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KEY PO INT S

l Defective
proresolving response
to acute vaso-
occlusive events
characterizes
murine SCD.

l Treatment with 17R-
RvD1 reduces
inflammation and
vascular dysfunction in
SCD mice.

Resolvins (Rvs), endogenous lipid mediators, play a key role in the resolution of inflam-
mation. Sickle cell disease (SCD), a genetic disorder of hemoglobin, is characterized by
inflammatory and vaso-occlusive pathologies. We document altered proresolving events
following hypoxia/reperfusion in humanized SCD mice. We demonstrate novel protective
actions of 17R-resolvin D1 (17R-RvD1; 7S, 8R, 17R-trihydroxy-4Z, 9E, 11E, 13Z, 15E, 19Z-
docosahexaenoic acid) in reducing ex vivo human SCD blood leukocyte recruitment by
microvascular endothelial cells and in vivo neutrophil adhesion and transmigration. In SCD
mice exposed to hypoxia/reoxygenation, oral administration of 17R-RvD1 reduces sys-
temic/local inflammation and vascular dysfunction in lung and kidney. The mechanism of
action of 17R-RvD1 involves (1) enhancement of SCD erythrocytes and polymorphonuclear
leukocyte efferocytosis, (2) blunting of NF-kB activation, and (3) a reduction in inflam-
matory cytokines, vascular activation markers, and E-selectin expression. Thus, 17R-RvD1

might represent a new therapeutic strategy for the inflammatory vasculopathy of SCD. (Blood. 2019;133(3):252-265)

Introduction
Sickle cell disease (SCD) is a genetic disorder of hemoglobin
characterized by hemolytic anemia and vaso-occlusive and in-
flammatory pathologies affecting target organs like lung, brain,
bone, and kidney. The disease is characterized by acute and
chronic pain, most often in the context of vaso-occlusive
crises (VOCs), a definition based on the notion that occlu-
sion of small vessels and/or capillaries by sickled cells is the
triggering mechanism for the generation of inflammation and
pain. VOCs are the main cause of hospitalization of young
adult patients with SCD and can evolve into life-threatening
complications.1-4

Novel therapeutic options focusing on physiological processes
promoting resolution of inflammation are of interest for treating
acute events and for prevention of SCD-related vasculopathy.
The resolution process is actively controlled by the temporal
and local production of specialized proresolving lipid media-
tors (SPMs). These include lipoxins (LXs), resolvins (Rv’s), pro-
tectins, and maresins from polyunsaturated fatty acids; these

novel mechanisms and their mediators offer new therapeutic
opportunities for treating inflammation-related disorders in
humans.5 SPMs proved effective in limiting the extent and du-
ration of inflammation in experimental asthma,6 infections,7,8 and
pain.9 LXA4, RvD1, and their corresponding “aspirin-triggered”
epimers, biosynthesized upon acetylation of cyclooxygenase-2
by aspirin, potently stop excessive neutrophil recruitment10 and
prevent inflammation-related organ damage in vitro and in
vivo.11,12 Because an amplified inflammatory response plays
a key role in VOCs and in SCD-related organ damage, we
reasoned that inducers of the resolution phase of inflammation
might influence the outcome of acute VOCs and attenuate
SCD-related organ damage without immune suppression.7,13,14

In this article, using a humanized mouse model for SCD, we
report reduced production of endogenous RvD1 in response
to hypoxia/reoxygenation (H/R) stress. We show the benefit of
exogenous administration of 17R-resolvin D1 (17R-RvD1) in pre-
venting H/R-induced damage in lung and kidney, which are target
organs of SCD. These findings suggest that proresolving events
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during H/R stress, a critical phase in acute sickle cell–related VOCs,
may limit and control the magnitude of the inflammatory response
in SCD and possibly ameliorate the outcome of VOCs.

Methods
The methods, mouse model, and study design are described in
supplemental Methods (available on the Blood Web site).

