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KEY PO INT S

l Mass spectrometry–
based HLA ligandome
analysis of primary CML
patientsamplesrevealed
a panel of novel CML-
associated target
antigens.

l These antigens
induced
multifunctional T-cell
responses and may
be used as targets
for T-cell–based
immunotherapeutic
approaches.

Antileukemia immunity plays an important role in disease control and maintenance of
tyrosine kinase inhibitor (TKI)-free remission in chronic myeloid leukemia (CML). Thus,
antigen-specific immunotherapy holds promise for strengthening immune control in CML
but requires the identification of CML-associated targets. In this study, we used a mass
spectrometry–based approach to identify naturally presented HLA class I– and class II–
restricted peptides in primary CML samples. Comparative HLA ligandome profiling using
a comprehensive dataset of different hematological benign specimens and samples from
CML patients in deepmolecular remission delineated a panel of novel frequently presented
CML-exclusive peptides. These nonmutated target antigens are of particular relevance
because our extensive data-mining approach suggests the absence of naturally presented
BCR-ABL– and ABL-BCR–derived HLA-restricted peptides and the lack of frequent tumor-
exclusive presentation of known cancer/testis and leukemia-associated antigens. Func-
tional characterization revealed spontaneous T-cell responses against the newly identified
CML-associated peptides in CML patient samples and their ability to induce multifunctional
and cytotoxic antigen-specific T cells de novo in samples from healthy volunteers and CML

patients. Thus, these antigens are prime candidates for T-cell–based immunotherapeutic approaches that may prolong
TKI-free survival and even mediate cure of CML patients. (Blood. 2019;133(6):550-565)

Introduction
Chronic myeloid leukemia (CML) is characterized by the trans-
location t(9;22) that leads to the formation of the BCR-ABL fusion
transcript.1,2 To inhibit the resulting fusion protein, which
mediates constitutive tyrosine kinase activity, 5 approved tyro-
sine kinase inhibitors (TKIs) are available that have led to an
impressive improvement in the prognosis of CML patients.3-7

Currently, the main treatment goal in CML is the achievement of
a so-called “deep molecular response” (MR), in which discon-
tinuation of TKI therapy can be considered. However, only few
patients are able to permanently stop TKI therapy without suf-
fering from molecular relapse.8,9 Thus, lifelong TKI therapy is the

standard of care for most CML patients, but it can be associated
with significant side effects and the risk of developing resistance
to TKIs.10,11 Several studies provided evidence that immuno-
logical control may contribute to and even represent amarker for
the achievement of deep MR in CML patients under TKI treat-
ment (CMLTKI patients) and treatment-free remission (TFR). The
restoration of immune responses is characterized by increased
natural killer (NK)-cell and T-cell responses,12 reduced PD-1
expression on T cells,12 the correlation of CD62L expression on
T cells13 in patients with MR, and the association between
increased NK-cell count14 and CD861 plasmacytoid dendritic
cell count and function15 with TFR.
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In turn, reinforcing CML-specific immune responses by
T-cell–based immunotherapy may serve to enlarge the fraction
of patients achieving long-term TFR or even cure. It has been
shown that “nonspecific” immunotherapy approaches, such as
allogeneic stem cell transplantation or interferon-a (IFN-a) ther-
apy, enable long-lasting remissions in CML patients after dis-
continuation of TKI therapy.16-20 Immune checkpoint inhibitors,
which have revolutionized the treatment of many solid tumors in
recent years,21-23 are currently being evaluated in CML therapy.24

More advanced strategies to treat CML patients comprise agents
inducing an immune response specifically directed against the
leukemic cells, such as vaccines,25-27 T-cell receptor mimic
antibodies,28-30 or engineeredT cells.31,32 The prerequisite for such
T-cell–based immunotherapeutic approaches is the identification
of targets for CML-specific T-cell responses, which, in general, are
represented by tumor-associated HLA-presented peptides on
malignant cells.33,34 Several studies have suggested neoepitopes
arising from tumor-specific mutations as central specificities of
checkpoint inhibitor–induced T-cell responses in solid tumors with
high mutational burden.33,35 However, the role of neoantigens for
T-cell responses in cancer entities with low mutational burden,
including CML, remains unclear. In addition to neoantigens, we
and other investigators identified nonmutated tumor-associated
HLA peptides that are able to induce peptide-specific T-cell
responses and can serve as targets for T-cell–based immuno-
therapy approaches.36-39 In recent years, we implemented
the characterization of such tumor-associated antigens in
hematological malignancies (HMs) based on the direct iso-
lation of naturally presented HLA ligands from leukemia cells
and their subsequent identification by mass spectrometry
(MS). Thus far, for acute myeloid leukemia, chronic lym-
phocytic leukemia (CLL), and multiple myeloma, we identi-
fied .100 tumor-exclusive highly frequent antigens that
were validated as immunogenic targets for T-cell–based immu-
notherapy approaches.38,40,41 An extensive meta-analysis of our
HM immunopeptidome data revealed only a small set of entity-
spanning antigens that was predominantly characterized by low
presentation frequencies within the different patient cohorts,42

indicating that T-cell–based immunotherapies for HMs should
be designed in an entity-specific manner. For CML, very few

nonmutated tumor-associated antigens43-46 or peptides derived
from the BCR-ABL fusion region47-49 have been described and
validated as immunogenic targets of anticancer T-cell
responses.50-52 Here, we comprehensively mapped the land-
scape of naturally presentedHLA class I and II peptides in primary
CML samples to identify novel CML-associated antigens covering
a broad range of HLA allotypes. These antigens were further val-
idated for their potential to induce T-cell responses, particularly in
the context of immunomodulatory effects induced by TKI treatment
in CML patients.53-56

Methods
A detailed description of the methods used can be found in
supplemental Methods (available on the Blood Web site).

