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KEY PO INT S

l GWAS in Hispanics
identified ERG as
a novel ALL risk locus,
with effect sizes
correlated with Native
American ancestry.

l ERG risk genotype
was underrepresented
in ALL with the ETV6-
RUNX1 fusion or
somatic ERG deletion,
but enriched in the
TCF3-PBX1 subtype.

Acute lymphoblastic leukemia (ALL) is the most common malignancy in children. Charac-
terized by high levels of Native American ancestry, Hispanics are disproportionally af-
fected by this cancer with high incidence and inferior survival. However, the genetic basis
for this disparity remains poorly understood because of a paucity of genome-wide inves-
tigation of ALL in Hispanics. Performing a genome-wide association study (GWAS) in 940
Hispanic children with ALL and 681 ancestry-matched non-ALL controls, we identified
a novel susceptibility locus in the ERG gene (rs2836365; P 5 3.76 3 1028; odds ratio [OR] 5
1.56), with independent validation (P 5 .01; OR 5 1.43). Imputation analyses pointed to
a single causal variant driving the association signal at this locus overlapping with putative
regulatory DNA elements. The effect size of the ERG risk variant rose with increasingNative
American genetic ancestry. The ERG risk genotype was underrepresented in ALL with the
ETV6-RUNX1 fusion (P < .0005) but enriched in the TCF3-PBX1 subtype (P < .05). Inter-
estingly, ALL cases with germline ERG risk alleles were significantly less likely to have so-
matic ERG deletion (P < .05). Our results provide novel insights into genetic predisposition
to ALL and its contribution to racial disparity in this cancer. (Blood. 2019;133(7):724-729)

Introduction
Acute lymphoblastic leukemia (ALL) is the most common cancer
in children, with substantial racial disparities in both disease
susceptibility and treatment outcomes.1,2 In particular, Hispanics
have a disproportionally higher incidence of ALL with a signifi-
cantly lower survival than other racial/ethnic groups in the United
States (supplemental Figure 1, available on the Blood Web
site),3,4 which may be partially attributed to Native American
ancestry-related genomic variations.5-7

Through genome-wide association studies (GWASs), a number
of risk loci have been identified for childhood ALL.8-10 The

majority of these risk genes are transcription factors involved
in hematopoietic development, with variable effects by race/
ethnicity. For instance, single-nucleotide polymorphisms (SNPs)
in ARID5B, GATA3, and PIP4K2A have higher-risk allele fre-
quencies in Hispanics,5,11-13 whereas CEBPE SNP does not con-
tribute to ALL susceptibility in African Americans (AAs).11 However,
due to the limited sample size and complex admixture, there is
a paucity of genome-wide investigation of ALL risk variants in
Hispanics.

In this study, we performed a GWAS in genetically defined
Hispanic children with ALL and ancestry-matched controls to
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systematically identify novel leukemia risk loci in this population
and evaluate their associations with ALL clinical features.

Study design
In the discovery GWAS, Hispanic childhood B-cell ALL (B-ALL)
cases were from the Children’s Oncology Group (COG)
AALL023214 and P9904/P990515 clinical trials (supplemental
Figure 2; supplemental Table 1). Non-ALL controls were un-
related subjects from the Multi-Ethnic Study of Atherosclerosis
(MESA).12 The replication cohort included 144 Hispanic B-ALL
cases from the COG P990615 and St. Jude Total Therapy XIIIB/
XV cohorts,16,17 with 441 Hispanic controls from the Genetics of
Asthma in Latino Americans (GALA) study.18 For rs2836365, we
also examined its allele frequency across populations in Europe
and Latino groups in the Americas in the 1000 Genomes Project
(supplemental Figure 3), and compared them against allele
frequency observed inMESA (supplemental Figure 4), to rule out
selection bias in our control subjects. This study was approved
by the respective institutional review boards with proper
informed consent. Detailed methods are described in sup-
plemental Methods.

