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KEY PO INT S

l A large proportion of
patients have CLL cells
with activation of Hh
signaling leading to
expression of GLI1.

l Activation of Hh
signaling predicts for
relatively short
treatment-free
survival and sensitivity
to GLI1 inhibition.

Targeted sequencing of 103 leukemia-associated genes in leukemia cells from 841
treatment-naive patients with chronic lymphocytic leukemia (CLL) identified 89 (11%)
patients as having CLL cells with mutations in genes encoding proteins that putatively are
involved in hedgehog (Hh) signaling. Consistent with this finding, there was a significant
association between the presence of these mutations and the expression of GLI1 (x2 test,
P < .0001), reflecting activation of the Hh pathway. However, we discovered that 38% of
cases without identified mutations also were GLI11. Patients with GLI11 CLL cells had
a shorter median treatment-free survival than patients with CLL cells lacking expression of
GLI1 independent of IGHV mutation status. We found that GANT61, a small molecule that
can inhibit GLI1, was highly cytotoxic for GLI11CLL cells relative to that of CLL cells without
GLI1. Collectively, this study shows that a large proportion of patients have CLL cells with
activated Hh signaling, which is associated with early disease progression and enhanced
sensitivity to inhibition of GLI1. (Blood. 2019;133(25):2651-2663)

Introduction
Whole-exome sequencing of chronic lymphocytic leukemia
(CLL) cells has advanced our understanding of this disease.1-6

Pathway enrichment analyses revealed that the genes found
mutated in CLL encoded proteins involved in Notch signaling,
inflammation, B-cell receptor signaling, Wnt signaling, chro-
matin modification, response to DNA damage, cell cycle control,
or RNA processing.1,2,6,7 Finding frequentmutations in clusters of
genes involved in these 7 signaling/metabolic pathways implies
that they contribute to CLL pathogenesis.7

We examined for mutations in 103 genes of the HALT Pan-
Leukemia Gene Panel in leukemia cells of 841 treatment-naive
patients with CLL. The HALT Pan-Leukemia Gene Panel included
genes found mutated in myeloid or lymphoid leukemias and
leukemia stem cells.8 Some genes included in this panel are
known to harbor mutations in myeloid leukemia but not in CLL.
Reactome pathway enrichment analysis9 was performed on the
genes found to have mutations, with attention focused on those
that did not map to these 7 identified signaling/metabolic
pathways in CLL.1,2,6,7

We detected mutations in genes encoding proteins involved
in activation of the Hh signaling pathway. The Hh signaling
pathway is a highly conserved regulator of development, tissue

patterning, cell proliferation, and differentiation. In mammals, it
is activated by the binding of 3 ligands, Sonic Hh (SHh), Desert
Hh (DHh), or Indian Hh (IHh), to the transmembrane receptors
Patched1 or Patched2 (PTCH1-2).

Loss-of-function mutations in negative regulators, such as PTCH1-2
or SUFU, or gain-of-functionmutations in positive regulators, such as
SMO, can lead to Hh-pathway activation independent of ligand.10-14

As with ligand-dependent activation,15 such ligand-independent
activation of the Hh pathway leads to overexpression of the main
effector of Hh signaling, namely GLI1, which serves as a surrogate
marker for Hh-pathway activation.16,17 Consistent with the notion
that Hh-pathway activation factors in pathogenesis, overexpression
of GLI1 is an adverse prognostic indicator for patients with acute
myeloid leukemia18 or carcinomas of the breast,19 ovary,20 or lung.21

Moreover, overexpression ofGLI1 is observed in numerous cancer
types, including cervical and breast cancers, chronic myeloid
leukemia, multiple myeloma, and medulloblastoma.22-26 Although
previous studies noted that CLL cells of some patients have acti-
vation of the Hh pathway,27-30 somatic mutations identified in
studies on the genetics of CLL have not been implicated to affect
activation of this pathway. We assessed for expression of GLI1 in
cases found to harbor mutations in genes that could influence Hh
signaling and examined whether activation of this pathway was
associated with early disease progression.
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Materials and methods
Patient samples
This study was conducted in accordance with the Declaration of
Helsinki for the protection of human subjects and the Institutional
Review Board of the University of California San Diego (Institu-
tional Review Board approval #110658). Blood samples were
collected from 841 patients with CLL enrolled in the CLL Research
Consortium upon receipt of written informed consent and who
satisfied diagnostic and immunophenotypic criteria for CLL.31

Leukemia-associated genes for
targeted sequencing
We performed targeted sequencing of the HALT Pan-Leukemia
Gene Panel of 103 genes8 on 841 untreated CLL samples.
Briefly, baits were designed to capture the coding sequence of
103 leukemia-associated genes. Illumina sequencing libraries
were constructed, and target enrichment was performed by
using an Agilent SureSelect kit (Agilent Technologies). The
resulting amplified library was quantified and sequenced on
the Illumina HiSeq 2000/2500 platform. Reads were aligned
to the reference human genome build hg19 using NovoAlign
(Novocraft Inc.), and on-target single nucleotide variants and
indels were called by using the genome analysis tool kit
(GATK). Sequencing data are available through dbGaP
(phs000767).