Patients and blood samples
Peripheral blood mononuclear cells (PBMCs) from CML patients
were collected at the Departments of Hematology and Oncology
in Tübingen, Leipzig, and Aachen, Germany. Informed consent
was obtained in accordance with the Declaration of Helsinki
protocol. The study was performed according to the guidelines
of the local ethics committees. Patient characteristics are pro-
vided in supplemental Table 1.

HLA surface molecule quantification
HLA surface expression was determined using a QIFIKIT
quantification flow cytometric assay (Dako).40,57 Cells were
stainedwith the pan-HLA class I–specificW6/32, HLA-DR–specific
L243 monoclonal antibodies (mAbs), or isotype control. Surface
marker staining was performed with fluorescence-conjugated
antibodies against CD33, CD13, CD117, and CD34.

Isolation of HLA ligands
HLA molecules were isolated by standard immunoaffinity
purification40,58 using the mAbs W6/32, Tü-39, and L243.
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Figure 1. HLA surface expression of primary CML cells. HLA class I (A) and HLA-DR (B) expression was determined by flow cytometry for CD331 and CD131 myeloid cells, as
well as for CD1171CD341 precursor cells, from the peripheral blood of CML patients (n5 7) at the time of diagnosis. Data points represent individual samples. Horizontal lines
indicate mean values 6 standard deviation.
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Figure 2. Comparative HLA class I ligandome profiling and identification of CML-associated antigens. (A) Saturation analysis of HLA class I ligand source proteins of the
CML patient cohort. Number of unique HLA ligand source protein identifications are shown as a function of cumulative HLA ligandome analysis of CML samples (n 5 21).
Exponential regression allowed for the robust calculation (R2 5 0.9999) of the maximum attainable number of different source protein identifications (dotted line). The dashed
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Analysis of HLA ligands by liquid
chromatography–tandem MS
HLA ligand extracts were analyzed as described previously.38

Peptides were separated by nanoflow high-performance liquid
chromatography. Eluted peptides were analyzed in an online-
coupled LTQ Orbitrap XL mass spectrometer. Furthermore,
parallel reaction monitoring targeting BCR-ABL– and ABL-BCR–
derived peptides (supplemental Table 2) was performed on an
Orbitrap Fusion Lumos mass spectrometer.

Data processing
Data processing was performed as described previously.38,57

Proteome Discoverer (v1.3, Thermo Fisher Scientific) was used
to integrate the search results of the Mascot search engine
(v2.2.04, Matrix Science) against the human proteome (Swiss-
Prot database). For the search of BCR-ABL– and ABL-BCR–derived
neoantigens, the human proteome was extended by BCR-ABL
sequences from the TrEMBL database and by published ABL-BCR
sequences.59,60

The false discovery rate (FDR; estimated by the Percolator al-
gorithm 2.0461) was limited to 5% for HLA class I and 1% for HLA
class II. HLA class I annotation was performed using SYFPEITHI
1.062 and NetMHCpan 3.0.63,64 The lists of HLA class I and II
peptides identified on CML, CMLMR, and hematological benign
tissue samples are provided in supplemental Data Set 1.

Peptide synthesis
Peptideswere producedwith the Liberty BlueAutomated Peptide
Synthesizer (CEM) using the 9-fluorenylmethyl-oxycarbonyl/
tert-butyl strategy.65

Amplification of peptide-specific T cells and IFN-g
ELISPOT assay
PBMCs from CML patients and healthy volunteers (HVs) were
pulsed with 1mg/mL (class I) or 5mg/mL (class II) per peptide and
cultured for 12 days.38,40 Peptide-stimulated PBMCs were ana-
lyzed by enzyme-linked immunospot (ELISPOT) assay.41,66

aAPC priming of naive CD81 T cells
Priming of peptide-specific cytotoxic T lymphocytes was con-
ducted using artificial antigen-presenting cells (aAPCs).37,67

Magnetic-activated cell-sorted CD81 T cells were cultured with
IL-2 and IL-7. Weekly stimulation with peptide-loaded aAPCs
and IL-12 was performed 4 times.