Results
Specialized proresolving mediators are altered in
humanized sickle cell mice
To characterize the bioactive lipid mediator (LM) signature
of SCD, targeted liquid chromatography (LC)–tandem mass
spectrometry (MS/MS) metabololipidomics was carried out in
spleens from healthy control mice (AA) and sickle cell (SS) mice
under normoxic conditions or after H/R stress, which is an ex-
perimental model of sickle cell–related VOCs. Spleen was
chosen because it is one of the target organs of acute VOCs
as a result of its very sluggish circulation, which favors HbS
polymerization.15 In addition, we recently reported that spleen
contributes to the cell inflammatory response and to the gen-
eration of specialized proresolving mediators.16,17 As shown in
Figure 1, each LM was identified based on LC chromatograms
and MS/MS fragmentation, with a minimum of 6 diagnostic ions.
We identified LMs from arachidonic acid, eicosapentaenoic acid
(EPA), and docosahexaenoic acid (DHA) bioactive metabolomes
(Tables 1 and 2). In AA mice and SCD mice, the following DHA-
derived SPMs were identified: RvD1, 17R-RvD1, RvD5, and RvD6
(but not RvD2, RvD3, or RvD4), as well as protectin D1 and
maresin 2, along with their pathway markers. LXA4 was also
identified, whereas E-series Rv’s (RvE1-3) were below the limits
of detection (;0.1 pg). Of interest, the amount of SPMs was
markedly reduced in SCDmice comparedwith AA animals under
normoxic conditions or exposure to H/R (Tables 1 and 2).
Principal component analysis (PCA) data mining was then used
to identify distinct LM profiles in SCD mice exposed to hypoxia.
PCA showed a clear separation between normoxia and hypoxia
SCD samples, with the latter containing higher levels of SPMs
(including RvD1, 17R-RvD1, and LXA4), prostaglandin D2 (PGD2),
PGE2, PGF2a, and thromboxane B2 (Figure 2A-C), indicating
activation of the biosynthesis of select LMs in response to H/R
stress. The H/R-induced increase in the biosynthesis of SPMs,
as well as prostaglandins, was markedly lower in SCD mice than
in AA animals, indicating impairment in specialized proresolving
mediators in SCD in response to H/R. To explore the clinical
relevance of these findings, we carried out LC-MS/MS metab-
ololipidomics on plasma from human sickle cell subjects in the
steady-state. As shown in supplemental Figure 1, we identified
significantly increased amounts of PGE2 vs healthy controls. Of
interest, specialized proresolving mediators, protectin D1 and
RvE1, were also identified in human sickle cell plasma, as well as in
normal control plasma, based on matched LC retention time and
$6 diagnostic MS/MS fragment ions. These data suggest a high
proinflammatory pattern in sickle cell patients, supporting the
perturbation of proresolving events in human SCD.

To further characterize D-series Rv biosynthesis and kinetics in
humanized SCD mice, v-3 DHA (C22:6, 1 mg per mouse), as
a precursor of D-series Rv, was administered orally to mice from

both strains, and the temporal biosynthesis of RvD1 was de-
termined using a competitive immunoenzymatic assay. Because
RvD2 was not present in the metabololipidomics profile of SCD
mice, we focused on RvD1 (Table 1). The oral route for v-3 DHA
administration was chosen based on our previous studies in
mouse models of peritonitis and lung infection,18,19 whereas
the time course was chosen to determine the increase in RvD1
plasma levels and return-to-baseline concentrations. To assess
possible interference of matrix components with the assay,
synthetic RvD1 (40 and 100 pg/mL) was spiked in mouse
plasma, and its concentration was measured (supplemental
Figure 2A).

As shown in Figure 3A, plasma values of RvD1 did not change
significantly in SS mice after DHA administration, whereas they
increased markedly in healthy controls, as expected.

We also explored possible abnormalities in the expression of
enzymes related to RvD1 and RvD2 biosynthesis that might
contribute to the differences in LMs between mouse strains.
These were evaluated in lung, as a target organ of SCD, and
isolated aorta. No significant difference inmessenger RNA levels
of COX-2, 5-lipoxygenase, or 12/15-lipoxygenase was present
between AA and SS mice (supplemental Figure 2B). We then
compared the expression of RvD1 and RvD2 receptors in lungs
and aorta from AA and SS mice. Interestingly, ALX/FPR2 ex-
pression was downregulated in lung, but not aorta, from SS
mice, whereas DRV2/GPR18 messenger RNA levels in lung and
aorta were similar in both strains (supplemental Figure 2B).
Overall, these results provide the first LM signature of human-
ized SCD mice and indicate altered proresolving mechanisms
in SCD mice.

17R-RvD1 inhibits the ex vivo adhesion of human
leukocytes to TNF-a– activated endothelial cells
and in vivo in inflamed cremasteric venules from
humanized SCD mice
We examined whether proresolving mediators RvD1 (7S, 8R,
17S-trihydroxy-4Z, 9E, 11E, 13Z, 15E, 19Z-docosahexaenoic
acid), 17R-RvD1 (7S, 8R, 17R-trihydroxy-4Z, 9E, 11E, 13Z, 15E,
19Z-docosahexaenoic acid), and RvD2 (7S, 16R, 17S-trihydroxy-
4Z, 8E, 10Z, 12E, 14E, 19Z-docosahexaenoic acid) might affect
the ex vivo adhesion of leukocytes to tumor necrosis factor-a
(TNF-a)–activated endothelial cells using a microfluidic cham-
ber. 17R-RvD1 was also tested, because it is known to be longer
acting than RvD1 by resisting local enzymatic inactivation.20 In
our model, we found that RvD1 and 17R-RvD1 reduced the
adhesion of leukocytes from healthy donors and SCD patients
to the vascular endothelial surface (Figure 3B), whereas RvD2
was more effective in preventing leukocyte adhesion from AA
individuals than from SS individuals (supplemental Figure 3A-B).
This agrees with previous evidence in murine leukocytes20 and
supports the direct action of 17R-RvD1 on neutrophil adhesion
to activated endothelial cells.

