
How I Treat

How I treat MDS after hypomethylating agent failure
Valeria Santini

MDS Unit, Hematology, AOU Careggi, University of Florence, Florence, Italy; and Fondazione Italiana Sindromi Mielodisplastiche (FISMonlus), Alessandria, Italy

Hypomethylating agents (HMA) azacitidine and decitabine are standard of care for myelodysplastic syndrome
(MDS). Response to these agents occurs in ∼50% of treated patients, and duration of response, although variable, is
transient. Prediction of response to HMAs is possible with clinical and molecular parameters, but alternative ap-
proved treatments are not available, and in the case of HMA failure, there are no standard therapeutic opportunities.
It is important to develop a reasoned choice of therapy after HMA failure. This choice should be based on evaluation
of type of resistance (primary vs secondary, progression of disease [acute leukemia or higher risk MDS] vs absence
of hematological improvement) as well as on molecular and cytogenetic characteristics reassessed at the moment of
HMA failure. Rescue strategies may include stem-cell transplantation, which remains the only curative option, and
chemotherapy, both of which are feasible in only a minority of cases, and experimental agents. Patients experiencing
HMA failure should be recruited to clinical experimental trials as often as possible. Several novel agents with dif-
ferent mechanisms of action are currently being tested in this setting. Drugs targeting molecular alterations (IDH2
mutations, spliceosome gene mutations) or altered signaling pathways (BCL2 inhibitors) seem to be the most
promising. (Blood. 2019;133(6):521-529)

Introduction
For more than a decade, hypomethylating agents (HMAs)
azacitidine and decitabine have been considered standard of
care for myelodysplastic syndrome (MDS).1,2 Despite their low
toxicity and ability to induce hematological improvement (HI)
and prolongation of survival, even in elderly patients, HMAs are
not curative without hematopoietic stem-cell transplantation
(HSCT),3,4 and despite responses, they do not eradicate neo-
plastic clones.3,5 The enthusiasm generated by their large ap-
plicability and activity has been followed by a wave of critical
appraisal stemming from evidence accumulated in the years of
clinical use of these drugs. In practice, the proportion of those
with MDS who respond and maintain response for a substantial
period comprises fewer than half of treated patients. Published
results of HMA-treated patients in controlled trials indicate
better outcomes compared with real-life data. This inconsistency
may be due to differences in adherence to dose, schedule,
and minimum number of cycles, as well as to the management
of patients with severe comorbidities.6-8 Overall, it is clear that
the HMA effect is transient, with responses maintained for 6 to
24 months.4,8 Survival of those with refractory/relapsed dis-
ease is extremely short, for both International Prognostic
Scoring System (IPSS) lower-risk and high-risk MDS patients.9-11

In Europe, the European Medicines Agency approved HMA
therapy for IPSS higher-risk MDS patients, whereas in the United
States and many other countries, HMAs are prescribed for
patients with all types of MDS. This particularity differentiates
European patients with HMA-resistant/relapsed disease, all
of whom have bad prognoses, whereas elsewhere, these
patients may still be considered lower risk and have diverse
therapy options.

Optimal management of therapy
with HMAs
How do I manage HMA failure in absence of
a clinical trial?
Patient 1: high-risk MDS A 70-year-old woman with IPSS in-
termediate 2–risk MDS with multilineage dysplasia (trisomy 8
and 18% marrow blasts, SRSF2 and ASXL1 mutations) received
8 cycles of azacitidine at standard dose and schedule, combined
with eltrombopag, in a phase 3 experimental trial (registered at
www.clinicaltrials.gov as #NCT02158936), with resulting neu-
tropenia, without significant increase in platelets, and with only
slight decrease in marrow blasts. The patient had no comor-
bidities, and her general condition was optimal. At routine
control during follow-up, peripheral blood blasts were detected
(4%), and bone marrow (BM) aspirate confirmed progression
(30% BM blasts). No experimental options were available at that
time for MDS that has progressed to acute myeloid leukemia
(AML) after HMAs. The patient had a Sorror score,3 and did not
find an HLA-matched donor from the registry. Two months later,
she developed severe thrombocytopenia and accepted a hap-
loidentical transplant from her daughter in an experimental
approach. She did not receive preemptive chemotherapy, but
a conditioning regimen of fludarabine, busulfan, and thiotepa
before transplantation was administered. The procedure was
successful, with only grade 1 acute graft-versus-host disease and
no chronic graft-versus-host disease with mycophenolate
mofetil, cyclosporine, and cyclophosphamide. Her counts nor-
malized within 2 months, marrow blasts were absent, and her
Karnofsky status was 90%. This patient had progressed to AML
after HMA failure and underwent transplantation when she had
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active disease in advanced age. Haploidentical transplanta-
tion in a clinical study setting allowed her to survive 16 months
with optimal quality of life. It is indeed worthwhile discussing
transplantation options in fit patients with no other therapeutic
opportunities.