Cytokine and tetramer staining
The functionality of peptide-specific CD81 T cells was analyzed
by intracellular cytokine staining (ICS).66,68 Cells were pulsed with
peptide, brefeldin A, and GolgiStop. Staining was performed
usingmAbs against CD8, tumor necrosis factor (TNF), IFN-g, and
CD107a. The frequency of peptide-specific CD81 T cells was
determined by anti-CD8 and tetramer staining.69

Cytotoxicity assay
The cytolytic capacity of peptide-specific CD81 T cells was
analyzed using the flow cytometry–based VITAL assay.70,71 Au-
tologous target cells were loaded with test peptides or irrelevant
control peptides and labeled with CFSE or FarRed, respectively.
Effector cells were added at the indicated effector-to-target
ratios. Specific lysis of peptide-loaded target cells was calculated
relative to control targets.

Data availability
The MS data have been submitted to the ProteomeXchange
Consortium (http://proteomecentral.proteomexchange.org) via
the PRIDE72 partner repository (dataset identifier PXD010450).

Results
Myeloid and precursor cells of primary CML
samples express high levels of HLA molecules
T-cell–based immunotherapy requires sufficient HLA expres-
sion on target cells, which, in the case of CML, consist of
myeloid cells and myeloid precursor cells. Thus, as a first step,
we quantified HLA surface expression on CD331 and CD131

myeloid cells, as well as on CD1171CD341 precursor cells,
using PBMCs from CML patients (n 5 7; supplemental Ta-
ble 1). HLA class I surface levels showed substantial het-
erogeneity, with molecule counts per cell of 78 600 to
202 100 (mean 153 600) for CD331 cells and 69 500 to
322 000 (mean 184 600) for CD131 cells (Figure 1A). HLA class II
expression ranged from 37 700 to 230 000 (mean 101 200)
molecules per cell for DR1CD331 cells and from 39 000 to
286 300 (mean 158 900) molecules per cell for DR1CD131 cells
(Figure 1B). Notably, the highest HLA surface levels were
detected on precursor cells, with 112 000 to 316 500 (mean
221 100) and 99 700 to 487 200 (mean 228 300) molecules per
cell for HLA class I and II, respectively (Figure 1).

MS identifies naturally presented CML-associated
HLA class I ligands in CML patient samples
MS analysis of 21 primary CML samples revealed a total of
11 945 unique HLA class I ligands (range 535-2107; mean 1080
per sample) from 5478 source proteins (supplemental Figure 3A;
supplemental Data Set 1), obtaining 82% of the estimated
maximum attainable coverage in HLA ligand source proteins
(Figure 2A). For the identification of CML-associated antigens,
we established a comparative cohort of hematological benign
tissues (n 5 108), including PBMCs (n 5 63), granulocytes
(n5 14), CD191 B cells (n5 5), bonemarrow (n5 18), and CD341

hematopoietic progenitor cells (HPCs; n 5 8). A total of 51232
naturally presented HLA class I ligands (range 101-7587; mean
1404 per sample) from 11437 source proteins (supplemental
Data Set 1), obtaining 95% of maximum attainable coverage
(supplemental Figure 4A), were identified. Furthermore, we
created an additional comparative benign ligandome dataset

Figure 2 (continued) red line depicts the source proteome coverage achieved in our CML patient cohort. (B) Overlap analysis of HLA class I ligand identifications of primary CML
samples (n 5 21), CMLMR samples (n 5 15), and hematological benign samples (n 5 108), including PBMCs (n 5 63), granulocytes (n 5 14), CD191 B cells (n 5 5), bone
marrow (n 5 18), and CD341 HPCs (n 5 8). (C) Comparative profiling of HLA class I ligands based on the frequency of HLA-restricted presentation in CML and
hematological benign ligandomes. Frequencies of positive immunopeptidomes for the respective HLA ligands (x-axis) are indicated on the y-axis. To allow for better
readability, HLA ligands identified on ,5% of the samples within the respective cohort were not depicted in this plot. The box on the left and its magnification highlight
the subset of CML-associated antigens showing CML-exclusive high frequent presentation. Allotype-specific comparative profiling of HLA-A*02–positive (D), HLA-
A*03–positive (E), HLA-A*11–positive (F), and HLA-B*07–positive (G) samples, as described above. ID, identifications; pos., positive.
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of PBMCs from CML patients in deep molecular remission
(CMLMR, n5 15) comprising a total of 5907 unique HLA class I
ligands (range 311-1145; mean 655 per sample; supplemental
Data Set 1).

The CML cohort included a total of 31 different HLA class I
allotypes, with the most frequent being HLA-C*07 (n 5 11),
HLA-A*02 (n 5 10), HLA-A*03 (n 5 8), HLA-B*07 (n 5 7), and
HLA-B*35 (n 5 6; supplemental Figure 5A). Among the world’s
population, 99.3% of individuals carry $1 HLA class I allotype
that is represented within this cohort73,74 (supplemental Figure
6A). The comparative hematological benign cohort showed
an HLA allotype population coverage of 99.9% (supplemental
Figure 6B) andmatched 89% of HLA-A allotypes, 100% of HLA-B
allotypes, and 88% of HLA-C allotypes within the CML cohort
(supplemental Figure 5B).