As a proof of concept, we evaluated the impact of 17R-RvD1
on neutrophil adhesion and transmigration in TNF-a–mediated
inflamed cremasteric microcirculation (Figure 3C).21 In SS mice,
the inflammatory challenge with TNF-a induced a marked
increase in neutrophil adhesion compared with littermates.
The adhesion remained elevated and stable for 3 hours and
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30 minutes and then decreased slightly. At the end of the
experiment, adhesion density in SS mice challenged with
TNF-a was still increased compared with that of littermates

(P , .05). 17R-RvD1 markedly inhibited the adhesion of
neutrophils in SS mice throughout the time course of the study,
with the degree of adhesion being less than that observed
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Figure 1. Lipidometabolomic signature of AA and SS mouse spleens. (A) Representative multiple reaction monitoring chromatograms, from spleen samples of sickle
cell mice exposed to hypoxia (8% oxygen; 10 hours) and followed by reoxygenation (21% oxygen; 3 hours), used to identify LMs. (B) MS/MS fragmentation spectra used for
identification of RvD1, LXA4, and PGE2.
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in littermates and twofold less than in vehicle-treated SS
mice (P , .001) (Figure 3C; supplemental Videos 1-4). Because
bosentan, a specific inhibitor of endothelin-1 (ET-1) receptor
A-B, prevented neutrophil adhesion in SCD,21,22 we used it as
a reference molecule for the effects of 17R-RvD1 (Figure 3C).
We found that adhesion efficiency was markedly and similarly
decreased in SS mice treated with 17R-RvD1 or bosentan
compared with vehicle-treated animals (P, .01; supplemental
Figure 3C).

In SCD mice, 17R-RvD1 treatment also significantly decreased
neutrophil transmigration in TNF-a–induced inflamed venules
(Figure 3C, lower right panel). TNF-a–induced transmigra-
tion of neutrophils was significant in both groups of mice
compared with vehicle-treated animals (data not shown), but
distinct kinetics were observed in SS mice and in littermates.
Although neutrophil emigration reached a plateau at 3 hours
in the cremasteric microcirculation of littermates, sickle SS mice
experienced a sustained and more intense increase in emigration
that was double that measured in littermates after 4 hours and
30 minutes (Figure 3C, lower right panel). In SS mice, 17R-RvD1
administration significantly prevented transendothelial migration
of neutrophils to tissues, especially at late points (17R-RvD1:
;10-fold decrease at 2 hours and 30 minutes [P , .01, vs SS mice
treated with TNF-a only] and an approximately sevenfold decrease

at 4 hours and30minutes [P, .01, vs TNF-a–treatedmice] [Figure 3C,
lower right panel; supplemental Figure 3D; supplemental Video 1]).

17R-RvD1 enhances sickle red cell and
polymorphonuclear leukocyte efferocytosis
by macrophages
Earlier studies have shown that a defining action of SPMs in the
resolution of inflammation is the enhancement of macrophage
(MF)-mediated phagocytosis of damaged/dead cells.5 Thus,
we tested whether 17R-RvD1may affect neutrophil and red blood
cell (RBC) efferocytosis. As shown in Figure 4A-B, treatment of
spleen-derivedMFs with 17R-RvD1 resulted in a dose-dependent
increase in efferocytosis of RBCs and polymorphonuclear leuko-
cytes (PMNs). Erythrophagocytosis was significantly higher in
SS MFs for SS RBCs compared with AA MFs for AA erythrocytes
at baseline and after 17R-RvD1 (Figure 4A), while no major differ-
ences were observed in cross-experiments, namely SS MFs fed
AA RBCs or AA MFs given SS RBCs (supplemental Figure 4A-B).
This might be related to increased phosphatidylserine exposure
on SS erythrocytes, favoring erythrophagocytosis23,24 (supple-
mental Figure 4C), as well as to higher numbers of MFs in spleens
and peritoneal cavity of SS mice compared with wild-type litter-
mates (supplemental Figure 4D). Of note, this was associated with
activation of SS MFs, as indicated by the increased expression
of the phosphatidylserine receptors Tim4, CD206, and CD36 that
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mediate recognition and engulfment of apoptotic cells25,26

(supplemental Figure 4E).