Patient 2: low-riskMDS An 80-year-old womanwith a diagnosis
of MDS with multilineage dysplasia, trisomy 8, and 4% BM blasts
(IPSS risk, intermediate-1; IPSS revised [IPSS-R] risk, intermediate)
was in need of sporadic red blood cell (RBC) transfusions. She was
determined to be erythropoietic stimulating agent (ESA) refractory
after ,2 months of therapy, and she received azacitidine at a flat
dose of 100 mg/m2 per 7 days monthly subcutaneously for
3 months without any HI. She came to our center and received
9 months of standard-dose azacitidine, and after 12 months of
stable disease, she had a further decrease in hemoglobin (Hb) and
absolute neutrophil count levels. Suspecting progression, BM
aspiration and biopsy were performed, and marrow was found to
be highly hypocellular (,20% cellularity) but without increased
blasts; cytogenetic analysis revealed trisomy 8 and the novel
detection of del5q (20% metaphases). She was administered
erythropoietin subcutaneously, achieving transient normalization
of Hb levels, after which she again became RBC transfusion de-
pendent. Treatment with lenalidomide was started at 10 mg per
day. After 6 months, her counts were: Hb, 14.4 g/dL; mean
corpuscular volume, 98.4 fL; platelets, 160 3 109/L; white blood
cell (WBC) count, 4.0 3 109/L; and absolute neutrophil count,
2.1 3 109/L. Kidney function slightly decreased, but otherwise,
she had excellent general clinical conditions. Anemic low-risk
MDS patients may need several weeks to respond to ESAs;
treatment should be prolonged at least 8 weeks before tran-
sitioning to HMA therapy. A complete revaluation of the patient
at HMA failure with marrow aspirate, biopsy, and reassessment
of cytogenetics is mandatory, because it may provide useful
indications for sequential treatments. Long-term treatment with
HMAsmay rarely inducemarrow hypocellularity. Dysplastic clones
may arise, allowing targeted therapy opportunities.

Optimization of management of HMAs to avoid treatment fail-
ure, with correct drug doses, schedules, and timing of evalua-
tions of response, and subsequent clear definition of resistance12

are fundamental. In case 2, failure of therapy was declared too
early and after reduced HMA dosing.

Timing of evaluation
Conclusive assessment of response should be performed in MDS
patients treated with standard dose of decitabine (20 mg/m2

per day for 5 days at 4-week intervals) or azacitidine (75 mg/m2

per day for 7 days at 4-week intervals) for at least 6 cycles. Earlier
evaluations may fail to detect responses, achieved in a majority of
cases between cycles 4 and 6, although later responders may be
encountered. Premature interruption of therapy leads to rapid loss
of response, and rechallenge with HMAs is not usually effective.
Simple follow-up of patients duringHMA therapy is bymonitoring
peripheral blood counts, reappearance of severe cytopenias,
and/or appearance of blasts. BM evaluation can be performed
at appropriate time intervals (ie, every $6 months, earlier in the
suspect of progression).12

Dosing and schedules
Several alternative dose and schedule regimens have been eval-
uated in retrospective real-life studies, but formal demonstration of

clinical advantage was shown with the doses and schedules
mentioned in “Timing of evaluation.” Large randomized trials com-
paring alternative dosages are lacking. A recent meta-analysis in-
dicated the inconsistency of the results with alternative doses and
the equivalence of schedules of 5-2-2 days with the standard 7 days
in terms of response.13

Reinforcing HMA therapy
Empirical addition of other agents to HMAs in front-line therapy,
like histone deacetylase inhibitors,14-18 lenalidomide,16,19 or even
cytotoxic agents,20 has not substantially improved outcomes.
Randomized phase 3 combination studies combining HMAs with
various agents (ie, combination of azacitidine with pevonedistat
[#NCT03268954] or venetoclax [#NCT02942290]) are presently
ongoing for first-line therapy of MDS.