To identify CML-associated antigens, we performed compara-
tive HLA class I ligandome profiling of the CML cohort with the
hematological benign and CMLMR cohorts. Overlap analysis
revealed that 2600 HLA class I ligands were presented exclusively
onCML samples (Figure 2B) andnever detected on hematological
benign or CMLMR samples. For the identification of broadly ap-
plicable CML-associated antigens, we aimed for the selection of
target antigens that not only fulfill the criterion of CML exclusivity,
but also exhibit high prevalence within the CML cohort. At
a target-definition FDR ,5% (,1%) a total of 23 (5) HLA class I
ligands with a representation frequency $19% ($24%) were
identified (Figure 2C; supplemental Figure 7A; supplemental
Table 4). The most common HLA allotype restrictions of these
HLA ligands included HLA-A*02, HLA-A*03, HLA-A*11, and
HLA-B*07. To identify CML-associated targets with even higher
representation frequencies, we subsequently performed HLA
allotype-specific immunopeptidome profiling. Setting the target
FDR ,5% (,1%), we identified 4 (1) HLA-A*02-, 35 (15) HLA-
A*03-, 3 (0) HLA-A*11-, and 8 (2) HLA-B*07-restricted ligands
with representation frequencies of$40% ($50%),$38% ($50%),
$80% ($80%), and $43% ($57%), respectively (Figure 2D-G;
supplemental Figure 7B-E; supplemental Table 4). To further
validate these CML-associated targets, we compared themwith
an additional benign dataset comprising 28 different non-
hematological tissue entities (n 5 166; eg, liver, lung, brain,
skin) with a total of 128 590 unique HLA class I peptides from
16 405 source proteins. Thus, we selected a panel of 8
CML-exclusive target antigens, including 2 HLA-A*02–
restricted, 3 HLA-A*03–restricted, 1 HLA-A*11–restricted, and
2 HLA-B*07–restricted ligands, for further immunological
characterization.

HLA class II ligandome profiling delineates 3 novel
groups of CML-associated antigens
Mapping the HLA class II ligandomes of 20 primary CML sam-
ples, we identified 5991 different HLA class II–restricted pep-
tides (range 172-1162; mean 641 per sample) derived from 1302
source proteins (supplemental Figure 3B; supplemental Data Set
1), achieving 72% of maximum attainable coverage (Figure 3A).
Our HLA class II hematological benign tissue cohort (n 5 88;
PBMCs, n5 38; granulocytes, n5 18; CD191B cells, n5 9; bone
marrow, n 5 15; CD341 HPCs, n 5 8) contained 42 753 unique
peptides (range 111-6267; mean 1197 per sample) from 4877
source proteins (supplemental Data Set 1), obtaining 84% of
maximum attainable coverage (supplemental Figure 4B). The
benign CMLMR ligandome dataset (n 5 15) included a total of
1529 HLA class II peptides (range 74-281; mean 164 per sample;
supplemental Data Set 1).

For the identification of HLA class II–restricted CML-associated
antigens, we established an innovative HLA class II ligandome–
profiling platform that delineated 3 groups of antigens: peptide
targets, protein targets, and hotspot targets. First, we performed
comparative ligandome profiling at the peptide level. Overlap
analysis revealed that 1949 peptides were exclusively presented on
CML (Figure 3B) andwerenever detectedonhematological benign
or CMLMR samples. Of these, 36 peptides were identified with
a representation frequency $20% based on an FDR ,1%; how-
ever, 30 of 36 peptide targets showed length variants (.50%
overlap) presented on benign hematological samples and, there-
fore, were excluded (peptide targets; Figure 3C; supplemental
Figure 8A; supplemental Table 5). Further ligandome profiling was
performed at theHLA class II source protein level. Based on an FDR
,5% (,1%), a total of 4 (2) source proteins were identified with
a frequency $20% ($25%) representing 10 (4) unique HLA class II
peptides (protein targets; Figure 3D; supplemental Figure 8B;
supplemental Table 5). As a third group of CML-associated anti-
gens, we analyzed CML-exclusive hotspots by peptide clustering,
which validated the previously described targets and identified 1
additional CML-associated hotspotwith a representation frequency
of 20% comprising 3 unique HLA class II peptides (hotspot targets;
Figure 3E; supplemental Table 5). Subsequent validation of these
targets using our nonhematological benign tissue dataset (n5 166,
28 tissues, 143652 HLA class II peptides, 13410 source proteins)
delineated a panel of 6 strongly CML-associated target antigens
for immunological characterization.