Efferocytosis of SS PMNs was markedly impaired compared with
AA, further supporting a defect in proresolution mechanisms
in SCD that might be rescued by 17R-RvD1 (Figure 4A-B).
Similar results were also obtained when sickle RBCs or PMNs
were coincubated with peritoneal MFs treated with 17R-RvD1
(supplemental Figure 4). We also assessed whether 17R-RvD1
treatment regulates the clearance of PMNs and RBCs in spleen
from mice exposed to H/R stress. 17R-RvD1–treated AA and SS
mice showed significantly increased splenic MFs with ingested
PMNs (F4/801 Ly6G1) and RBCs (F4/801 Ter-1191) compared

with vehicle-treated animals, indicating an in vivo enhancement
of phagocytosis in 17R-RvD1–treated mice (Figure 4C-D).

These results, in conjunction with the potent bioactions of
17R-RvD1 in limiting inflammation and its improved resistance
to metabolic inactivation,8,27 led to testing its actions on target
organs for SCD in SS mice exposed to H/R.

17R-RvD1 reduces in vivo neutrophil blood counts
during H/R stress in humanized SCD mice
17R-RvD1 significantly reduced the H/R-induced increase in
neutrophil counts in both mouse strains (supplemental Figure 5A).
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This was associated with a decrease in plasma C-reactive protein
values in both mouse strains exposed to H/R stress (AA H/R
vehicle vs 17R-RvD1, 17.5 6 0.4 mg/dL vs 10.2 6 0.9 mg/dL,
P , .05; SS H/R vehicle vs 17R-RvD1, 58.2 6 1.8 mg/dL vs
22.6 6 3.5 mg/dL, P , .05). Our data support the notion that
17R-RvD diminishes the H/R systemic inflammation in SS mice.

17R-RvD1 reduces lung injury and prevents
the activation of inflammatory-related
transcriptional factors
In AA and SS mice, 17R-RvD1 reduced bronchoalveolar lavage
liquid (BAL) protein content and leukocyte counts (Figure 5A).
This was associated with a significant decrease in lung inflam-
matory cell infiltrates, as well as in mucus and thrombi formation
(Table 3; supplemental Figure 5B-C).28,29 Consistent with these
observations, we found a significant decrease in the active forms
of NF-kB and Nrf2 induced by H/R in AA and SSmice treated with
17R-RvD1 (Figure 5B). Because we previously reported that Rv’s
reduceNF-kB activation bymodulation of microRNAs (miRNAs),30

we assessed miRNAs known to be involved in acute inflammation
(ie, miR-126, miR-181b, and miR-146b). miR-126 was reduced
during H/R compared with during normoxia in both mouse
strains (Figure 5C; supplemental Figure 5D). 17R-RvD1 significantly

enhanced miR-126 in SS mice compared with vehicle-treated H/R
SS mice, whereas no significant changes were observed in miR-
181b and miR-146b expression in AA and SS mice (supplemental
Figure 5D). These findings suggest a specific regulatory effect of
17R-RvD1 onmiR-126 in SSmice exposed to H/R stress. In AAmice
exposed to H/R, no major changes in NF-kB activation or miR-126
levels were observed in vehicle-treated animals, which might be
related to the duration of H/R. This may also explain the lack of
effect of 17R-RvD1 onNF-kB andmiR-126 in AAmice. Collectively,
our data indicate that 17R-RvD1 prevents the H/R-induced am-
plified inflammatory response in lung from SS mice by targeting
specific molecular pathways (ie, NF-kB signaling, redox responses,
and miRNA-mediated regulation of gene expression).

17R-RvD1 resolves hypoxia-induced lung
inflammatory vasculopathy and modulates
pulmonary extravascular remodeling
To assess whether 17R-RvD1 was protective against H/R-induced
oxidation and vascular dysfunction, we evaluated lung expres-
sion of heme-oxygenase-1 (HO-1), a cytoprotective system
related to Nrf2,31-33 proinflammatory cytokines,22,34 and mark-
ers of vascular endothelial activation and neutrophil vascular
recruitment.34-36 As shown in Figure 5D, we found a significant
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reduction in HO-1 lung expression, supporting an antioxidant
effect of 17R-RvD1 during H/R stress in both mouse strains (sup-
plemental Figure 5E). Because previous studies have shown
upregulation of HO-1 by RvD1 treatment,37 we evaluated HO-1
expression in both mouse strains exposed to hypoxia, followed by
18 hours of reoxygenation, and treated with 17R-RvD1 at the end
of hypoxia. In AAmice, we observed increased HO-1 expression in
posthypoxia 17R-RvD1–treated mice, whereas, again, HO-1 was
downregulated in SS mice (supplemental Figure 6A). This finding
indicates that the difference in HO-1 behavior in response to 17R-
RvD1 is related to the SCD phenotype, which is characterized by
chronic inflammation with persistent activation of Nrf2.2,34,38,39