Definition of HMA resistance
Even when HMA therapy is conducted with correct schedules
and for a sufficient number of cycles, failure may occur in dif-
ferent scenarios.

Primary resistance Primary resistance occurs when, while re-
ceiving therapy without experiencing HI at any time, the patient
progresses to overt acute myeloid leukemia (.20% BM blasts);
the patient progresses to higher-risk MDS; even after 4 to
6 cycles, the patient has stable disease without any of the fol-
lowing: HI, complete remission (CR), marrow CR (mCR), or par-
tial remission (PR), according to International Working Group
criteria21; or the patient develops hypoplastic marrow and
pancytopenia.

Secondary resistance Secondary resistance occurs when, after
initial response (CR, mCR, PR, HI) has been maintained for any
number of cycles and without therapy interruption or delays
exceeding 5 weeks between cycles, the treated patient has any
of the primary resistance conditions. These situations may be
encountered in both higher-risk and lower-risk MDS patients
receiving azacitidine or decitabine.

Although application of International Working Group criteria21

outside clinical trials is cumbersome, strict adherence may pres-
ent difficulties even in controlled studies, and a revision of
these criteria has been proposed.22

We have to solve the riddle of how to treat MDS patients who do
not respond to HMAs (primary resistant) or whose response does
not last (secondary resistant), but at present we approach these
2 types of failure with the same experimental agents (Figure 1).

Indeed, the most relevant obstacle to developing target treat-
ment is the lack of knowledge of themechanisms of resistance to
HMAs, but supposing hypomethylation is the main mechanism
of action of these agents, attention has been focused on epi-
genetic modulation.

DNA methylation
The lack of correspondence between the pattern of DNA hypo-
or hypermethylation and response to HMAs demonstrated in
numerous studies23-28 underlines the limited knowledge of
chromatin regulation and HMA mechanisms of action.29 We
showed that decitabine response is predictable in chronic
myelomonocytic leukemia by baseline differentially methylated
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regions in primary resistant vs sensitive patients.28 Differentially
methylated regions were not preferentially localized in pro-
moters but rather in enhancers and intergenic regions and
corresponded to high production of cytokines like CXCL4 and
CXCL7.28 While we wait confirmation, it remains an open ques-
tion whether epigenetic alterations are different in primary vs
secondary HMA resistance.

Recently, primary resistance to azacitidine was linked to he-
matopoietic progenitor cell cycle quiescence,30 mediated by
integrin a5 signaling. This would provide a target, because re-
sponsiveness to azacitidine was restored by exposure to an
anti–integrin 5a antibody. HMAs, even when clinically effective,
failed to eradicate clonal hematopoiesis, but they restored
functional hematopoiesis from progenitors with a lower muta-
tional burden by altering the subclonal architecture of the he-
matopoietic progenitor compartment.30

The involvement of nucleoside activating/deactivating enzymes31

and membrane transporters32 was shown to influence HMA re-
sponse by putativemodulation of nucleoside-triphosphate uptake
into DNA.32 These observations have recently been challenged,33

but they nevertheless prompted development of an oral formu-
lation of decitabine combined with the cytidine deaminase in-
hibitor cedazuridine ASTX727 (#NCT02103478).34