Detection of CLL signaling pathways
Cytoscape software32 with the Reactome functional interaction
(FI) plug-in were used to perform pathway and network-based
data analyses33 with the Reactome FI network,34 which merges
interactions extracted from human-curated pathways with in-
teractions predicted by using a machine learning approach. This
approach allowed us to construct an FI network based on sets
of genes involved in each of the 7 identified CLL signaling/
metabolic pathways.1,2 Pathway-based data analysis was performed
by using Reactome FI and high-quality human-curated pathways
in the Reactome database.35 We also performed Reactome path-
way enrichment analysis of the genes found mutated in our study
that did not map onto these 7 signaling/metabolic pathways.
Pathways with a false discovery rate , 0.05 were considered
significantly enriched.

Functional prediction of Hh-pathway mutations
PolyPhen-2 software36 is an automatic tool for prediction of the
possible impact of an amino acid substitution on protein func-
tion. This prediction is based on a number of features com-
prising the sequence, phylogenetic, and structural features of
the substitution. PolyPhen-2 predicts the functional significance
of an amino acid substitution from its individual features by
Naive Bayes classifier trained using supervised machine learn-
ing. PolyPhen-2 software was used to analyze the functional
effect of missense mutations in genes involved in Hh signaling.
PolyPhen-2 provides both a qualitative prediction of inactivation
(“damaging” or “benign”) and a score.

Description of clinical database, sample preparation, library
preparation, bioinformatics processing, flow cytometry analyses,
immunoblot analyses, viability assay, and statistical analyses are
provided in the supplemental Methods (available on the Blood
Web site).

Results
Targeted sequencing and Reactome enrichment
pathway analysis expands the CLL core
pathways list
We performed targeted sequencing of the genes included in
the HALT Pan-Leukemia Gene Panel8 on the CLL cells of 841
treatment-naive patients (Table 1). Of the 103 genes in the HALT
Pan-Leukemia Gene Panel, mutations were excluded in 4 genes
(TTN, PCLO, HYDIN, and CSMD3) because they were false-
positive findings according to the MutSig algorithm37 and in
5 genes (MUC2, MUC4, ASMTL, CRLF2, and IL3RA) that had in-
adequate coverage criteria (supplemental Table 1). The final list
included 94 genes (supplemental Table 2). In 3 of these genes
(CDKN2A, EED, and MLH1), we did not detect mutations in any
patient sample. In the remaining 91 genes of the HALT Pan-
Leukemia Gene Panel,8 a total of 1134 variants were identified,
828 (73%) of which involved 84 genes and were considered
deleterious (missense, frameshift insertion, frameshift deletion,
nonsense, or splicing). A total of 520 of the 841 patients (62%)
had one or more deleterious mutations involving one or more
of these 84 genes (supplemental Tables 3 and 4). Conversely,
90 patients (11%) had only synonymous mutations, whereas
231 patients (27%) had no detectable mutations in the genes ex-
amined. The 5 most commonly mutated genes were NOTCH1,
ATM, TP53, MYD88, and SF3B1 (Figure 1; supplemental
Figure 1A-C), as noted in previous studies.1-4,6,38

Fifty-two (62%) of these 84 genesmapped to the 7 identifiedCLL
signaling/metabolic pathways (supplemental Figure 2). Reac-
tome pathway analysis on the other 32 genes identified sig-
nificant enrichment of genes implicated in the Hh pathway (false
discovery rate 5 0.005). Using Cytoscape, we expanded this
Reactome pathway analysis to include genes relevant to the Hh
pathway from the 84 genes found to have deleterious mutations
in our cohort of patients, defining these as Hh-pathway genes.
These Hh-pathway genes included 3 oncogenes (SMO, GLI1,
and GLI2) and 7 additional genes. These 7 additional genes
comprised the following: BCOR and BCORL1, encoding BCL6
corepressor proteins; CREBBP and EP300, encoding proteins
with intrinsic histone acetyl transferase activity; EZH2, encod-
ing a protein with histone methyltransferase activity; FBXW7,
encoding a protein subunit of E3-ubiquitin-protein ligase com-
plex; and MED12, encoding mediator complex subunit 12
(Figure 2A-D). A schematic representation of the role of each of
theHh-pathway genes foundmutated is provided in Figure 2C.
The missense mutations found in SMO were the first SMO
mutations identified in CLL, whereas mutations in each of the other
9 genes had been observed in previous studies.1,4,6,39 Collectively,
we identified 102 deleterious mutations in these 10 Hh-pathway
genes among 89 (11%) of 841 patients examined (Figure 2B).

