluted owing to the
rapid flow and a much lower surface-to-volume ratio of large
vessels. Thus, a nonendothelial source of tPA may be im-
portant in limiting clot extension and thrombosis after injury
to medium-sized and large arteries.

The fibrinolytic activity of plasma is determined, in large part,
by the relative concentrations of plasma tPA and its inhibitor,
plasminogen activator inhibitor-1 (PAI-1).1,2 Longitudinal studies
have revealed an association between lower plasminogen ac-
tivator and fibrinolytic activity in plasma and future recurrent
myocardial infarction.12 Moreover, basal plasma fibrinolytic ac-
tivity was shown to have a diurnal variation, with a nadir in the
morning, which is the time of highest risk for coronary artery
disease.13 More recently, studies have shown that low plasma
tPA activity per se predicts cardiovascular disease in humans.14,15

Collectively, these studies suggest that basal plasma fibrinolytic
activity, determined in part by tPA concentration, is a function-
ally important mechanism to prevent pathological fibrin clot
formation and thrombosis.

Although hepatocytes have been shown to express tPA protein
and messenger RNA (mRNA),16,17 the fibrinolytic function of
hepatocyte tPA, either in the liver or systemically, and its mode
of regulation remain unknown. In this study, we show that
hepatocytes are a significant source of plasma tPA under basal
conditions and that hepatocyte-derived tPA complements lo-
cally released vessel wall–derived tPA to limit clotting after ar-
terial injury. Moreover, we show that hepatocyte-derived tPA is
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negatively regulated by a corepressor called DACH1. DACH1
functions by repressing the transcription factor ATF6, which we
show is an inducer of the tPA gene Plat. These findings add new
insight into the decades-old mystery of the roles, regulation, and
sources of basal tPA.

Methods
Mice
Dach1fl/fl mice were generated as previously described18 and
crossed onto the C57BL/6J background. Male and female
Dach1fl/fl mice were injected IV with adeno-associated virus 8
(AAV8) viruses containing hepatocyte-specific TBG-Cre recom-
binase (AAV8-TBG-Cre) at 3 months of age to deplete DACH1
in hepatocytes19 (HC-DACH1–knockout [KO] mice). Control
mice were Dach1fl/fl mice injected with AAV8 viruses containing
the control vector virus (AAV8-TBG-LacZ). Atf6fl/fl mice20 on the
C57BL/6J background were purchased from The Jackson Lab-
oratory. Male and female Atf6fl/fl mice were injected IV at
3 months of age with AAV8-TBG-Cre to deplete ATF6 in hep-
atocytes (HC-ATF6–KOmice). Control animals were Atf6fl/fl mice
injected with AAV8-TBG-LacZ virus. Male and female wild-type
(WT) C57BL/6J mice were purchased from The Jackson Labo-
ratory and maintained for 1 week in the Columbia University
Medical Center (CUMC) animal facility before IV injection of
AAV8-H1–short hairpin Plat (shPlat) to silence hepatocyte Plat.
Female WT C57BL/6J mice and holo-tPA–KO mice21 were
purchased from The Jackson Laboratory and maintained for
1 week in the CUMC animal facility before IV injection of AAV8-
TBG-Plat to express Plat in hepatocytes. AAV8 vectors were
delivered at a titer of 1 3 1011 genome copies per mouse, and
experiments were commenced 3 to 6 weeks later. For all
experiments, mice were maintained on a 12-hour light–dark
cycle with free access to a normal chow diet and water. Male and
female mice of the same age and similar weight were randomly
assigned to experimental and control groups. All mouse
experiments were performed with the approval of the In-
stitutional Animal Care and Use Committee of CUMC.

Viral constructs
Adenovirus expressing LacZ (adeno-LacZ), adenovirus expressing
DDS-DACH1, adenovirus expressing short hairpin RNA targeting
human ATF6 (adeno-shATF6), and adenovirus expressing
a nuclear-active form of ATF6 (adeno–ATF6-N) were de-
scribed previously19,22,23 and amplified by Viraquest (North Lib-
erty, IA). AAV8-TBG-Cre and AAV8-TBG-LacZ were purchased
from the Penn Vector Core. The AAV8–H1–short hairpin RNA
(shRNA) construct targeting murine Plat was made by annealing
complementary oligonucleotides and then ligating them into the
pAAV-RSV-GFPH1 vector, as described previously.24 The re-
sultant constructs were amplified by Salk Institute Gene Transfer
Targeting and Therapeutics Core. AAV8-TBG-Platwas purchased
from Vector Biolabs.