Response to HMAs and somatic mutations
Many acquired somatic mutations in MDS affect epigenetic
mechanisms and are present in ;90% of cases; they could drive
MDS pathophysiology and HMA response/resistance.35 TET2
mutations were correlated with DNA hypermethylation35,36 and
HMA response, but not with overall survival (OS).36,37 DNMT3A
mutations, accompanied by a hypomethylated profile,38 also
correlated only with HMA response. Therefore, quantitation of
DNAmethylation per se cannot be the reasonwhy thesemutations
can modulate HMA sensitivity. The mutation of ASXL1 predicted
poor outcome in terms of response38 and OS after HMAs38; sim-
ilarly, TP53 mutations correlated with dismal outcome.23 Recently,
10-day treatment with decitabine was demonstrated to induce
response in all TP53-mutated cases,39 possibly indicating a role of
the disruption of TP53 function in HMA sensitivity.40

The presence of specific somatic mutations does not yet in-
fluence the decision to treat with HMAs. In general, it suggests
more or less aggressive strategies (eg, earlier timing of HSCT
for eligible patients carrying numerous mutations) and drives
second-choice therapies when genes like IDH1/IDH241,42 or
spliceosome components42 are mutated, for which specific
inhibitors42,43 are available. The patient presented in case 1 had
an ASXL1 mutation, among others, and transplantation seemed
the best option.
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Figure 1. Algorithm for treatment choice in MDS patients after failure of HMA therapy. Reasoned choice of second- and third-line treatment options after HMA therapy
based on clinical and biological characteristics of the patient. In this setting, experimental trials are recommended; the experimental agents indicated in the figure are those
evaluated in the highest number of cases. *Off-label use; on-label use of lenalidomide (LEN) only in del5q; thrombopoietin (TPO) mimetics in experimental trials. AZA,
azacitidine; chemo, chemotherapy; DAC, decitabine; PS, performance status.
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Prediction of response
It would be extremely important to predict response and survival
after HMAs to adjust personalized rescue therapy. Amethod was
recently proposed to predict outcomes of patients after HMA
failure: the post-HMA model. It includes 6 variables: age, PS,
complex cytogenetics (.3 abnormalities), marrow blast .20%,
platelet count, and red cell transfusion dependency.44 This
model, validated but not commonly applied,45,46 separates MDS
patients evaluated after HMA failure into 2 risk categories: lower
risk, with a median OS of 11.0 months; and higher risk, with
median OS of 4.5 months.

Management of HMA failures
The options for therapy after HMA failure are scarce, and although
experimental clinical trials are the recommended measure, when
not available, supportive care, ESAs, HSCT, high- or low-dose
chemotherapy, lenalidomide, and alternative sequencing of
HMAs can be employed.

Decision making at the time of failure must include, after
complete clinical examination, a thorough discussion with the
patient and caregivers. Patient personal choices, attitudes, and
inclination are fundamental. Best supportive care, including
growth factors like ESAs and possible consideration of throm-
bopoietic agents, is on option the treating physician cannot
exclude a priori without analyzing the situation together with
the patient. In some cases, it may represent the option ensuring
the best quality of life or duration of survival, especially in frail
patients or those with several comorbidities. Although elderly,
the patient in case 2 was extremely active and insisted on being
treated.

HSCT MDS patients are generally age $70 years, frequently
present with comorbidities, and may be extremely frail. There-
fore, only a small minority of MDS patients are eligible for
transplantation, although this number is increasing because
of wider choice of donor (sibling, unrelated, cord blood, haplo-
identical) and different conditioning regimens that render the
procedure less risky.47 After HMA failure, as is clear from case 1,
HSCT is feasible and results in prolonged survival compared with
other treatments.10 There are at present no prospective studies
evaluating the outcome of MDS patients undergoing trans-
plantation after HMA failure, but a retrospective analysis of this
subpopulation indicated relapse-free survival at 3 years was
23.8%, an encouraging result compared with other treatments.48

Pretransplantation selection of MDS patients after HMA failure
could improve HSCT outcome. Patients with TP53 mutations
undergoing HSCT have shorter survival and earlier relapse,
irrespective of conditioning regimen,49,50 and the advantages
and risks of transplantation should be well weighed.51,39