We then evaluated the key proinflammatory cytokines interleukin-
1b (IL-1b) and IL-6, which were reduced significantly in cell-free
lung homogenates from AA and SS mice treated with 17R-RvD1
(supplemental Figure 6B). Lung IL-6 and ET-1 expression was
significantly lower in 17R-RvD1–treatedmice exposed to H/R than
in vehicle-treated groups (Figure 5D; supplemental Figure 6B).

A similar effect was also observed in lungs from SS mice exposed
to hypoxia followed by 18 hours of reoxygenation, when treated
with 17R-RvD1 at the end of the hypoxia period (supplemental
Figure 6C).

The observed reduction in ET-1 values in H/R-exposed SS mice
treated with 17R-RvD1 is relevant, because ET-1 plays a pivotal
role as a proinflammatory cytokine and a potent vasoconstrictive
molecule, further worsening local vascular dysfunction related
to SCD.22 In support of this idea, we found a significant reduction
in H/R-induced intracellular adhesion molecule-1 (ICAM-1) ex-
pression in SS mice, whereas no major differences were ob-
served in AA mice (Figure 5D; supplemental Figure 5E). We also
found a reduction in E-selectin expression in SS mice exposed to
H/R and treated with 17R-RvD1 compared with vehicle-treated
SS animals (supplemental Figure 6C).

We then evaluated the expression of platelet-derived growth
factor-B (PDGF-B), which is known to be a factor involved in lung
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Figure 5. 17R-RvD1 prevents H/R activation of acute inflammatory response pathways and reduces SCD vascular vulnerability through multimodal action on NF-kB
activation. (A) BAL protein content (upper panel) and leukocyte content (lower panel) from AA and SS mice under normoxia and treated with vehicle or 17R-RvD1 (100 ng) and
exposed to H/R: hypoxia (8% oxygen; 10 hours), followed by reoxygenation (21% oxygen; 3 hours) (upper panel). All data are mean6 SD (n5 6). (B) Immunoblot analysis, using
specific antibodies against phosphorylated (P-)NF-kB, NF-kB, P-Nrf2, and Nrf2, in lung from AA and SS mice treated as in (A) (left panel). Vertical line(s) in NF-kB, P-p65 gel have
been inserted to indicate a repositioned gel lane. One representative gel from 6 gels with similar results is presented. Densitometric analysis of immunoblots (right panels).
Data are mean6 SD (n5 6 in each group). (C) Expression of miR-126 (mmu–miR-126-5p), as determined using quantitative polymerase chain reaction, in the lungs of AA and
SS mice undergoing H/R and 17R-RvD1 treatment. Results are mean6 SD from 3 to 6 mice per group. (D) Immunoblot analysis, using specific antibodies against HO-1, IL-6,
ET-1, ICAM-1, PDGF-B, and TXAS-1, of lung from AA and SS mice treated as in (B). One representative gel from 6 gels with similar results is shown. Densitometric analysis
immunoblots are shown in supplemental Figure 2A. *P , .05 vs normoxia, °P , .05 vs healthy mice (AA), ^P , .05 vs vehicle.
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extravascular matrix remodeling in response to hypoxia.35,36 As
shown in Figure 5D, 17R-RvD1 prevented the H/R-induced in-
creased expression of PDGF-B in both mouse models (supple-
mental Figure 5E).

Finally, we analyzed the expression of thromboxane-synthase
(TXAS-1), which is placed under the control of NF-kB andNrf2.40-42

TXAS-1 has been linked to the activation of vascular endothe-
lial cells and platelets in other models of ischemia-reperfusion
damage.41,42 In both mouse models, 17R-RvD1 markedly re-
duced the H/R upregulation of TXAS-1 compared with vehicle-
treated animals (Figure 5D; supplemental Figure 5E). Overall,
these studies provide in vivo evidence that 17R-RvD1 treatment
protects SSmice against H/R-induced lung injury by suppressing
key mediators of inflammation and vascular damage.