Notably, most of the identified targets showed unusual short
peptide lengths for HLA class II–restricted peptides (mean 12
amino acids), which are reflected by a general length distribution

Figure 3. Comparative HLA class II ligandome profiling and identification of CML-associated antigens. (A) Saturation analysis of HLA class II peptide source proteins of the
CML patient cohort. Number of unique HLA peptide source protein identifications as a function of cumulative HLA ligandome analysis of CML samples (n 5 20). Exponential
regression allowed for the robust calculation (R25 0.9997) of themaximum attainable number of different source protein identifications (dotted line). The dashed red line depicts
the source proteome coverage achieved in our CML patient cohort. (B) Overlap analysis of HLA class II peptides of primary CML samples (n5 20), CMLMR samples (n5 15), and
hematological benign samples (n 5 88), including PBMCs (n5 38), granulocytes (n 5 18), CD191 B cells (n 5 9), bone marrow (n 5 15), and CD341 HPCs (n5 8). Comparative
profiling of HLA class II peptides (C) and HLA class II source proteins (D) based on the frequency of HLA-restricted presentation in CML and hematological benign ligandomes.
The frequencies of positive immunopeptidomes for the respective HLA peptides or source proteins (x-axis) are indicated on the y-axis. To allow for better readability, HLA
peptides or source proteins identified on,5%of the samples within the respective cohort are not depicted. The boxes on the left and their magnifications highlight the subset of
CML-associated antigens showing CML-exclusive high frequent presentation in CML samples. (E) Hotspot analysis of the protein RB27A by peptide clustering. Identified
peptides weremapped to their amino acid positions within the source protein. Representation frequencies of amino acid counts within each cohort for the respective amino acid
position (x-axis) were calculated and are indicated on the y-axis. The box on the left and its magnification highlight the identified hotspot with the respective amino acids on the
x-axis. (F) Tissue-specific HLA class II peptide length distribution (number of amino acids) of all identified peptides on primary CML samples (n 5 20), granulocytes (n 5 18),
PBMCs (n 5 38), CD191 B cells (n 5 9), bone marrow (n 5 15), and CD341 HPCs (n 5 8). aa, amino acids; IDs, identifications; npep, number of peptides.
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Figure 4. Representation of published CTAs and LAAs in CML and hematological benign HLA ligandomes. Representation frequencies of published CTAs in HLA class I
(A) and class II (B) ligandomes, as well as published LAAs in HLA class I (C) and class II (D) ligandomes in CML patient and hematological benign samples. Pie charts represent
the total amount of identified CTAs and LAAs assigned to their degree of CML association (ie, CML-exclusive, CML-overrepresented, benign-overrepresented, benign-
exclusive). Bar diagrams depict the relative representation (%) of the respective antigens on CML and hematological benign samples allocated to their CML association. Only
antigens with representation frequencies .5% (A-B,D) or .25% (C) in the respective cohort are shown.
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Figure 5. Immunogenicity of HLA class I–restricted CML-associated antigens. (A) Immunogenicity analysis results for the 8 HLA class I–restricted CML-associated peptides
with their respective frequencies of preexisting immune recognition by PBMCs from CML patients or HVs in IFN-g ELISPOT assays (CD81 T-cell response in CML/HVs), as well as
the frequencies of peptide-specific CD81 T cells detected after in vitro aAPC-based priming experiments with naive CD81 T cells from HVs and CML patients. (B) Examples of
CML-associated ligands evaluated in IFN-g ELISPOT assays after a 12-day stimulation using PBMCs from CML patients. Results are shown for immunoreactive peptides only.
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shift in myeloid cell–containing samples representing shorter HLA
class II–restricted peptides (Figure 3F; supplemental Figure 9).

The roles of CTAs, LAAs, and BCR-ABL–derived
neoantigens in the immunopeptidome of CML
In addition to the definition of novel CML-associated antigens,
we focused on the identification and ranking of established
cancer/testis antigens (CTAs)75,76 and leukemia-associated anti-
gens (LAAs)43,77 in our dataset of naturally presented HLA pep-
tides. We identified 170 different HLA class I peptides and 382
HLA class II peptides from 39 and 18 CTAs, respectively, as well as
1429HLA class I peptides and 3428HLA class II peptides from131
and 77 LAAs, respectively (supplemental Tables 6-9). Notably,
these antigens were represented in CML immunopeptidomes, as
well as on hematological benign samples (Figure 4). Hence, this
analysis delineated only a small panel of 7 (4% of total) CML-
exclusive, but infrequent, CTAs and LAAs that represent suitable
candidates for T-cell–based immunotherapy in selected CML
patients.

Because the characteristic BCR-ABL translocation may result
in the presentation of BCR-ABL or ABL-BCR neoepitopes,
we further screened our CML cohort for naturally presented
BCR-ABL–derived and ABL-BCR–derived peptides by data-
dependent acquisition of all CML samples, as well as by
targeted parallel reaction monitoring of 4 CML samples
(supplemental Table 2). Despite the fact that the BCR-ABL and
ABL-BCR fusion sites potentially provide HLA-binding motifs
for several HLA allotypes, no naturally presented HLA pep-
tides were identified.