High-dose chemotherapy Intensive AML-like treatment of
MDS patients after HMA failure was reported, with 8.9-month
survival.10 Recently, in a large number of MDS patients (n5 307),
of whom 31%were IPSS lower risk, treated after HMA failure with
cytosine arabinoside plus anthracycline (713), intermediate- to
high-dose cytosine arabinoside, or nucleoside analogs, median
OS was 10.8 months and overall response rate (ORR) was 41%.52

Negative prognostic factors were adverse cytogenetics, age
$65 years, and use of intermediate-dose cytosine arabinoside.52

Standard-dose clofarabine used after HMA failure in patients
with advanced MDS showed excessive toxicity.53

Low-dose chemotherapy The use of subcutaneous low-dose
cytarabine after HMA failure does not have any advantage
over supportive care,10 with absence of response and OS of
7.4 months. Combination of cytarabine with experimental agents
has not shown encouraging results. In contrast, the addition of
low-dose clofarabine to low-dose cytarabine54 to treat elderly
patients with MDS after HMA failure yielded a 44% ORR and OS
of 10 months.

Lenalidomide In lower-risk MDS patients who are resistant/
refractory to ESAs and HMA treatment, lenalidomide is an
available option. Administered after azacitidine, lenalidomide
is well tolerated, but in non–del5q MDS, it induces a limited
12% erythroid improvement55 and an OS of 87 months. In high-
risk MDS after HMA failure, treatment with standard- (15 mg) or
high-dose (50 mg) lenalidomide resulted in scarce/absent clin-
ical activity and extreme toxicity.56 However, there are reports of
higher response rates (40%) in HMA-refractory MDS patients,
with CR in those carrying del5q.57 High doses of lenalidomide
induced mCR in 33% and HI in 8% of HMA-refractory patients.58

The patient in case 2 responded and had a del5q clone; cyto-
penia occurred, but blasts were ,5% after azacitidine.

Sequential use of HMAs In the absence of experimental trials
and for unfit or very elderly patients for whom HMAs have failed,
an HMA alternative to the HMA that failed has been adminis-
tered. Although switching may be suggested when patients
experience intolerance, results of this strategy in truly resistant
cases are far from successful, as in case 4. The scattered data
published derive from small retrospective studies lacking precise
definitions of HMA resistance. Response rates to decitabine after
azacitidine are ,30%,59-61 and only 1 study reported a response
rate of 40% for patients who received azacitidine after first-line
decitabine.60 Because of the slightly different mechanisms of
action of the 2 agents, switching may be partially justified, but
recent evidence33 suggests that azacitidine is clinically active
only when incorporated into DNA, with a mechanism over-
lapping that of decitabine. In any case, the prolonged duration
of HMA treatment seems to account for the increased responses
observed when the second HMA is sequentially introduced.

Experimental agents and combinatory
experimental trials
There are many clinical studies ongoing testing different agents
for treatment of MDS after HMA failure. Because of the extreme
need for novel treatments for these patients, several investi-
gatory trials are empirical, but the most promising studies are
based on the presence and so-called druggability of specific
molecular targets.

How do I select a clinical trial after HMA failure?
Patient 3 A 74-year-old man with MDS excess blasts 2 and
IPSS-R high risk was treated with azacitidine for 24 months with
optimal hematological and cytogenetic responses, but he sub-
sequently relapsed. BM aspiration indicated 20% blasts with
normal karyotype. This secondary resistant patient was referred
to our center, and the possibility of recruitment to an experi-
mental study was discussed with him and his family. General
clinical conditions were acceptable (PS 2). After ruling out the
presence of somatic mutations and confirming the patient

524 blood® 7 FEBRUARY 2019 | VOLUME 133, NUMBER 6 SANTINI

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/133/6/521/1750529/blood785915.pdf by guest on 02 June 2024



could not be enrolled in clinical trials with target drugs, par-
ticipation was proposed in a phase 3 trial randomizing patients
to guadecitabine (#NCT02907359) vs low-dose cytarabine.
The problem of randomization was again discussed to clarify the
procedure. The patient was randomized to the guadecitabine
arm and initiated therapy a few days later at 60 mg/m2 sub-
cutaneously for 5 days in a 28-day cycle. Treatment is ongoing
and well tolerated, with some myelosuppressive effects and no
general toxicity.