Patients with CLL who had deleterious mutations in one or more
of these 10 Hh-pathway genes had a shorter median treatment-
free survival (TFS) than patients with CLL cells without Hh-
pathway mutations (5.4 years vs 6.0 years; P 5 .01). Patients
with CLL cells that expressed mutated IGHV (IGHVMU) and had
mutations in one or more 10 Hh-pathway genes had a signifi-
cantly shorter median TFS than patients with IGHVMU CLL that
did not have identified Hh-pathway gene mutations (6.4 years
vs 9.6 years; P 5 .008) (supplemental Figure 3). Although pa-
tients with CLL cells with IGHVUM and mutations identified in
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Hh-pathway genes had a median TFS (3.3 years) that seemed
shorter than that of patients with IGHVUM CLL cells without iden-
tifiedHh-pathway genemutations (4.0 years), this difference did not
reach statistical significance (P 5 .1, supplemental Figure 3).

GLI1 expression in CLL cells with or without
Hh-pathway mutations
To evaluate whether mutations in these 10 Hh-pathway genes
were associated with activation of the Hh pathway, we examined
for GLI1 expression in CLL cells from 49 patients randomly se-
lected from the 89 found to have Hh-pathway mutations; these
selected 49 patients each had CLL cells with one (n 5 45) or
two (n 5 6) deleterious mutations in the 10 Hh-pathway genes.
Thirty-nine (68%) of the 57 deleterious mutations found among
these 49 patient samples were missense mutations. Of these
39missensemutations, 9 were in oncogenes (SMO,GLI1, orGLI2)
and 30 in tumor suppressor genes (BCOR, BCORL1, CREBBP,
EP300, FBXW7, or MED12). The PolyPhen-2 prediction software36

was used to deduce whether any one of these 39 genes would be
damaging (Table 2). PolyPhen-2 predicts the possible impact of
a missense mutation on the stability and function of human
proteins and estimates the probability of a missense mutation
being damaging. The PolyPhen-2 score ranges from $0.5 to
1.0 for inactivatingmutations (damaging) and from 0.0 to,0.5 for
not inactivating mutations (benign). According to this approach,
25 (64%) of the 39 identifiedmissense mutations were damaging.

Moreover, we determined that the percentage of missense
mutations in tumor suppressor genes that were damaging
(62%) was significantly higher than that observed in oncogenes
(3%; P , .0001) (supplemental Figure 4A-B).

Among these 49 CLL samples with mutations in Hh-pathway
genes, 41 (84%) expressed GLI1 and hence were classified as
GLI11. Among the cases with missense mutations in Hh-pathway–
associated oncogenes, all 9 were GLI11 (Figure 3A), implying
that such Hh-pathway gene mutations were not inactivating, as
predicted according to PolyPhen-2. Consistent with this finding,
transfection of CLL cells or U937 cells with either wild-type SMO
(SMOWT) or P26S mutant SMO (SMOMU) increased GLI1 ex-
pression (Figure 3B). Among the cases with missense mutations
inHh-pathway oncogenes, only 1 had amissense mutation (GLI2
S941R) that was predicted to be inactivating according to
PolyPhen-2 (Table 2). GLI2 and GLI3 transcriptional activator
capacity was positively regulated by Hh signaling and negatively
regulated by cyclic adenosine monophosphate–dependent
protein kinase A (PKA) through specific phosphorylation sites
present on GLI2 and GLI3. The inhibition of the formation of full-
length GLI2 and GLI3 transcriptional activators (GLI2,3Act) is de-
pendent on all 6 (P1-6) conserved serine residues phosphorylated
by PKA. The identified mutation GLI2 S941R removes the fifth (P5)
serinephosphorylation site of PKA.40 This scenario suggests that this
mutation is a gain-of-function mutation that changes GLI2 phos-
phorylation and consequently affects its ability to induce expression
of GLI1. Among the mutations in Hh-pathway tumor suppressor
genes, 67% were missense, whereas 33% were deleterious muta-
tions other than missense. GLI1 was expressed in 72% of cases with
missensemutations and in 94%of deleteriousmutations other than
missense. We also observed that GLI1 expression was increased
when tumor suppressors such as FBXW7, CREBBP, or BCOR were
silenced using small interfering RNA (siRNA) in CLL cells lacking
GLI1 expression (Figure 3C). None of the 6 cases with benign
missense mutations expressed GLI1, whereas all but 2 cases with
damaging missense mutations in these tumor suppressor genes
expressed GLI1. The 2 cases with CLL cells that carried dam-
aging missense mutations, but lacked GLI1, each had a hotspot
FBXW7 mutation (R387C or R479Q) with an allelic fraction ,0.20.