Mouse thrombosis assays
Carotid artery thrombosis was the result of FeCl3-induced injury
or Rose bengal/laser-induced photochemical injury, as described
previously.25,26 Briefly, mice were anesthetized with isoflurane
and placed on a thermo-controlled blanket (37°C), followed by
surgical exposure of the carotid artery. For the FeCl3 procedure,
a filter paper soaked in 10% FeCl3 was applied to the artery for

3 minutes, followed by rinsing with normal saline. Blood flowwas
monitored with an ultrasound flow probe (Transonics) and
recorded using LabChart software (ADInstruments). The time to
total occlusion was defined as the time interval between ap-
plication of FeCl3 and stable occlusion of the artery, with no
blood flow for 3 minutes.25 For the Rose bengal/laser procedure,
0.15 mL of Rose bengal in 0.9% saline was injected IV through
the tail vein to achieve a dose of 50 mg/kg. A green laser light
(Melles Griot) at a wavelength of 540 nm was applied 6 cm from
the carotid artery, and blood flow was monitored continuously
from the onset of photochemical injury.26 The time to total
occlusion was defined as the time interval between application
of the laser and stable occlusion of the artery, with no blood flow
for 10 minutes. The mice were euthanized immediately after the
procedure.

Mouse tail bleeding assay
Mice were anesthetized with isoflurane and positioned hori-
zontally on a platform that allowed the tail to descend ;2 cm
from the top of the platform. A segment of tail on the distal tail
tip was transected with a no. 11 surgical scalpel to induce
wounds; 2 mm in diameter. Bleeding was monitored by gently
dabbing the tail tip on Whatman paper at 10-second intervals
until the cessation of bleeding.27 The time to stable cessation of
bleeding was defined as the time interval between the tail in-
cision and cessation of bleeding, with no evidence of rebleeding
for 60 seconds. Bleeding exceeding 15 minutes was stopped by
applying pressure.

Plasma collection and analyses
Blood from cardiac puncture in 10% volume of sodium citrate
(3.8%, weight-to-volume ratio) was centrifuged for 15 minutes at
2300g, and plasma was carefully collected from the supernatant
fraction. Plasma samples were divided into aliquots, snap-frozen,
and stored at 280°C until analyses. Total antigen levels of tPA,
PAI-1, plasminogen, fibrinogen/fibrin, fibrin degradation prod-
ucts (FDPs), and thrombin–antithrombin complexes in plasma
were measured by enzyme-linked immunosorbent assay (ELISA)
kits, according to manufacturer’s instructions (catalog numbers
are listed in supplemental Methods, available on the BloodWeb
site). Plasma PAI-1–free tPA was measured by an assay in which
the ELISA platewas coatedwith PAI-1 antigen to enable detection
of only the functional PAI-1–free form of tPA. tPA enzymatic ac-
tivity in plasma or tissue lysates was assayed by chromato-
graphically measuring the release of p-nitroaniline chromophore
from a plasmin-specific synthetic substrate. Results were recorded
and analyzed using a VersaMax Microplate Reader and SoftMax
Pro software (Molecular Devices).

tPA release
For the basal value, plasma (;15 mL) was collected via tail bleed,
with care taken not to subject the tail to pressure. One week
later, plasma was collected 20 minutes after FeCl3-induced
carotid injury. All blood was immediately suspended in 10%
volume of sodium citrate (3.8%, weight-to-volume ratio), followed
by a 15-minute centrifugation at 2300g at room temperature,
and plasma was carefully collected from the supernatant frac-
tion. Plasma samples were divided into aliquots, snap-frozen,
and stored at280°C until analyses. Basal and post-FeCl3 plasma
tPA antigen levels were measured on the same ELISA plate.
Results were recorded using a VersaMax Microplate Reader and
analyzed by SoftMax Pro software (Molecular Devices). The tPA
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release data were calculated by subtracting the post-FeCl3 value
from the basal value for each patient.28

Clauss fibrinogen assay
Comparison of clottable fibrinogen in plasma between control
and hepatocyte (HC)-DACH1–KO mice was carried out using
a Clauss fibrinogen assay kit (Helena Laboratories; catalog
number 5376). This kit, which is representative of commercially
available kits to assay clottable fibrinogen in mouse plasma, uses
bovine thrombin to cleave fibrinogen and human fibrinogen for
the standard curve. Briefly, 0.2 mL of plasma diluted 1:10 in
Owren’s Veronal Buffer provided in the kit was incubated for
2 minutes at 37°C. Thrombin reagent (0.1 mL) was then added,
and clotting time was measured. Fibrinogen levels were de-
termined from a standard curve prepared from known dilutions
of fibrinogen. The data are presented as clottable fibrinogen
relative to the control mouse cohort.