Novel HMAs
Given the fact that HMAs were the first type of agents able to
improve outcome inMDS, novel molecules with hypomethylating
activity have been synthesized. Guadecitabine (SGI-110) is a di-
nucleotide that couples decitabine to deoxyguanosine and is
resistant to deamination by cytosine deaminase, with prolonged
in vivo exposure and clinical activity in de novo AML and high-risk
MDS patients.62 Preliminary phase 2 data indicated some efficacy
after HMA failure,63 with a toxicity profile similar to that of standard
HMAs. A phase 3 randomized trial is currently ongoing for MDS
after HMA failure, comparing guadecitabine with treatment of
choice (#NCT02907359).

With the same idea of prolonging the stability of decitabine, the
novel oral compound ASTX727 combines the cytidine de-
aminase inhibitor cedazuridine with decitabine. This agent has
been administered in a recent phase 1 study to MDS patients
after HMA failure, resulting in a 32% ORR.34 After the phar-
macokinetic study of ASTX727,34 a phase 3 randomized study
will compare IV decitabine bioavailability and clinical activity
with those of ASTX727 (#NCT03306264). Quite clearly, oral
therapy would significantly improve quality of life in elderly MDS
patients. A phase 2 clinical trial with cc-486 monotherapy in
HMA-refractory MDS is ongoing. This oral agent should provoke
longer exposure to azacitidine than the subcutaneous analog
(#NCT02281084).

Patient 4 A 70-year-old woman was referred after having lost
response (PR) to 12 cycles of standard-dose azacitidine ad-
ministered for MDS excess blasts 2, secondary to chemotherapy
for lymphoma. Because of her deteriorating condition (PS 2) and
the presence of peripheral blood blasts (20%), she was treated
with 3 cycles of decitabine at 20 mg/m2 per day for 5 days,
without any improvement, and subsequently with 1 cycle of low-
dose cytarabine, which was stopped for a Clostridium difficilis
infection. We evaluated karyotype and presence of somatic
mutations, but in the meantime, she rapidly developed overt
leukemia with severe leukocytosis: WBC, 1403 109/L, with 63%
peripheral blood blasts; Hb, 6.8 g/dL; and platelets, 393 109/L.
Therapy with hydroxiurea at 2000 mg per day was introduced to
decrease leukocytosis. Mutational analysis indicated IDH2 mu-
tation R172K. She was screened for the AML study protocol
(#NCT02577406) comparing as rescue therapy enasidenib at
100 mg per day on a 28-day cycle with physician choice of
therapy (low-dose cytarabine, high-dose chemotherapy, or best
supportive care). At randomization, she was assigned to the
enasidenib treatment arm. She started treatment in associa-
tion with hydroxiurea for 2 weeks and had recurrent bacterial
infections for which received IV antibiotics. Treatment with
enasidenib was never stopped, and she experienced in 8 weeks
a progressive normalization of WBCs, decrease of blasts to 4% in
peripheral blood, and normalization of platelets to 206 3 109/L.

She had no signs of differentiation syndrome. She still received
sporadic RBC transfusions (Hb levels of ;9 g/dL), but at BM
aspiration (cycle 3), blasts were 13%, whereas a majority of my-
eloid cells, although dysplastic, had themorphology of band cells
and mature granulocytes.

Full reevaluation (including somatic mutation analysis) of pa-
tients at the time of HMA failure is worthwhile, because it may
open new avenues of treatment with target agents.

Targeted therapies
IDH2 and IDH1 inhibitors Enasidenib (formerly AG-221) is
an orally available, selective, potent inhibitor of the mutated
IDH2 protein, a mutation found in ,10% of MDS cases.41 Its
differentiating activity has been shown in MDS,64 with ORRs of
;40% to 50% in a majority of pretreated patients. The drug was
recently approved by the US Food and Drug Administration42 for
relapsed AML harboring an IDH2 mutation. The phase 3 study
(#NCT02577406) in which the patient in case 4 was enrolled is
recruiting AML patients and high-risk MDS patients who pro-
gressed to AML while receiving therapy with HMAs. The effects
of IDH1 inhibitors like ivosidenib are not yet evaluable, because
of the limited number of MDS patients treated. Even if the MDS
population with IDH1/IDH2 mutations is limited,41 the efficacy
of these inhibitors produces high response rates and imposes
molecular evaluation in cases of HMA failure and patients with
post-MDS AML. Further investigation of enasidenib activity in
MDS is ongoing in front-line therapy for HMA-naı̈ve high-risk
MDS in combination with azacitidine (#NCT03383575).