We also examined for expression of GLI1 in the CLL cells from
161 patients who randomly were selected from the 752 patients
who did not have mutations in any one of the 10 Hh-pathway
genes. Surprisingly, we found that 62 (38%) of 161 CLL samples
without identified Hh-pathway gene mutations also expressed
GLI1. Although the proportion of cases with identifiedmutations
in the 10 Hh-pathway genes that expressed GLI1 (84%) was
greater than that noted for cases without mutations in these
genes (38%) (x2 test, P , .0001) (Figure 3D-E), these results
reveal that a much larger number of patients in this subcohort
(n5 210) have CLL cells with Hh pathway activation (n5 103) than
have mutations identified in these 10Hh-pathway genes (n5 49).

Upregulation of GLI1 downstream targets and
in vitro response to inhibition of GLI1
We evaluated whether expression of GLI1 correlated with ex-
pression of downstream target genes of GLI1, namely E2F1,
AKT1, and PTCH1. For this evaluation, CLL cells were randomly
collected from 20 HhMUGLI11, 8 HhWTGLI11, 7 HhMUGLI1–, and
14 HhWT GLI1– patients included in the 210 patients for whom

Table 1. Patient characteristics

No. of patients 841

Median age at diagnosis, y (range) 57.2 (30-91)

Sex
Male 503 (60%)
Female 338 (40%)

Rai stage
0-1 657 (78%)
2 126 (15%)
3-4 58 (7%)

Median time from diagnosis to Sc, y 3

Median TFS, y 4

No. of treated patients 533 (63%)

No. of patients with IGHV status 830 (98%)
IGHVUM 376 (45%)
IGHVMU 454 (55%)

No. of patients with ZAP-70 expression 838 (99%)
ZAP-70 positive 307 (37%)
ZAP-70 negative 531 (63%)

No. of patients with fluorescence in situ
hybridization data

656 (78%)

Del(17p) 64 (10%)
Del(11q) 78 (12%)
Trisomy 12 103 (16%)
Del(13q) 263 (40%)
Normal karyotype 146 (22%)

Sc, sample collection.

HEDGEHOG SIGNALING ACTIVATION IN CLL blood® 20 JUNE 2019 | VOLUME 133, NUMBER 25 2653

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/133/25/2651/1557473/blood873695.pdf by guest on 02 June 2024



0

N
O

TC
H

1
A

TM
TP

53
M

Y
D

88
SF

3B
1

C
H

D
2

P
O

T1
D

D
X

3X
E

G
R

2
LR

P
1B

C
D

H
23

C
R

E
B

B
P

K
LH

L6
M

E
D

12
TE

T2
B

C
O

R
FB

X
W

7
K

M
T2

A
K

R
A

S
G

LI
2

R
E

LN SI
C

B
L

LP
H

N
3

B
R

A
F

C
N

O
T3

E
P

30
0

N
F1

R
IM

S2
C

E
B

PA
E

C
T2

L
M

SH
6

B
C

O
R

L1
D

N
M

T3
A

H
N

R
N

P
R

N
X

F1
P

D
G

FR
A

SI
R

PA
U

M
O

D
L1

A
SX

L1
E

ZH
2

IL
7R

JA
K

1
M

E
C

O
M

P
D

G
FR

B
SM

O
TB

L1
X

R
1

A
B

L1
A

D
A

R
B

2
C

D
44

D
N

M
T3

B
G

A
TA

2
G

LI
1

ID
H

2
JA

K
2

JA
K

3
M

P
L

PA
X

5
P

TP
N

11
R

O
R

1
R

U
N

X
1

SE
M

G
2

C
D

K
N

2B
FL

T3
H

N
R

N
PA

1
ID

H
1

IK
ZF

1
P

H
F6

P
IK

3C
A

P
IM

1
SL

C
4A

10
SM

C
3

W
T1

X
P

O
1

C
SF

1R
E

B
F1

G
A

TA
1

G
A

TA
3

H
R

A
S

M
SH

2
N

R
A

S
P

TE
N

SY
K

U
2A

F1

1

2

3

4

5

6

7

8

9
%

 o
f t

ot
al

 (N
=

84
1)