Proresolving action of 17R-RvD1 diminishes
H/R-induced kidney damage in SS mice
We also examined whether 17R-RvD1 may be protective against
H/R-induced kidney injury in SS mice.43-45 We found that, in SS
mice, treatment with 17R-RvD1 significantly prevented the H/R-
induced increase in creatinine and blood urea nitrogen plasma
values compared with vehicle treatment (Figure 6A). Histo-
pathologic analysis of kidneys from control and SSmice exposed
to H/R and treated with 17R-RvD1 revealed a marked reduction
in glomerular inflammatory cell infiltration, glomerular sclerosis,
and thrombi formation compared with vehicle-treated H/R
animals (Figure 6B-F; Table 3).22,46 In agreement, we found
a reduction in H/R-induced activation of NF-kB in kidney from
both mouse strains (Figure 6G; supplemental Figure 6D). Of
note, Nrf2 was activated only in SS mice in response to H/R
stress, and it was reduced significantly by 17R-RvD1 adminis-
tration (Figure 6G; supplemental Figure 6D). We found a
reduction in HO-1 expression in H/R SS mice treated with
17R-RvD1 compared with vehicle-treated SS animals (Figure 6H;
supplemental Figure 7A), whereas HO-1 was undetectable in

healthy mice under normoxic conditions or after exposure to H/R
(Figure 6H; supplemental Figure 7A).

The proresolving effects of 17R-RvD1 in SS mice were further
supported by the reduction in the H/R-induced increase in IL-6
expression (Figure 6H; supplemental Figure 7A) and ET-1
(Figure 6D; supplemental Figure 7A). ET-1 also increased in AA
mice in response to H/R and diminished with administration of
17R-RvD1 (Figure 6D; supplemental Figure 7A).

At baseline, SS mice already showed higher values of HO-1,
ET-1, VCAM-1, and TXAS-1, indicating a chronic kidney inflam-
matory vasculopathy related to the SCD phenotype (Figure 6D;
supplemental Figure 7A). Markers of vascular endothelial and
platelet activation, such as VCAM-1, TXAS-1, and E-selectin, were
increased in H/R-exposed mice and were reduced by treatment
with 17R-RvD1 (Figure 6D; supplemental Figure 7A-B).

17R-RvD1 reduces the inflammatory-related
profibrotic stimulus induced by acute VOC
To explore the mechanisms associated with the effects of 17R-
RvD1 on sickle cell kidney damage, we evaluated the expression
of miRNA let7c, which has previously been shown to be targeted
by SPMs and to reduce renal fibrosis through the transforming
growth factor-b1 system.47 This latter effect seems to be im-
portant in sickle cell kidney disease via a partially unknown
cascade.43,44 We found that let7c was markedly increased in
response to H/R stress in humanized AA mice (Figure 6I). This
increase was more pronounced in the SS mouse strain, sug-
gesting the existence of an endogenous circuit aimed at limiting
transforming growth factor-b1 signaling and, subsequently, kid-
ney fibrosis (Figure 6I). 17R-RvD1 further enhanced the antifibrotic
miRNA let7c in AA and SS animals undergoing H/R (Figure 6I).
These data indicate that 17R-RvD1 mitigates the H/R-induced
acute kidney damage and resolves the related amplified

Table 3. Effects of 17R-RvD1 on lung and kidney pathology of AA and SSmice under normoxic conditions and exposure
to H/R stress

AA mice SS mice

Normoxia H/R H/R Rvs Normoxia H/R H/R Rvs

Lung (n 5 3) (n 5 6) (n 5 3) (n 5 3) (n 5 5) (n 5 3)
Inflammatory cell infiltrates, mean 6 SD 6.4 6 1.9 25.2 6 3.0* 4.9 6 1.7† 9.0 6 1.2‡ 78.2 6 3.5*,‡ 36.1 6 8.0*,†,‡

Edema 0 0 0 0 0 0
Mucus 0 1 (3/6) 0 0 1 (1/5) 0
Thrombi 0 0 0 0 1 (4/5) 1 (3/3)

Kidney (n 5 3) (n 5 6) (n 5 3) (n 5 3) (n 5 5) (n 5 3)
Inflammatory cell infiltrates, mean 6 SD 0 0.4 6 0.03* 0† 0 2.9 6 0.02*,‡ 1.7 6 0.06†,‡

Thrombi 0 0 0 0 1 (2/5) 0
Sclerotic glomerula 0 1 (1/6) 0 0 1 (3/5) 0
Necrosis 0 0 0 0 1 (2/5) 0

Inflammatory cell infiltrates in the lung are expressed as the mean number of cells per field of view at original magnification 3250, resulting from the analysis of $4 fields of view from each
hematoxylin and eosin–stained whole-lung section (see also de Franceschi et al28,29). Edema: 0, no edema. Mucus: 0, no mucus; 1, mucus filling ,25% of the area of the bronchus
circumference at original magnification3400. Thrombi: 0, no thrombi;1, presence of thrombus per field at original magnification3250. Quantification of inflammatory cell infiltration in the
renal cortex of kidney was determined in hematoxylin and eosin–stained sections using a scale (0-4) based on the percentage of each field occupied by cell infiltrates: 0 (no sign of infiltration),
1 (1-10%), 2 (11-25%), 3 (26-50%), and 4 (.50%). The mean of 15 randomly selected fields was analyzed at original magnification 3400 (see also Sabaa et al22 and Guo et al46). Sclerotic
glomerula: 0, no sclerotic glomerula; 1, .50% sclerotic glomerula. Necrosis: 0, no necrosis; 1, presence of necrosis.