Spliceosome inhibitory agents Various spliceosome genes are
frequently mutated in MDS.43 Because of the good correlation
between genotype/phenotype and prognostic significance,
these altered genes constitute an ideal target for specific agents.
Toxic consequences of inhibition of RNA splicing in the different
tissues (mainly ocular toxicity) were clear from early studies of
E710765 but are not present in the ongoing phase 1 study of
H3B-8800 (#NCT02841540),66 an orally bioavailable modulator
of the SF3B complex administered to patients experiencing
HMA failure and those with pretreated AML andMDS. H3B-8800
binds mutant and wild-type SF3B complexes but exerts its cy-
totoxic activity on mutant cells, where inhibition of the aberrant
spliceosome machinery leads to cell death.

Quite recently, 2 studies demonstrated high clinical activity of
the TGF b pathway inhibitors luspatercept67 and sotatercept68

in pretreated IPSS lower-risk MDS refractory to ESAs and HMAs.68

In the study by Komrokji et al68 (carried out mainly in the United
States, where HMAs are approved for lower-risk MDS), 48.6% of
anemic patients had experienced HMA failure, and 58.3% of them
achieved erythroid HI with sotatercept therapy. This finding is of
particular interest, because treatment with sotatercept (and most
probably with luspatercept) may rescue HMA-pretreated severely
anemic lower-risk MDS patients who otherwise would have few
treatment opportunities and dismal outcomes.

BCL2 inhibition Venetoclax (ABT199) is an oral BCL2 inhibitor
licensed for treatment of chronic lymphocytic leukemia. This
agent demonstrated apoptotic activity in vitro in progenitor cells
from higher-risk MDS patients,69 and it has been employed with
success in combination with low-dose chemotherapy or HMAs
for patients with relapsed AML and for a small number of MDS
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patients.70 In a heavily pretreated group of patients (.2 salvage
therapies and 77% prior HMA therapy), the ORR was 21%. Ven-
etoclax in combination with azacitidine or decitabine has shown
striking activity in elderly patients with untreated AML (CR, 61%),71

and these results have prompted additional studies in MDS
patients after HMA failure, including an ongoing phase 2 clinical
trial investigating theORR of venetoclax at 400mg as a single drug
or in combination with 10-day decitabine (#NCT03404193). An-
other study combining azacitidine with venetoclax is recruiting
MDS patients after HMA failure (#NCT02966782). Of note, the
addition of the BCL2 inhibitor to azacitidine yielded quite im-
portant myelosuppression.

Multikinase inhibition Rigosertib (previously ON-01910.Na)
blocks the activation of polo-like kinase, Akt, and phosphati-
dylinositol 3-kinase pathways. This drug was tested in several
studies in refractory/relapsed MDS and showed ability to reduce
marrow blasts.72 A phase 3 trial comparing rigosertib adminis-
tered IV as continuous infusion with best supportive care forMDS
patients intolerant, refractory, or relapsed after HMAs failed to
achieve its primary objective. However, it demonstrated an ad-
vantage in terms of OS for patients with primary resistance to
HMAs (OS, 8.5 vs 4.7 months with BSC), patients age ,80 years,
and patients who had not received .9 cycles of HMAs.73 An oral
formulation of rigosertib is now under evaluation in combination
with azacitidine.74