Euglobulin clot lysis assay
The euglobulin fraction from 50mL of citratedmouse plasma was
resuspended in 900 mL of 0.017% acetic acid, placed on ice for
20 minutes, and then centrifuged for 20 minute at 2000g at 4°C.
After careful removal of the supernatant fraction, each pellet
(euglobulin fraction) was resuspended in 55 mL of sodium bo-
rate/NaCl (pH 9.0) and transferred into a single well on a flat-
bottom 96-well microtiter assay plate. A total of 50 mL of 25 mM
CaCl2 was added to each well, and the plates were recorded at
405 nm every 10 minutes, with 3-second shakes before each

reading, at room temperature for 16 hours. Clot lysis time was
calculated as the time to achieve 50% of clot lysis (half-lysis
time).29

Human and mouse primary
hepatocyte experiments
Human primary hepatocytes were obtained from the Liver Tissue
Cell Distribution System at the University of Pittsburgh. Primary
mouse hepatocytes were isolated from 10-week-old WT C57BL/
6J mice, as described previously.19,30 All cells were cultured in
Dulbecco’s modified Eagle medium containing 10% fetal bovine
serum and then transduced with various adenoviral constructs,
as described in the figure legends. The cells were harvested after
18 hours in RIPA buffer (Thermo Fisher; catalog number 89900)
with Halt Protease and Phosphatase Inhibitor Cocktail (Thermo
Fisher; catalog number #78444) for immunoblotting or in RNA
lysis buffer (QIAGEN; catalog number 79216) for mRNA quan-
tification. Culture media were collected, snap-frozen in liquid
nitrogen, and stored at 280°C until processing.

Human liver specimens
Deidentified human liver specimens were acquired from the
Liver Tissue Cell Distribution System at the University of Min-
nesota. The specimens were collected postmortem on the date
of liver transplantation and preserved as frozen samples. The
diagnostic information is included in supplemental Table 1.
Phenotypic and pathological characterization was conducted by
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medical physicians and pathologists associated with the Liver
Tissue Cell Distribution System. The protocol was approved by
the Institutional Review Board at CUMC.

Statistical analysis
All results are presented as mean 6 standard error of the mean
(SEM). The D’Agostino-Pearson omnibus test was used to test for
normality. Two-tailed P values were calculated using the Student
t test for normally distributed data and the Mann-Whitney U rank-
sum test for nonnormally distributed data. One-way analysis of vari-
ance, followed by the Tukey test, was used to evaluate differences
among groups when$3 groups were analyzed. Linear regression
was used for determining the correlation of variables. Statistical ana-
lyses were conducted using Prism (GraphPad) and R software.

Results
Mice lacking hepatocyte DACH1 have
increased fibrinolysis
DACH1 is a helix-turn-helix transcriptional corepressor that
determines cell fate and retrains aberrant cell growth,31 and we
showed recently that it regulates an insulin receptor signaling
pathway in hepatocytes by repressing the gene encoding the
transcription factor ATF6.19 To obtain a more global under-
standing of genes regulated by DACH1 in hepatocytes, we
conducted a liver RNA sequencing study in Dach1fl/fl mice
injected with hepatocyte-specific AAV8-TBG-Cre (HC-DACH1–