SD, standard deviation.

*P , .05 vs normoxia, †P , .05 vs vehicle, ‡P , .05 vs healthy mice (AA), 2-way ANOVA algorithm for repeated measures combined with the Bonferroni correction.
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inflammation and vascular dysfunction, preventing the activation
of profibrotic mechanism(s).

17R-RvD1 protects against progression of
inflammatory vasculopathy during acute
H/R stress in SS mice
Given the beneficial effects of proresolving LM treatment on
different models of vascular dysfunction and inflammatory
vasculopathy,48-51 we tested the impact of 17R-RvD1 treatment
on the inflammatory vasculopathy of SCD. Administration of
17R-RvD1 significantly reduced the H/R-induced expression of

HO-1 in isolated aortas from both mouse strains (Figure 7A). In
addition, we found a significant reduction in the H/R-induced
expression of ET-1 and VCAM-1 compared with vehicle-treated
mice (Figure 7A). The beneficial effect of 17R-RvD1 on VCAM-1
expression was further confirmed by immunochemistry (Figure 7B).
Aorta from SS mice exposed to H/R showed increased ICAM-1,
which was prevented by 17R-RvD1 treatment (Figure 7A-B). Of
note, a reduction in H/R-induced VCAM-1 and ICAM-1 was also
observed in aorta from SS mice exposed to hypoxia, followed by
18 hours of reoxygenation, and treatedwith 17R-RvD1 at the end of
the hypoxia period (supplemental Figure 7C). These data indicate
that resolution of H/R-induced inflammatory vasculopathymight be
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Figure 6. 17R-RvD1 protects kidney from sickle cell–related acute injury, prevents inflammatory vascular activation, and positively modulates antifibrotic let7c
miRNA. (A) Plasma creatinine (upper panel) and blood urea nitrogen (BUN) (lower panel) levels in AA and SSmice under normoxic conditions or treated with vehicle or 17R-RvD1
(100 ng) and exposed to H/R: hypoxia (8% oxygen; 10 hours), followed by reoxygenation (21% oxygen; 3 hours). Data are mean6 SD (n 5 6). *P , .05 vs normoxia, °P , .05 vs
healthymice (AA), ^P, .05 vs vehicle. Hematoxylin and eosin–stained sections of kidney tissue from AA and SSmice treated with vehicle [AA (B); SS (D-E)] or 100 ng of 17R-RvD1
[AA (C); SS (F)] exposed to H/R: hypoxia (8% oxygen; 10 hours) followed by reoxygenation (21% oxygen; 3 hours) (original magnification 3400). Sections of kidney from
mice given 17R-RvD1 (C,F) show less glomerular inflammatory cellular infiltrate (in the form of lymphocytes, neutrophils, and plasma cells), glomerular sclerosis (arrow),
and thrombi (arrow) compared with vehicle-treated mice (B,D-E); also see Table 1). (G) Immunoblot analysis, using specific antibodies against phosphorylated (P-)NF-kB,
NF-kB, P-Nrf2, and Nrf2, in kidney from AA and SS mice treated as in (B). One representative gel from 6 gels with similar results is shown. Densitometric analysis of
immunoblots is shown in supplemental Figure 2A. (H) Immunoblot analysis, using specific antibodies against HO-1, IL-6, ET-1, VCAM-1, and TXAS-1, of kidney from AA
and SS mice treated as in (B). One representative gel from 6 gels with similar results is shown. Vertical line(s) in ET-1 gel have been inserted to indicate a repositioned gel
lane. Densitometric analysis immunoblots are shown in supplemental Figure 2A. (I) Effect of 17R-RvD1 on kidney let7c expression. Levels of miRNA let7c were quantified,
using real-time polymerase chain reaction, in kidneys collected from AA and SS mice that were treated as above. Results are mean 6 SD from 3 to 6 mice per group.
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altered in SCD mice, requiring the administration of exogenous
proresolving molecules, such as 17R-RvD1, to prevent severe vas-
cular dysfunction and disease progression.