Immunotherapy
The immune checkpoint molecules programmed death 1 (PD-1)/
PD-1 ligand (PD-L1) and CTLA-4 modulate T-cell activation
and antitumor immune surveillance in solid tumors as well as
in myeloid neoplasms. PD-1 and CTLA-4 are overexpressed in
MDS and more so after HMA failure.75 For this reason, several
clinical studies have been designed to evaluate immune
checkpoint inhibitory antibodies after HMA failure: durvalumab
(anti–PD-L1; #NCT02775903), ipilimumab (anti–CTLA-4),75,76

nivolumab,75 atezolizumab (anti–PD-L1),77 and pembrolizumab
(anti–PD-1).78 Nivolumab, pembrolizumab, and atezolizumab are
currently approved in solid tumors. Azacitidine and decitabine
upregulate the expression of immune checkpointmolecules, and
these antibodies were tested in MDS as monotherapies and in
association with HMAs. Clinical trials in MDS are ongoing and
have shown signs of activity, but final data are not yet available.
A phase 1 study of durvalumab plus azacitidine in untreated high-
risk MDS has been put on hold (#NCT02775903), and there are
no studies with this drug in HMA failure. In this setting, a phase 1
study of atezolizumab plus azacitidine (#NCT02508870) and
a phase 2 study of azacitidine plus ipilimumab or azacitidine
plus nivolumab are ongoing (#NCT02530463). In MDS with
HMA failure, ipilimumab as a single drug yielded an ORR of
30%, whereas nivolumab seemed ineffective.75 Another experi-
mental study is combining decitabine with ipilimimab in HMA-
refractory/relapsed MDS (#NCT02890329). More recently,
combinations of various chemotherapy regimens (high- and
low-dose regimens) with nivolumab are under evaluation
(#NCT03259516) in MDS with HMA failure. A different clinical
trial combining HDAC inhibitor entinostat with pembrolizumab
is currently recruiting patients experiencing HMA failure irre-
spective of IPSS-R risk category (#NCT02936752).

The potential activity of anti-CD123 antibody talacotuzumabwas
evaluated in HMA-refractory/relapsed MDS patients, but the

study was suspended (#NCT02992860) because of a lack of
efficacy advantage and infusion-related adverse events.

New chemotherapy formulation
The liposomal formulation of cytarabine and daunomicine
CPX-351, approved by the US Food and Drug Administration
for advanced secondary AML and AML post-MDS, may im-
prove tolerability and efficacy of classical high-dose chemo-
therapy, allowing treatment of MDS after HMA failure that has
progressed to AML.79 A phase 2 study of CPX 351 in elderly
patients with MDS and AML after HMA failure is currently
recruiting (#NCT02019069).

Add-on strategy
In an attempt to restore responses to HMAs, maintenance of
HMA treatment and addition of possible additive/synergistic
agents were considered, under the hypothesis that the com-
bination could rechallenge response, especially in secondary
resistant patients. This was observed with lenalidomide added
back into treatment in patients who had lost response to
azacitidine.80 The same rationale is at the basis of recent
studies combining HMAs with various agents possessing
different mechanisms of action,81-83 but results have not been
encouraging.84

Conclusions
Patients with HMA-refractory/relapsed MDS should always be
considered for clinical experimental trials and encouraged to
move to tertiary centers for cure. In fact, patients treated in
experimental studies are followed closely, and aside from the
activity of the tested drug, such close observation may itself
improve outcome by improving supportive care. Consent is
a particularly delicate issue for patients and caregivers; there-
fore, to increase compliance, sufficient time should be allocated
to discuss details of the study, particularly randomization.

Many studies evaluating agents with various mechanisms
of action have been and are being performed in MDS with
HMA failure. Although some clearly have therapeutic po-
tential, a majority of these agents are still in the early stages
of development.

Without doubt, MDS patients for whom HMA therapy fails
are a population with an extremely dismal outcome and with
few therapeutic opportunities, whose difficult care burdens the
health system.85 Proper management of first-line HMA therapy,
with appropriate doses and prolonged treatment, may partially
reduce primary resistance. Eventually, HMA-treated MDS pa-
tients lose response, and the best treatment to offer at present
is inclusion in experimental trials. Selecting patients based on
their cytogenetic and molecular characteristics at the moment of
HMA failure may support the choice of personalized targeted
therapy, already feasible for a certain number of typical alter-
ations in MDS. Although sometimes difficult to organize for
smaller centers and for elderly patients, enrollment in clinical
studies would guarantee optimal care.
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