10

A

IGHV
ZAP-70
Del(13q)

Del(11q)
Del(17p)
NOTCH1
ATM
TP53
MYD88
SF3B1
CHD2
POT1
DDX3X
EGR2
LRP1B
CREBBP
CDH23
KLHL6
TET2
MED12
BCOR
FBXW7
KRAS
KMT2A
RELN
SI
GLI2
LPHN3
CBL
BRAF
CNOT3
NF1
EP300
RIMS2
MSH6
CEBPA
ECT2L
BCORL1
PDGFRA
HNRNPR
NXF1
DNMT3A
UMODL1
SIRPA
PDGFRB
JAK1
IL7R
MECOM
EZH2
SMO
TBL1XR1
ASXL1
ABL1
PTPN11
RUNX1
SEMG2
GATA2
CD44
ADARB2
DNMT3B
MPL
PAX5
GLI1
ROR1
JAK3
IDH2
JAK2
SLC4A10
XPO1
CDKN2B
WT1
IDH1
SMC3
HNRNPA1
IKZF1
FLT3
PHF6
PIM1
PIK3CA
GATA1
EBF1
U2AF1
CSF1R
HRAS
MSH2
NRAS
SYK
GATA3
PTEN

Trisomy 12

missensepresent
IGHV

UM

expressed

missing

nonsense

splicing

frameshift

B

Figure 1. Repertoire of recurrent deleterious mutations observed in 841 patients with CLL. (A) The percentage of cases with mutations in each gene is represented by red
bars. (B) Heat map of IGHV mutational status, ZAP-70 expression, cytogenetic aberrations, and deleterious mutations observed in this cohort. Purple boxes indicate which
patients have CLL cells with IGHVUM, brown boxes indicate which patients have CLL cells expressing ZAP-70, blue boxes indicate which patients have CLL cells carrying
cytogenetic deletions (Del13q, Trisomy 12, Del11q, or Del17p), and gray boxes indicate missing data. Yellow boxes represent missense mutations, black frameshift mutations,
green splicing mutations, and red nonsense mutations.
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GLI1 expression inCLL cells was evaluated.We found thatGLI11CLL
cells had increased E2F1, AKT1, and PTCH1 transcript and protein
levels over that of CLL cells lacking expression of GLI1 (Figure 4A-C).

Previous studies showed that BIM is upregulated via an E2F1-
dependent mechanism that functions as a prosurvival protein

when phosphorylated by AKT at serine 87 (pBIMEL
S87).41,42

We found that transcript and protein levels of BIM, as well as
pBIMEL

S87, were significantly upregulated in GLI11 CLL cells com-
pared with GLI1– CLL cells (Figure 4A-C), showing that expression
of GLI1 associates with the activation of downstream targets E2F1
and AKT1, which can upregulate BIM and pBIMEL

S87 to promote
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Figure 2. Hh-pathway genes and their deleterious mutations observed in 841 patients with CLL. (A) Reactome FI Network of Hh signaling pathway identified. Mutated
genes (circle shape); genes involved in.1 pathway (red); genes connected but not mutated (diamond shape); and genes found mutated in this study (square shape). Extracted
FIs involved in activation, expression regulation, or catalysis are shown with an arrowhead on the end of the line; FIs involved in inhibition are shown with a ’T’ bar. (B) Localization
and type of 100 deleterious mutations in genes affecting Hh signaling pathway: missense mutations are represented by orange circles, and frameshift and nonsense mutations
are represented by blue and red circles, respectively. Two splicing mutations in MED12 and FBXW7 are not included in this figure. Each circle represents a unique mutation;
for mutations recurring in .1 individual, the number of individuals is indicated in parentheses. The number of mutations for each gene is indicated below each gene name.
(C) Schematic representation of Hh-pathway genes found to be mutated in this cohort as well as in other hematologic diseases. Activation is indicated by green arrows and
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location of each gene is indicated above the graph.
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Table 2. PolyPhen-2 prediction of all missense Hh-pathway mutations observed in 49 CLL cases studied for GLI1
expression