Results and discussion
The discovery GWAS was conducted by comparing genotype
frequencies of 572 556 SNPs between 940 Hispanic B-ALL cases
and 681 controls, with SNP genotype-based principal compo-
nents representing genetic ancestry included as covariables to
control for population structure. Four loci reached genome-wide
significance (P , 5 3 1028, Figure 1A; supplemental Table 2),
of which ARID5B, IKZF1, and GATA3 have been reported
previously.11,12,19,20 A novel locus was identified in the intronic
region of the ERG gene at 21q22.2 (Figure 1A), with the
strongest association signal at rs2836365 (P 5 3.8 3 1028; odds
ratio [OR] 5 1.56, 1.33-1.83; supplemental Table 3). In the
replication cohort of 144 Hispanic cases and 441 controls, the
association signal was confirmed for rs2836365 (P 5 .01; OR 5
1.43 [1.07-1.89]; supplemental Table 3). To further explore ALL
risk variants in ERG, we imputed genotypes at additional SNPs
within a 1-Mb region flanking rs2836365 and found 12 variants
achieving genome-wide significance (supplemental Table 4). An
imputed SNP rs2836371 showed more significant association
than the original GWAS top hit (P 5 1.42 3 1029; OR 5 1.64
[1.40-1.93]; supplemental Table 4), and it remained significant
even after adjusting for rs2836365 (P 5 .006; OR 5 2.03 [1.22-
3.37]; supplemental Figure 5). However, no SNP in this region
was significant after adjusting for rs2836371, pointing to single
plausible causal variant.

To explore the potential functional effects of ALL risk alleles in
the ERG locus, we examined lineage-specific chromatin acces-
sibility data of the human hematopoietic cells,21 and found that
rs2836371 resided in a region of open chromatin with a moderate
ATAC-seq (Assay for Transposase-Accessible Chromatin us-
ing sequencing) signal in both hematopoietic stem cells and
megakaryocyte-erythroid progenitor cells (Figure 1B). More
interestingly, the ALL association peak at this locus was located
within a ;150-kb region encompassing genome-wide signifi-
cant loci for plateletcrit, mean corpuscular volume/hemoglo-
bin, and white blood cell types.

The ERG risk allele at rs2836365 was only modestly associated
with ALL susceptibility in European Americans (EAs) (P 5 .02;
OR 5 1.12 [1.02-1.22]; N 5 2317 cases and 2050 controls) and
was not significant in AAs (P . .05, OR 5 0.96 [0.74-1.24],
N 5 227 cases and 1380 controls; supplemental Table 5). In
both GWAS discovery and replication series, the ERG risk allele
was significantly more common in Hispanics than EAs and AAs,
and the allele frequency was positively related to the proportion
of Native American ancestry (Figure 2A). The effect size of this
variant also increased with Native American ancestry (OR5 1.13,
1.55, and 2.35, respectively; Figure 2B). These results pointed to
ERG as a plausibly ancestry-related risk locus for childhood ALL.

We next examined whether ERG SNP genotype preferentially
predisposes to any ALL subtype, focusing on the COG P9904/
9905/9906 series because it represented a large national cohort
of ALL patients consecutively enrolled with minimal selection
bias, including major subtypes: ETV6-RUNX1, TCF3-PBX1,
KMT2A rearrangement, hyperdiploidy, and B-other. Because
the ERG risk allele was significant in both Hispanics and EAs, we
performed our analyses combining patients from these 2 racial/
ethnic groups and adjusted for genetic ancestry (N5 1391). The
ERG risk genotype was significantly underrepresented in ETV6-
RUNX1 ALL (P5 .0003), but enriched in the TCF3-PBX1 subtype
(P 5 .03; Figure 2C). ERG expression also varied significantly
across ALL subtypes, with the highest level observed in ETV6-
RUNX1 ALL (supplemental Figure 6). Because somatic alter-
ations at the ERG locus have been recently described and define
a novel ALL subtype (concomitant with IGH-DUX4 rearrange-
ments),22 we also evaluated its association with ERG risk variants
in a subset of 905 ALL cases with both somatic and germline
genomic data available. The frequency of ERG risk allele at
rs2836365 was significantly lower in cases with somatic ERG
deletion than those without (supplemental Figure 7; P 5 .04
and .02, for with or without adjusting for genetic ancestry,
respectively).