HLA class I–restricted CML-associated antigens
induce functional peptide-specific T cells in samples
from HVs and CML patients
To confirm immunogenicity and detect preexisting memory
T-cell responses against the identified CML-associated antigens
(Figure 5A), we performed IFN-g ELISPOT and tetramer staining
assays using HLA-matched PBMCs from CMLTKI patients and
HVs. We observed IFN-g secretion for 1 of 8 CML-associated
ligands in 2 of 17 (12%) analyzed CMLTKI patients (Figure 5B),
as well as for 2 peptides in 1 HV, respectively (supplemental
Figure 10). It appears to be unlikely that cross-reacting
microorganism-specific or virus-specific T cells are the reason
for the observed T-cell responses in single HVs, because no
sequence similarity was found between the CML-associated
antigens and the proteins from microorganisms and viruses. In
addition, low frequent peptide-specific CD81 T cells were
detected by tetramer staining for 4 of 8 peptides in 3 of 18
CMLTKI patient samples after a 12-day stimulation without any
detectable preexisting peptide-specific T cells ex vivo prior to
stimulation (supplemental Figure 11). To assess the immuno-
genicity of the remaining HLA class I–restricted ligands, we
performed in vitro aAPC-based priming experiments using

CD81 T cells from HVs and CML patients. Effective priming
and expansion of antigen-specific T cells were observed for all
8 CML-associated peptides in $70% of analyzed HVs, with
frequencies of peptide-specific T cells ranging from 0.1% to
33.9% (mean 2.2%) within the CD81 T-cell population (Fig-
ure 5A,C; supplemental Figure 12). Furthermore, all analyzed
CML-associated peptides induced peptide-specific T cells using
CML patient samples with frequencies of 0.1% to 2.2% (mean
0.4%) within the CD81 T-cell population (Figure 5A,D). Notably,
peptide-specific immune responses were even induced in
CMLTKI patient samples that had not shown preexisting immune
responses. Priming experiments with control peptides fre-
quently presented by HLA-A*02 and HLA-A*03 on tumor and
benign tissues (peptide presentation .90% in HLA-matched
sources) confirmed the CML specificity of the induced T-cell
responses (Figure 5E). Furthermore, multifunctionality of
peptide-specific T cells was shown for 6 of 8 CML-associated
peptides by IFN-g and TNF production and upregulation
of the degranulation marker CD107a (Figure 6A-B). Finally,
cytotoxicity assays with polyclonal peptide–specific effector
T cells revealed the capacity to induce antigen-specific lysis
for 3 of 4 analyzed peptides (Figure 6A,C-E; supplemental
Figure 13).

Reduced functionality of CD81 T cells in
CMLTKI patients
Subsequently, we reasoned that weak preexisting immune
responses against the CML-associated HLA class I–restricted
peptides in our IFN-g ELISPOT assays could have been caused
by an impairment of CD81 T-cell functionality that reportedly
occurs upon TKI treatment.53-56 Therefore, we compared T-cell
responses against viral epitopes of CMLTKI patients, HVs, and
CLL patients38 in IFN-g ELISPOT assays. Although CD81 T-cell
counts themselves were not reduced in CMLTKI patients
(Figure 7A), we observed significantly reduced IFN-g release by
T cells compared with HVs and CLL patients (P , .001,
Figure 7B). In contrast, no significantly reduced IFN-g pro-
duction was observed upon stimulation with HLA class II–
restricted viral epitopes (Figure 7C). These results were confirmed
by the functional characterization of 6 HLA class II–restricted
CML-associated peptides in IFN-g ELISPOT assays (Figure 7D-E).
Frequencies of CD41 T-cell responses reached up to 24% (4/17)
of analyzed CML patient samples; however, some peptides
were only analyzed in pooled read-outs because of low cell
numbers.

Taken together, we characterized a panel of novel CML-associated
HLA class I and II antigens that, even in the context of the im-
munosuppressive effects induced by TKI treatment, was able to
induce multifunctional T-cell responses and, therefore, could
serve as prime targets for the development of antigen-specific
immunotherapies in CML.

Figure 5 (continued) Phytohemagglutinin was used as positive control and the HLA-A*02–restricted DDX5_HUMAN148-156 peptide YLLPAIVHI served as negative control. Data
are expressed as mean6 standard deviation of 2 independent replicates. Naive CD81 T cells from HVs (C) and CML patients (D) were primed in vitro using aAPCs. Graphs show
single viable cells stained for CD8 and PE-conjugated multimers of indicated specificity. Tetramer staining was performed after 4 stimulation cycles with peptide-loaded aAPCs.
The left panels show P3A*03-tetramer (C) or P7B*07-tetramer (D) staining. The middle panels (negative control) depict P3A*03-tetramer (C) or P7B*07-tetramer (D) staining
of respective T cells primed with an irrelevant peptide. The right panels show T cells from the same donor that were tested for the absence of preexisting memory T cells after
a 12-day recall stimulation by tetramer staining (C) or IFN-g ELISPOT assay (D). (E) Tetramer staining after 4 stimulation cycles with negative control peptide-loaded aAPCs
(HLA-A*02, YLLPAIVHI, DDX5_HUMAN148-156 and HLA-A*03, QIFVKTLTGK, UBC_HUMAN2-11). ID, identification; neg., negative; n.t., not tested; pos., positive; SFU, spot-
forming unit; UPN, uniform patient number.
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Discussion
Several studies have shown that immunological control plays
a major role in the course of disease and for treatment success
in CML.12,14,16 Therefore, various immunotherapeutic approaches
are currently being evaluated,17-20,24,29 with the main goal to
achieve deep remissions that enable long-term TKI-free sur-
vival or even cure of CML patients. An attractive approach is
the further development of tailored peptide-based immuno-
therapy, which enables specific targeting of CML cells withminor
sideeffects. Therefore, the identificationof novel naturally presented
and highly frequent CML-associated target antigens is required.
In this study, we present a large-scale immunopeptidomics-based
approach to identify and functionally characterize such CML-
associated HLA class I– and class II–restricted peptides.