Sample ID Mutated genes
Allelic
fraction Type of mutation Gene Mutation

PolyPhen-2
prediction

PolyPhen-2
score

SA00604 BCOR 0.47 Missense BCOR p.R1200G Benign 0.26

SA00768 EP300 0.54 Missense EP300 p.M70I Benign 0.02

SA00591 FBXW7 0.17 Missense FBXW7 p.R387C Damaging 1.00

SA00952 FBXW7 0.17 Missense FBXW7 p.R479Q Damaging 1.00

SA00499 FBXW7, EP300 0.38 Frameshift_deletion FBXW7 p.T504fs

0.21 Missense EP300 p.M2170V Benign ,0.01

SA00732 MED12, KMT2A 0.47 Missense MED12 p.Q426K Benign 0.22

SA00925 MED12, CHD2 0.33 Missense MED12 p.G216S Benign ,0.01

SA01071 MED12 1.00 Missense MED12 p.P1811S Benign ,0.01

SA00455 MED12, GLI2, CDH23 0.95 Missense MED12 p.L36R Damaging 1.00

0.46 Missense GLI2 p.A1329T Benign ,0.01

SA00315 BCOR 0.57 Nonsense BCOR p.G1342*

SA00458 BCOR, RIMS2, NOTCH1 0.57 Nonsense BCOR p.Q596*

SA00472 CREBBP 0.46 Missense CREBBP p.R1683H Damaging 0.99

SA00509 FBXW7, NOTCH1 0.49 Missense FBXW7 p.R479Q Damaging 1.00

SA00517 CREBBP 0.33 Frameshift_insertion CREBBP p.P1946fs

SA00520 MED12, PTPN11, CHD2, NOTCH1 0.51 Missense MED12 p.V1220M Damaging 1.00

SA00556 CREBBP, ATM, SF3B1 0.44 Frameshift_deletion CREBBP p.L1101fs

SA00578 CREBBP 0.50 Missense CREBBP p.Q2208H Damaging 0.65

SA00589 BCORL1, SF3B1, ATM 0.15 Nonsense BCORL1 p.W1468*

SA00614 CREBBP, TP53, NOTCH1 0.53 Missense CREBBP p.N1547S Damaging 0.82

SA00623 CREBBP, ASXL1 0.54 Missense CREBBP p.K1327N Damaging 0.52

SA00634 BCOR, KRAS 0.41 Nonsense BCOR p.Y213*

SA00640 CREBBP 0.55 Missense CREBBP p.V1405M Damaging 0.99

SA00656 GLI2 0.53 Missense GLI2 p.S941R Damaging 1.00

SA00665 BCOR, CREBBP, KLHL6 0.39 Missense CREBBP p.T1447A Damaging 0.97

0.94 Nonsense BCOR p.Y657*

SA00695 MED12, GLI2 0.25 Missense MED12 p.S217F Damaging 0.76

0.58 Missense GLI2 p.D1457G benign 0.01

SA00356 GLI1 0.58 Missense GLI1 p.P38L benign ,0.01

SA00784 CREBBP, MED12, PDGFRB 0.38 Missense CREBBP p.P960T Damaging 1.00

0.63 Missense MED12 p.L36R Damaging 1.00

SA00803 BCOR, NOTCH1, NF1 0.32 Frameshift_deletion BCOR p.G81fs

SA00846 EP300 0.50 Missense EP300 p.A22V Damaging 0.94
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cell survival (Figure 4D). Consistent with this finding, a significant
reduction was observed in the viability of GLI11 CLL cells when
GLI1 was silenced by using GLI1-specific siRNA but not non-
specific siRNA (P , .0001) (Figure 4E-F; supplemental Figure 5).

We evaluated the sensitivity of GLI11 or GLI1– CLL cells to
GANT61, a small molecule inhibitor of GLI1. GLI11 CLL cells
were significantly more sensitive to treatment with GANT61 than
GLI1– CLL cells regardless of whether they had mutations
identified in the 10 Hh-pathway genes (P , .001) (Figure 4G). In
addition, GANT61 treatment reduced the protein level of BIM
and the phosphorylation level of pBIMEL

S87 in GLI11 CLL cells
(Figure 4H).