KO; Cre) vs control AAV8-TBG-LacZ (LacZ)19 (Figure 1A). AAV8-
TBG-Cre deletes floxed genes specifically in hepatocytes vs
other types of liver cells or other organs.30,32 Among the more
striking finding was that Plat was markedly higher in HC-DACH1–
KO livers (Figure 1B), whereas the expression of other major
coagulation-related factors was unchanged (supplemental
Figure 1A-B). To assess the functional significance of this finding,
we examined total tPA antigen and enzymatic activity in the
plasma and observed significant increases in both end points in
the KOmice (Figure 1C-D). Consistent with previous reports that
plasma plasminogen decreases after fibrinolytic therapy,33,34 we
found lower plasminogen concentration in the plasma of HC-
DACH1–KO mice vs control mice (supplemental Figure 1C). In
contrast, the plasma concentration of PAI-1, the major inhibitor
of tPA activity, was similar in control and HC-DACH1–KO mice
(supplemental Figure 1D). Further, PAI-1–free tPA, the form of
tPA that is functionally active, was significantly increased in the
KO mice (Figure 1E). Increased plasma tPA can result from
decreased receptor-mediated tPA clearance by the liver by LRP1
and themannose receptor,35 but there were no differences in the
expression of the mRNAs encoding these receptors (Lrp1 and
Mrc1) between control and HC-DACH1–KO mouse livers (sup-
plemental Figure 1E). As additional evidence for increased fi-
brinolytic activity in the plasma of HC-DACH1–KO mice, KO
plasma also showed decreases in fibrinogen-fibrin antigen
(Figure 1F), clottable fibrinogen levels (Figure 1G), and eu-
globulin clot lysis time (Figure 1H), which is the time it takes to
dissolve a clot formed in vitro in the euglobulin fraction of plasma
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Figure 2. DACH1 deletion in hepatocytes increases bleeding
time and time to thrombotic carotid occlusion in mice. (A) Tail
bleeding time and representative images of bleeding patterns
on filter paper. Black arrows indicate beginning bleeding time
course, and red arrows depict episodes of rebleeding. Time
to occlusive carotid arterial thrombosis induced by 10% FeCl3
injury (B) or Rose bengal/laser photochemical injury (C). (B)
Representative blood flow pattern. The red arrows depict rapid
increases in blood flow after transient occlusions, suggestive of
transient recanalization of the clotted vessel. **P , .01, 2-tailed
Student t test (n 5 8-10 mice per group).
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in the absence of plasmin inhibitors.29 There was also an increase
in FDPs in KO plasma (Figure 1I). This increase in FDPs likely was
not due to an increase in thrombin-mediated fibrin formation,
because the concentration of plasma thrombin–antithrombin
complexes, a marker of activated thrombin, was similar between
the KO and control mice (supplemental Figure 2A). These com-
bined data demonstrate that mice lacking DACH1 in their hepa-
tocytes have increased fibrinolysis.6,35,36

These findings and those presented in the next section (“Silencing
hepatocyte tPA decreases fibrinolysis in HC-DACH1–KO and
WT mice”) in WT mice suggest that hepatocytes are an im-
portant source of functionally active plasma tPA, which is un-
der negative regulation by DACH1, in the basal state. To
determine whether this pathway also impacts the fibrinolytic
response to vascular injury, we assayed tail bleeding time and
coagulation and thrombosis after vascular injury in HC-
DACH1–KO mice and control mice. HC-DACH1–KO mice had
significantly longer tail bleeding times and showed a rebleeding
pattern compared with control mice (Figure 2A). Moreover, oc-
clusive carotid artery thrombosis induced by FeCl3 or photo-
chemical injury was prolonged in the KO mice, and there was
a pattern of transient occlusions, followed by rapid increases in
blood flow, which was suggestive of transient recanalization of the

clotted vessel (Figure 2B-C). Platelet count, adenosine 59-
diphosphate–stimulated platelet aggregation, and platelet sur-
face levels of activated aIIbb3 (JON/A) and P-selectin were similar
in HC-DACH1–KO and control mice (supplemental Figure 2B-D).