Discussion
For the first time, our data identify altered proresolving pro-
cesses in humanized sickle cell mice. This is supported by the
abnormal LM profile, with a clear defect in SPMs in response to
H/R stress in the spleen of SCD mice (Figures 1 and 2; Table 1),
reduced ALX expression in SS lungs, and blunted RvD1 bio-
synthesis post-DHA administration. Thus, the reduction in RvD1
biosynthesis following DHA administration in SCD may most
likely be related to a defect in the activation of biosynthetic
pathways and enzymes, whose activity may not be strictly related
to their expression levels (Figure 3). Moreover, given that no
significant differences were found in RvD2 levels following DHA
gavage between AA and SS mice, it is unlikely that differences
in RvD1 plasma levels arise from abnormalities in the bio-
availability of DHA in SCD. This altered response could be

further affected by the reported increased amounts of arachidonic
acid (the biosynthetic precursor of leukotriene B4) in SCD,34 which
could contribute to delayed resolution of inflammation and
worsening tissue damage in SS mice exposed to H/R stress.
Indeed, intravital microscopy data indicate the important role of
17R-RvD1 in reducing the adhesion of neutrophils to activated
endothelium and their transmigration in the presence of in-
flammatory SCD vasculopathy. This is of particular interest, because
neutrophil adhesion in microcirculation is critical for generation of
heterothrombi, which represent an early event in acute VOC.52

The enhanced phagocytosis of sickle RBCs in vitro and in vivo by
MFs in spleen from 17R-RvD1–treated mice exposed to H/R
stress provides an additional mechanism of action of 17R-RvD1
in accelerating the proresolving events in SCD. This is in agreement
with previous reports on enhanced uptake of apoptotic PMNs and
lymphocytes by lungMFs during chronic pulmonary infection53 and
of 17R-RvD1 increasing the phagocytic uptake of Escherichia coli.8

Taken together, our data indicate that 17R-RvD1 administra-
tion supports the altered resolution of inflammation in SCD by
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preventing neutrophil recruitment and adhesion to microvascular
endothelium, as well as by accelerating the clearance of damaged
cells. This conclusion shouldbe temperedby the limitation that we
have only demonstrated altered RvD1 function in spleen and
peripheral blood. Thus, the assumption that the spleen can be
used as a reporter organ for SPMs needs to be validated at the
local level.

In SCD mice, restoration of proresolving processes by 17R-RvD1
administration is extremely important in critical setting for SCD, such
as H/R stress.We show that administration of 17R-RvD1 reduces the
activation of NF-kB and modulates the expression of miR-126 in
lung fromSSmice exposed toH/R; in parallel, expression of ICAM-1
adhesionmolecules on vascular endothelial cells is also significantly
reduced, most likely as a consequence of blunted TNF-a/NF-kB
activation, which is known to regulate leukocyte recruitment.54 17R-
RvD1 also resulted in a significant reduction in proinflammatory
cytokines, particularly ET-1, a key proinflammatory and vaso-active
cytokine that is extremely important in SCD vasculopathy.21,22

In SSmice, 17R-RvD1 also affected biomarkers associated with H/R-
induced kidney damage. In this regard, 17R-RvD1 prevented H/R
activation of acute-phase transcriptional factors like NF-kB and Nrf2
in kidney from SS mice. An earlier work by Duffield et al demon-
strated that Rv’s reduce inflammation and damage in acute kidney
disease.55 In addition, the observation that 17R-RvD1 enhanced
let7c expression, interfering with activation of profibrotic mecha-
nisms, further supports the importance of restoring proresolving
events in SCD. Together with results on miR-126, these findings
indicate the existence of commonproresolution circuits activated by
different SPMs (ie, 17R-RvD1 and LXA4) involving miRNAs in SCD.

In conclusion, the results of the present study established the
presence of an imbalance between proinflammatory and pro-
resolving events in SS mice, at baseline conditions and after
exposure to H/R stress mimicking acute VOCs. Mechanistically,
we report that RvD1 plays a crucial role in preventing the adhesion
of neutrophils to vascular endothelium in SCD and demonstrate
that administration of 17R-RvD1 is protective against H/R-induced
lung and kidney injury, by acting on NF-kB function and pre-
venting amplified inflammatory response. Thus, SCDmicemay be
more vulnerable to inflammatory vasculopathy due to altered
proresolving processes (supplemental Figure 8). Treatment with
17R-RvD1 restores the inflammatory imbalance and prevents H/R-
induced abnormal vascular activation and inflammatory response,
preventing H/R organ damage and disease progression. Our
results show that 17R-RvD1, as a new therapeutic strategy, will
need to be tested in appropriate human trials in SCD. Taken

together, our data provide a rationale to develop new therapeutic
approaches using proresolving mediators for the clinical man-
agement of acute SCD–related events.
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