We confirmed strong HLA surface expression on myeloid cells,
as well as on hematopoietic precursor cells, from CML patients
in a range that is comparable to different healthy hematological
cell types,40,41 other HMs,38,40,41 and solid tumors37; this constitutes
a major prerequisite for immunotherapeutic approaches. The
comprehensive comparison of HLA ligandomes from CML
samples with benign tissues and PBMC samples from CMLMR

revealed a total of 50 CML-associated HLA class I ligands for
4 of the most common HLA allotypes.78 The allele-specific
prevalence of these CML-associated targets reached up to
80%. This enables the creation of personalized multipeptide
vaccine cocktails, as well as the broadly applicable off-the-shelf
development of single-peptide–based immunotherapeutic
approaches, such as adoptive T-cell transfer or T-cell receptor
therapies.

In addition to cytotoxic CD81 T cells, CD41 T cells play important
direct and indirect roles in anticancer immunity.79-85 Thus, we
expanded our profiling approach to the HLA class II peptidome
identifying 19 additional CML-associated peptides. Interestingly,
length distribution of HLA class II–restricted peptides could
be correlated with specific cell types and lineages, because,
in general, myeloid cell–derived peptides are represented by
shorter peptide sequences. This is in line with the previous ob-
servation that the immunopeptidome directly mirrors cell type
biology and specificity, which is reflected by the general peptide
composition,42 as well as by the length distribution of HLA-
presented peptides, as demonstrated by our data.

Because spontaneous pathophysiologically relevant T-cell re-
sponses against nonmutated LAAs were described for other
HMs,38,86,87 we analyzed our CML patient cohort for preexisting
T-cell responses against our newly defined targets. Of note,
although preexisting T-cell responses against HLA class II
peptides were identified with comparable frequencies as pre-
viously described for CLL,38 acute myeloid leukemia,40 and

multiple myeloma,41 functional T cells targeting HLA class I
antigens were only of low frequency in CMLTKI patient samples.
In line with previous studies reporting a negative53-56 or
dysregulating88 impact of TKI treatment on immune responses,
CD81 T-cell functionality in our CMLTKI patient cohort was im-
paired, potentially explaining the reduced frequencies of pre-
existing memory T-cell responses to CML-associated HLA class I
ligands. Of note, because no CML patients without TKI treat-
ment were included in the immunogenicity analyses, the
reduced T-cell functionality could not be directly correlated
with TKI treatment; it might also be linked to a general immu-
nosuppressive state in CML disease caused, for example, by
HLA-G,89 elevated myeloid-derived suppressor cells,12 and
regulatory T cells,12,90 as well as by increased PD-1 expression on
immune cells.12 However, the immunogenicity of all of our CML-
associated HLA class I antigens was proven by in vitro induction
of multifunctional and cytotoxic T cells from HVs. Strikingly,
CML-specific T cells could also be induced de novo using
PBMCs from CMLTKI patients, which qualifies the identified
targets as promising candidates for peptide-based immu-
notherapy approaches in CML patients after termination of
TKI therapy, as well as for tailored combinations with TKI
treatment. Furthermore, several studies showed the patho-
physiological relevance of preexisting peptide-specific T-cell
responses to clinical outcomes in cancer patients,38,86,87

suggesting that such a T-cell response, induced or boosted
by peptide-based immunotherapies, might result in clinical
effectiveness.

Mutated neoantigens have been described as the main spe-
cificities of anticancer T-cell responses induced by immune
checkpoint inhibitors in solid tumors with high mutational bur-
den.91 However, only a very small fraction of mutations at the
DNA sequence level results in peptides naturally presented in
the HLA ligandome.92-94 This raises the question about the
relevance of mutated neoepitopes for T-cell-based immuno-
therapy, in particular for malignancies with low mutational
burden, including CML. Despite an extensive search for naturally
presented BCR-ABL– and ABL-BCR–derived peptides, none
could be validated in our CML cohort by MS. However, we have
to emphasize that the absence of evidence does not mean that
there is evidence of absence; the sensitivity of shotgun mass
spectrometric discovery approaches, even in the context of
immense technical improvements in the last decades,95 is limited
because the HLA immunopeptidome is a highly dynamic, rich,
and complex assembly of peptides. Therefore, we cannot ex-
clude low-level presentation of mutation-derived peptides in our
CML patient cohort. Nevertheless, MS-based immunopeptido-
mics is the only unbiased methodology that can identify all
naturally processed and presented HLA peptides in primary
tissue samples96; this enables us to identify and characterize
target antigens in lowmutational–burden cancer entities that are