Silencing hepatocyte tPA decreases fibrinolysis in
HC-DACH1–KO and WT mice
To directly test the role of hepatocyte tPA in the HC-DACH1–KO
phenotype, we compared mice with normal HC-DACH1 (LacZ),
HC-DACH1–KO mice (Cre), and HC-DACH1–KO mice treated
with shPlat in an AAV8-H1 vector (Cre-shPlat). AAV8-H1-shRNA
vectors silence genes specifically in hepatocytes.24,31,37,38 As
before, HC-DACH1–KO mice had increases in liver Plat mRNA,
plasma tPA activity and protein, bleeding time, and time to
FeCl3-induced occlusive carotid arterial thrombosis, but treat-
ment of these KO mice with shPlat normalized all of these
parameters (Figure 3). As an indicator of the hepatocyte spec-
ificity of HC-DACH1–KO mice and AAV8-H1-shPlat mice, we
showed that carotid intimal and medial-adventitial Plat levels
were similar in the 3 groups of mice (supplemental Figure 3A).
Note that the intima is enriched in endothelial cells, the cell type
thought to be the major source of tPA,5,6,39 and the media-
adventitia is enriched in smooth muscle cells (supplemental
Figure 3B), which is another source of tPA.40 Thus, the increase in
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circulating tPA protein and activity in mice with deleted hepa-
tocyte DACH1 can be directly and causally linked with the in-
crease in liver Plat in these mice.

Although previous studies have shown evidence of tPA ex-
pression by hepatocytes, to our knowledge, none has shown that
hepatocyte tPA plays a role in systemic fibrinolysis. Therefore,
we conducted a series of additional tests to further explore the
relative level of tPA expression by hepatocytes and its role in WT
mice. Using flow cytometry, immunoblot, and quantitative
polymerase chain reaction, we found that hepatocytes express
high levels of tPA relative to liver nonparenchymal cells, which
are enriched in endothelial cells, macrophages, and hepatic
stellate cells; consistent with the hepatocyte specificity of AAV8-
H1-shRNA (above), only hepatocyte tPA was decreased by
AAV8-H1-shPlat (supplemental Figure 4A-D). In terms of com-
parisons with well-known sources of tPA, the levels of Plat
mRNA, immunoreactive tPA protein, and tPA activity in liver
were comparable to those in arterial tissue, and arterial tPA was
not affected by AAV8-H1-shPlat (Figure 4A-C). We also assessed
the role of hepatocyte tPA in mice with normal DACH1. As
shown in Figure 4B-C, we were able to lower liver tPA inWTmice
by;40% using AAV8-H1-shPlat. This level of silencing led to an
;50% lowering of plasma tPA protein and an ;30% lowering
of plasma tPA activity (Figure 4D-E). Despite this only partial
silencing efficiency, there was a 43% decrease in bleeding time
(P 5 .0003) and a 25% decrease in the time to occlusive

carotid arterial thrombosis induced by photochemical injury
(P 5 .001) (Figure 4F-G). Additionally, AAV8-H1-shPlat did not
significantly alter thrombin-antithrombin complexes (supplemental
Figure 4E), indicating that the reduced time to occlusion and
bleeding time were likely not due to an increase in fibrin formation.

Endothelial granule–stored tPA can be rapidly released in re-
sponse to endothelial injury–induced thrombosis,5 and we
predicted that this process would not be affected by silencing
hepatocyte tPA. To test this prediction, we compared tPA before
and after FeCl3-induced carotid injury and found that the relative
increase after FeCl3 was similar between control and hepatocyte
tPA–silenced mice (Figure 4H). These data suggest that the
release of tPA from the endothelium after injury is independent
of hepatocyte tPA and, in view of the previous data above, that
hepatocyte tPA works in concert with tPA released from the
endothelium to affect postinjury fibrinolysis.

As a final test of the role of hepatocyte tPA, we treated holo-
tPA–KO mice21 with AAV8-TBG-Plat (tPA-KO 1 HC-Plat) to
restore only hepatocyte tPA; WT mice 1 HC-LacZ and tPA-KO 1
HC-LacZ were used as the controls (supplemental Figure 5). The
hepatocyte tPA–restored KO mice showed a substantial increase
in plasma tPA protein and a significant decrease in clot lysis
time (supplemental Figure 6). These combined data further
demonstrate the importance of hepatocytes as a source of
systemic functionally active tPA.

A

Re
la

tiv
e 

liv
er

 P
la

t m
RN

A

Liver Carotid
Intima

n.s.

*

2.0

1.5

1.0

0.5

0.0

B
Ctrl shPlat

tP
A 

(n
g/

m
g 

pr
ot

ei
n)

n.s.

**

2.5

2.0

1.5

1.0

0.5

0.0
Liver Carotid

C

*

n.s.