GLI1 expression is associated with
disease progression
The median TFS of patients with CLL cells that were GLI11

(n 5 103) was compared with that of patients who had CLL cells
that were GLI1– (n 5 107). Cases with GLI11 CLL cells had a
significantly shorter median TFS compared with patients with

GLI1– CLL (4.7 years vs 6.4 years; P5 .002) (Figure 5A). Expression
of GLI1 was associated with more rapid disease progression
independent of identifiedmutations in the 10Hh-pathway genes
(supplemental Figure 6). Moreover, GLI1 expression was asso-
ciated with significantly shorter median TFS, independent of
IGHVmutational status (5.3 years vs 9.8 years [P5 .003] for patients
with CLL with IGHVMU and 3.3 years vs 4.4 years [P 5 .02] for
patients with CLL cells with IGHVUM) (Figure 5B).

Discussion
The current study found that mutations in one or more genes
involved in Hh signaling were not uncommon in CLL. This report
is the first to indicate that CLL cells may harbor mutations in
SMO, a Frizzled G protein–coupled receptor for Hh ligands.
Moreover, we identified mutations in other genes encoding
proteins that may govern activation of the Hh pathway, namely
GLI1, GLI2, BCOR, BCORL1, CREBBP, EP300, EZH2, FBXW7,
and MED12, which other studies had identified as harboring
mutations in CLL but had not been collectively identified as

Table 2. (continued)

Sample ID Mutated genes
Allelic
fraction Type of mutation Gene Mutation

PolyPhen-2
prediction

PolyPhen-2
score

SA00847 MED12, ATM, LRP1B 0.32 Missense MED12 p.L36R Damaging 1.00

0.26 Missense MED12 p.V41G Damaging 0.97

SA00366 FBXW7 0.29 Missense FBXW7 p.R387C Damaging 1.00

SA00889 MED12, CHD2, ATM 0.90 Missense MED12 p.Q43P Damaging 0.93

SA00894 CREBBP 0.39 Missense CREBBP p.P700R Damaging 0.73

SA00902 CREBBP 0.44 Missense CREBBP p.Q2208H Damaging 0.65

SA00948 BCOR 0.47 Frameshift_deletion BCOR p.D1495fs

SA00959 GLI2, NOTCH1 0.36 Missense GLI2 p.R925H Benign ,0.01

SA01000 FBXW7 0.27 Frameshift_deletion FBXW7 p.T116fs

SA01014 BCOR 1.00 Nonsense BCOR p.K528*

SA01015 FBXW7, CD44 0.41 Frameshift_insertion FBXW7 p.D570fs

SA01042 GLI2, JAK3, RELN 0.47 Missense GLI2 p.V122L Benign 0.03

SA01043 SMO 0.48 Missense SMO p.P26S Benign 0.02

SA01066 GLI2, DNMT3B 0.48 Missense GLI2 p.M1516V Benign 0.29

SA01089 GLI2, NOTCH1 0.29 Missense GLI2 p.T753M Benign 0.23

SA01094 BCOR, SF3B1 0.25 Frameshift_deletion BCOR p.E1202fs

SA01129 FBXW7 0.45 Missense FBXW7 p.R479Q Damaging 1.00

SA01138 BCOR, NOTCH1 0.93 Frameshift_deletion BCOR p.V450fs

SA00392 BCORL1, NOTCH1 1.00 Missense BCORL1 p.T39M Damaging 0.61

SA00308 FBXW7 0.42 Nonsense FBXW7 p.W119*

SA00313 MED12, CREBBP, GATA2 0.77 Missense MED12 p.L36P Damaging 1.00

0.20 Frameshift_insertion CREBBP p.P1946fs
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Figure 3. Relationship between GLI1 expression and Hh-pathway mutations. (A) GLI1 protein expression in CLL cells with missense mutations (n 5 39) deduced as being
benign or damaging according to PolyPhen-2. The horizontal bar in each group provides themean level of GLI1 protein expression observed for each group. TheMann-Whitney
U test was used to calculate the P value indicated at the top. (B) Immunoblot analyses of CLL cells and the U937 cell line transfected with empty vector (C–), wild-type SMO
(SMOWT), or mutant SMO carrying P26S, which is a non-inactivating missense mutation (SMOMU), as indicated at the top. The membranes were probed with a monoclonal
antibody mAb specific for GLI1, SMO, or b-actin as indicated on the left margin. The expression of b-actin was used to normalize GLI1 and SMO expression. The ratios of the
band densities are provided at the bottom of each blot. (C) Immunoblot analyses for proteins indicated on the right using lysates of CLL cells that were treated with control siRNA
(siCTR) or tumor suppressor–specific (siFBXW7 or siCREBBP or siBCOR) siRNA as indicated. (D) Densitometry analysis of immunoblot in panel E quantifying GLI1 protein
expression levels for CLL sample with leukemia cells with or without Hh-pathwaymutations (HhMU, n5 49; HhWT, n5 161). The horizontal bar in each group provides the mean
level of GLI1 protein expression observed for each group. The Mann-Whitney U test was used to calculate the P value indicated at the top. (E) Immunoblot analyses of CLL cells
with or without Hh-pathwaymutations (HhMU), as indicated at the top. Each lane represents a separate case. The membranes were probed with a monoclonal antibody specific
for GLI1 or b-actin, as indicated on the left margin. The density of theb-actin bandwas used to normalize band density for GLI1 in each sample. The ratios of the band densities of
GLI1/b-actin for each sample are indicated at the bottom and presented in the dot-plots in panel D. The same protein lysate from JeKo-1 cells was used as a positive control (C1)
in all gels. GLI11 CLL samples were defined as those with ratios of the band densities of GLI1/b-actin .0.1.
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being involved in Hh signaling.1,4,6,39 We found that the leukemia
cells of 89 (11%) patients among the 841 treatment-naive pa-
tients studied had nonsynonymous mutations in one or more of
these Hh-pathway genes.