Figure 6 (continued) the stimulation with aAPCs compared with the corresponding negative control peptide (HLA-B*07, TPGPGVRYPL, NEF_HV1BR128-137). Phorbol
myristate acetate (PMA) and ionomycin served as positive control. The P7B*07-specific CD81 T-cell population showed a frequency of 1.01%, as detected by tetramer
staining (far left panel). (C-E) Selective cytotoxicity of P5A*03-specific effector T cells analyzed in a VITAL cytotoxicity assay with in vitro primed CD81 T cells from an HV.
Tetramer staining of polyclonal effector cells before performance of the VITAL assay determined the amount of P5A*03-specific effector cells in the population of
successfully P5A*03-primed CD81 T cells (C) and in the population of control cells (D) from the same donor primed with an HLA-matched irrelevant peptide. (E) At an
effector-to-target ratio of 2.5:1, P5A*03-specific effectors (red) exerted 20.9% (6 0.4%) P5A*03-specific and significant higher lysis of P5A*03-loaded autologous target cells
in comparison with control peptide-loaded target cells (HLA-A*03, RLRPGGKKK, GAG_HV1BR20-28). P5A*03-unspecific effectors (blue) only showed 2.0% (6 0.4%)
unspecific lysis of the same targets. Results are shown as mean 6 standard error of the mean for 3 independent replicates. ***P , .001. FSC, forward scatter; ID,
identification; n.s., not significant; n.t., not tested.
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nonmutated, naturally presented, highly frequent, and tumor-
specific.

This is further emphasized, because the extensive screening of
our CML and hematological benign cohorts for HLA-presented
peptides derived from previously described CTAs75,76 and
LAAs43,77 did not reveal any highly frequent tumor-exclusive
presentation. Together with previous findings showing a dis-
torted correlation between gene expression and HLA-restricted
antigen presentation meaning that the immunopeptidome

that does not mirror neither the transcriptome nor the
proteome,40,93,97-100 this precludes, in our view, these antigens
as optimal candidates for T-cell–based immunotherapy. Nev-
ertheless, tumor exclusivity can be determined at the level
of HLA ligands or at the level of entire antigens. In this study,
CTA and LAA analyses were performed at the level of entire
antigens and do not consider presentation of CTA- and LAA-
derived single HLA ligands, as they might potentially be tumor-
exclusive as a result of differential antigen processing in cancer
cells.
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Figure 7. General functionality of T cells in CMLTKI patients and immunogenicity of HLA class II–restricted CML–associated antigens. (A) CD81 T-cell counts for CML
patients under TKI treatment (CMLTKI patients, n 5 7) compared with HVs (n 5 10) and CLL patients (n5 10). Retrospective analysis of preexisting immune responses directed
against HLA class I–restricted (B) and HLA class II–restricted (C) viral T-cell epitopes (supplemental Table 3) analyzed in IFN-g ELISPOT assays after a 12-day recall stimulation of
PBMCs from CMLTKI patients (HLA class I, n5 10; HLA class II, n5 12), HVs (HLA class I, n5 14; HLA class II, n5 6), and CLL patients (HLA class I, n5 31; HLA class II, n5 24). (D)
HLA class II–restricted CML-associated peptides with their corresponding source proteins and frequencies of preexisting immune recognition by CD41 T cells fromCMLpatients
or HVs in IFN-g ELISPOT assays after a 12-day stimulation. (E) Examples of CML-associatedHLA class II–restricted peptides evaluated in IFN-g ELISPOT assays using PBMCs from
CML patients. Results are shown for immunoreactive peptides only. Phytohemagglutinin was used as positive control and the HLA class II–restricted FLNA_HUMAN1669-1683

peptide ETVITVDTKAAGKGK served as negative control. Because of low cell numbers, the results for UPN41 and UPN49 are shown as pool read-outs of all 6 HLA class
II–restricted CML-associated peptides. Data are expressed as mean 6 standard deviation of 2 independent replicates. ***P , .001. ID, identification; neg., negative; pos.,
positive; SFU, spot-forming unit; UPN, uniform patient number.
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In conclusion, the cell biology–specific character of the immu-
nopeptidome42 calls for entity-centered identification of tumor-
associated targets. Therefore, our study provides profound
insights into the naturally presented immunopeptidome of CML,
delineating a panel of novel, immunogenic, nonmutated, and
CML-associated T-cell epitopes. These antigens aid in the de-
velopment of different antigen-specific therapeutic approaches
that may provide options to enable achievement of deep re-
mission, long-term TKI-free survival, or even cure for CML
patients.
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SYFPEITHI: database for searching and T-cell
epitope prediction.Methods Mol Biol. 2007;
409:75-93.

63. Nielsen M, Andreatta M. NetMHCpan-3.0;
improved prediction of binding to MHC class
I molecules integrating information from
multiple receptor and peptide length data-
sets. Genome Med. 2016;8(1):33.

64. Hoof I, Peters B, Sidney J, et al. NetMHCpan,
a method for MHC class I binding prediction
beyond humans. Immunogenetics. 2009;
61(1):1-13.

65. Sturm T, Leinders-Zufall T, Maček B, et al.
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