Tis
su

e 
tP

A 
ac

tiv
ity

(
A

/m
in

/m
g 

pr
ot

ei
n 

x1
0-3

) 6

4

2

0
Liver Carotid

D

0

5

10

15

20

25

Pl
as

m
a t

PA
 (n

g/
m

L)

Ctrl

***

shPlat 

Ctrl shPlat 
0

5

10

15

tP
A 

re
le

as
e 

(n
g/

m
L)

n.s.

E

0.0

0.5

1.0

1.5

Pl
as

m
a t

PA
 ac

tiv
ity

(
 A

/m
in

/m
L x

10
-3

)

**

Ctrl shPlat 

F

Bl
ee

di
ng

 ti
m

e 
(se

c)

***
400

300

200

100

0
Ctrl shPlat 

G

Tim
e 

to
 o

cc
lu

sio
n 

(m
in

)

**60

45

30

15

0
Ctrl shPlat 

H

Pl
as

m
a t

PA
 (n

g/
m

L)

Basal

After FeCl3
40

30

20

10

0
Ctrl shPlat 

Figure 4. Silencing of hepatocytePlatmRNA inWTmice decreases liver tPA, plasma tPA, and systemicfibrinolytic activity. PlatmRNA (A), tPA concentration by ELISA (B),
and tPA activity by enzymatic assay (C) in the liver and carotid arterial lysates of WT mice injected with control AAV8-H1 virus or AAV8-H1-shPlat. Results are shown as mean6

SEM (n5 4mice per each group). Plasma tPA protein concentration (D), plasma tPA activity (E), tail bleeding time (F), and time to occlusive carotid arterial thrombosis (G) induced
by photochemical injury in WT mice injected with control AAV8-H1 virus or AAV8-H1-shPlat (n5 8-10 mice per each group). (H) Plasma tPA concentration 1 week before (basal)
and 20 minutes after FeCl3-induced carotid artery thrombosis; tPA release was calculated by subtracting the basal value from the after-FeCl3 value for each mouse. Horizontal
lines in dot-density plots indicate mean values. *P , .05, **P , .01, ***P , .001, 2-tailed Student t test (A-C,E-H), Mann-Whitney U test (D). n.s., not significant (P $ .05).

748 blood® 14 FEBRUARY 2019 | VOLUME 133, NUMBER 7 ZHENG et al

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/133/7/743/1552523/blood864843.pdf by guest on 02 June 2024



DACH1 lowers hepatocyte tPA in primary human
hepatocytes and mouse liver by repressing ATF6,
which is a transcriptional inducer of the tPA
gene Plat
To understand how DACH1 regulates Plat expression in hepa-
tocytes, with a focus on human relevance, we compared pri-
mary human hepatocytes transduced with a dominant-negative
mutant of DACH1 (DDS-DACH1)41 with control LacZ-transduced
hepatocytes. We first validated this model by showing that DDS-
DACH1 increased the cellular mRNA and protein of tPA and
ATF6, a transcription factor that is normally repressed by
DACH119 (Figure 5A). DDS-DACH1 also increased tPA protein
and activity in the media of the hepatocytes (Figure 5B). We
next considered the hypothesis that DACH1 directly represses

PLAT, but there were no conserved DACH1 binding consensus
sequences42 within 15 kb upstream or downstream of the PLAT
genomic region. However, we did find a highly conserved ATF6
binding motif in exon 9 of PLAT (Figure 5C), suggesting the
hypothesis that DACH1 decreases tPA by first repressing ATF6,
which would then lead to decreased PLAT transcription. Chro-
matin immunoprecipitation assays in mouse liver revealed en-
richment of ATF6 at the aforementioned consensus site but not
at a nonconsensus site in the Plat gene (Figure 5D). In further
support of this hypothesis, silencing of ATF6 in primary human
hepatocytes using adeno-shATF6 decreased tPA protein and
PLAT mRNA (Figure 5E; supplemental Figure 7A). Conversely,
transduction of human hepatocytes with ATF6-N43 increased tPA
protein and PLAT mRNA (Figure 5F; supplemental Figure 7B).
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Using adeno-shATF6 and adeno–ATF6-N, similar results were
obtained in mouse primary hepatocytes (supplemental
Figure 7C-D).