The biological basis of racial disparities in cancer is poorly un-
derstood, in part because non-European populations are dis-
proportionally underrepresented in cancer genomic studies.
Taking a race/ethnicity-specific approach, we identified a novel
ALL risk locus in Hispanics, in the ERG intronic region. The ERG
risk variant is related to Native American ancestry in that its
variant frequency and effect size both increase with the level of
Native American ancestry, pointing to a likely ancestry-related
effect on ALL susceptibility. The correlation of the ERG risk allele
frequency with Native American ancestry was also true in a co-
hort of Guatemalan children with ALL (supplemental Figure 8).
The underlying mechanism for such race/ethnicity-dependent
effects of a genetic risk factor is unclear, although it has been
reported for other cancers23 (eg, a stronger effect of the ESR1
locus for breast cancer susceptibility inChinese women compared
with Europeans and not significant in Africans24). It can be posited
that the ERG variant interacts with another yet-to-be-discovered
ALL risk allele that is exclusively present in Hispanics and the
combination of both is important for ALL susceptibility. Alterna-
tively, the ERG risk variant identified herein tags a causal allele
that is absent in non-Hispanics, although this is less likely given
the results from the imputation analyses. Future studies are thus
warranted to unravel the mechanistic details linking ERG to ALL
pathogenesis. We also examined all previously reported ALL
susceptibility loci in our Hispanic GWAS (supplemental Table 2).
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Figure 1. GWAS of ALL susceptibility in Hispanics and functional annotation of genomic variants at the ERG locus. (A) The association between genotype and ALL was
evaluated by using a logistic regression model for 572 556 SNPs in 940 Hispanic ALL cases and 681 ancestry-matched non-ALL controls. Hispanics were defined on the basis of
Native American genetic ancestry. P values (2log10P, y-axis), estimated from the additive logistic regression test in PLINK, were plotted against respective chromosomal position
(x-axis). Gene symbols were indicated for 4 loci achieving genome-wide significance threshold (P , 5 3 1028, dashed black horizontal line): ARID5B (10q21.2), IKZF1 (7p12.2),
GATA3 (10p14), and ERG (21q22.3). The novel risk locus ERG identified in this study is underlined and highlighted in blue. (B) Functional annotation of genomic variants at the
ERG locus. The default tracks including genomic positions and scale for the human genome assembly February 2009 (GRCh37/hg19) are shown on the top. The SNPs significantly
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ERG encodes an ETS domain-containing transcription factor
important for normal hematopoietic development.25 Recently,
we and others identified a novel ALL subtype characterized by
IGH-DUX4 rearrangement in which the overexpression of DUX4
leads to ERG deregulation (primarily the expression of an

alternative ERG transcript [ERGalt] with secondary deletion of
the wild-type ERG allele in some cases).22 Interestingly, our novel
ALL risk variant resides within close proximity to the hotspot of
leukemic ERG deletions (Figure 1B), and there was a significant
negative correlation between germline and somatic variation at

Figure 1 (continued) associated with blood cell–related traits at this locus weremarked in the GWAS catalog track. The log-transformed P values for SNPs tested for association
with ALL in Hispanics are shown in the bed graph. Somatic ERG deletions in ALL (commonly involving exons 3-7 or 3-9) are indicated below the gene structure. The gene
structure, Assay for Transposase-Accessible Chromatin using sequencing signals in different types of hematopoietic cells,21 and placental mammal basewise conservation scores
by phyloP are also included. CD4_Tcell, CD41 T-cell; CD8_Tcell, CD81 T-cell; CLP, common lymphoid progenitor; CMP, common myeloid progenitor; Ery, erythroid; GMP,
granulocyte-macrophage progenitor; HSC, hematopoietic stem cell; LMPP, lymphoid-primed multipotent progenitor; MEP, megakaryocyte-erythroid progenitor; Mono,
monocyte; MPP, multipotent progenitor; NK, natural killer cell.
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Figure 2. The frequency and effect sizes of the ERG risk allele and ALL features. Risk allele frequency (A) and OR (B) of rs2836365 were estimated for Hispanics with
increasing levels of Native American genetic ancestry (10%-30%, 30%-50%, and 50%-100%). In the Forest plot (B), bars indicate 95% confidence intervals (CIs) and the gray
vertical line indicates OR of 1. OR was estimated by logistical regression test. (C) Risk allele frequency of ERG SNP rs2836365 and ALL features. The analysis was restricted to
the Hispanic Americans and EAs in the COG P9904/9905/9906 cohort because it represents a largely unselected and nationwide patient population. Variant frequency was
indicated for ALL molecular subtype, sex, age at diagnosis, presenting white blood cell (WBC; 109 cell/L) count, and MRD at the end of remission induction. Logistic
regression test with rs2836365 genotype adjusting for genetic ancestry (eg, ALL with vs without ETV6-RUNX1); *P , .05; ***P , .0005. Ctrls, controls; KMT2A-R, KMT2A
rearrangement; MRD, minimal residual disease (at the end of induction therapy on day 29).
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the ERG locus, arguing for similar effects of these variants on
ERG function (supplemental Figure 7A).

Our results suggested that there could be a substantial number of
genetic variants/loci contributing to racial/ethnic disparities in ALL,
and collaborative efforts with larger sample sizes are needed to
systematically uncover these molecular determinants in the future.
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