To determine the role of ATF6 in vivo, we studied Atf6fl/fl mice
treated with AAV8-TBG-Cre or control AAV8-TBG-LacZ, which
we validated by showing successful knockdown of ATF6 in the
livers of the Cre mice (supplemental Figure 8). In support of the
hypothesis, the Cre mice showed decreases in liver Plat mRNA,
plasma tPA protein and activity, bleeding time, and time to
occlusive carotid arterial thrombosis induced by photochemical
injury (Figure 6). These combined data support the existence of

a DACH1 → ↓ATF6 → ↓tPA pathway in hepatocytes that has
a significant effect on systemic tPA activity.

High DACH1 in human liver is associated with low
levels of ATF6 and PLAT
We were able to obtain 25 random human liver specimens from
the National Institutes of Health–sponsored Liver Tissue Cell
Distribution System (supplemental Table 1) and observed a
spectrum of DACH1 protein levels (Figure 7A).Without regard to
the clinical characteristics of the donors or possible reasons for
DACH1 variation, we saw this as an opportunity to test unbiased
correlations of DACH1 with ATF6 and PLAT mRNA in human
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liver. We found that all livers with relatively high DACH1 ex-
pression (densitometric ratio. 4) had relatively low levels ofATF6
and PLAT mRNA (relative mRNA ,4 and ,15, respectively)
(Figure 7B). There was also a significant inverse relationship be-
tween a DACH1 level . 4 and ATF6 and PLAT mRNA levels .4
and .15, respectively. However, some livers had relatively
low ATF6 and PLAT at low DACH1, suggesting that when
gene repression by DACH1 is low, $1 other pathway may be
able to suppress ATF6 and PLAT. Finally, in relationship to the
new finding in this study that ATF6 is an inducer of PLAT, we
found a very tight correlation between ATF6 and PLAT in
human liver (Figure 7C). These human liver data complement
the causation data with primary human hepatocytes, which
together provide evidence that key components of the new
pathway revealed in this study are present in hepatocytes
from human liver.

Discussion
The distinction between acutely released and “constitutive” tPA
was made years ago,5 but the sources, regulation, and functional
significance of constitutive tPA have remained largely unknown.
The new findings in this study suggest a scenario in which
hepatocyte-derived tPA, regulated by a fascinating corepressor/
transcription factor pathway, is a key source of functionally active
plasma tPA under basal conditions and, most importantly,
influences fibrinolysis when a subsequent injury does occur. We
find it particularly interesting that hepatocytes are a functionally
important source of systemic tPA-mediated fibrinolytic activity,
which is a scenario that was not previously appreciated. Previous
work has shown that the liver produces most factors relevant to
blood coagulation, but the role of the liver in fibrinolysis
represents an area of uncertainty, including the roles and
regulation of liver-derived PAI-1.44 Plasma PAI-1 was not af-
fected by deleting DACH1 in hepatocytes, but other processes
that affect liver PAI-1 will influence the net contribution of the liver
to fibrinolysis.

The findings in this study raise the possibility that preexisting tPA
may “prime” the fibrinolytic system so that when an injury does
occur, the response can be immediate and complement the
local release of vessel wall tPA. The evolutionary advantage of
such an integrated program of fibrinolysis would be to prevent
pathologic clot extension beyond the immediate site of injury,
particularly in larger vessels in which locally released endothelial-
derived tPA may be diluted.5,45 In support of this concept, there
are a number of articles in the literature suggesting, in humans,
the importance and regulation of plasma tPA that does not
simply arise from acute vessel injury. As one example, plasma
tPA protein has been shown to be elevated in the setting of
thrombotic risk, which has been interpreted as a compensatory
response.46,47 In another aspect of physiology, plasma tPA is
affected by circadian rhythm: the time of lowest tPA correlates
with the peak time of portal vein congestion in subjects with
cirrhosis.48 Although the cellular source of the plasma tPA in these
examples is not known, new findings from this study raise the
interesting possibility that it may originate from hepatocytes. Fi-
nally, it should be mentioned that tPA and tPA-generated plasmin
also have a number of nonfibrinolytic functions (eg, in wound re-
pair, angiogenesis, tissue remodeling, neurotransmission, synaptic
plasticity, and regulation of inflammation)45,49-51; thus, the role of

hepatocyte-derived tPA in these processes represents a topic for
future study.

In conclusion, our findings add new insights into the regulation
of tPA and its role in fibrinolysis. We imagine that these insights
and ones that will follow from future studies in this area will
suggest new therapeutic strategies for diseases of hemostatic im-
balance and perhaps diseases that are influenced by other
functions of tPA.
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