Some of the mutations identified in this study are directly in-
volved in Hh signaling. The missense mutation (P26S) identified
in SMO causes a proline→serine substitution, which was not
predicted to inactivate its function but rather enhance its
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Figure 4. Relationship between GLI1 expression and
GLI1 downstream targets. (A) GLI1, PTCH1, E2F1,
AKT1, and BIM transcript levels in CLL cells expressing
or lacking GLI1 (GLI11, n5 28; GLI1–, n5 21). TheMann-
Whitney U test was used to calculate the P value in-
dicated at the top. (B) Representative immunoblot
analyses of CLL cells with or without GLI1 expression
(GLI11, n 5 28; GLI1–, n 5 21), as indicated at the top.
Each lane represents a separate case. The membranes
were probed with a monoclonal antibody specific for
GLI1, PTCH1, E2F1, AKT1, pBIM, and BIM or b-actin as
indicated on the left margin. The expression of b-actin
was used to normalized GLI1, PTCH1, E2F1, AKT1, and
BIM expression levels. The ratios of the band densities
for each case are provided at the bottom of each blot
and presented in the dot-plots in panel C. The ratios of
the band densities for each case of pBIMEL

S87/BIMEL is
indicated at the bottom of the pBIMEL

S87 blot and
represented in the dot-plots in panel C. The same GLI11

CLL protein lysate sample was used as positive control in
all gels. (C) Densitometry analysis quantifying the pro-
tein expression levels of GLI1 and its downstream tar-
gets in all 49 cases with CLL cells with or without GLI1
expression. The horizontal bar provides the mean ratio
observed in each group. The Mann-Whitney U test was
used to calculate the P value indicated at the top. (D)
Schematic representation of the consequences of GLI1
upregulation on its downstream targets. (E) Relative
viability of CLL cells treated with control siRNA (siCTR) or
GLI1-specific siRNA (siGLI1) as indicated. (F) Immuno-
blot analyses for GLI1 using lysates of CLL cells
expressing GLI1 treated with siCTR or siGLI1. Data from
2 representative patients are presented. (G) Relative
viability of CLL cells expressing GLI1 with (GLI11 HhMU,
n 5 6; red squares) or without (GLI11 HhWT N 5 3, gray
squares) Hh mutations or lacking GLI1 expression with
(GLI1– HhMU, n5 3; blue circles) or without (GLI1– HhWT,
n 5 6; yellow circles) Hh mutations treated for 24 hours
with 5 or 10 mM of GANT61. Data are shown as mean6

standard deviation. (H) Immunoblot analyses of CLL cells
expressing GLI1 and treated for 24 hours with 10 mM of
GANT61. The membranes were probed with a mono-
clonal antibody specific for GLI1, pBIM, and BIM or
b-actin as indicated on the left margin. The expression
of b-actin was used to normalized GLI1 and BIM ex-
pression level. The ratios of the band densities for each
case are provided at the bottom of each blot. The ratios
of the band densities for each case of pBIMEL

S87/BIMEL

are indicated at the bottom of the pBIMEL
S87 blot. Data

from 2 representative patients are presented.
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capacity to activate Hh signaling. Consistent with this finding, we
observed that CLL cells or U937 cells transfected with either
SMOWT or SMOMU (P26S) increased expression of GLI1, arguing
that the identified mutant SMO encoded a functional protein.
This scenario contrasts with other SMO mutants, which encode
proteins that cannot undergo the serine phosphorylation and/or
cell surface accumulation that are required to activate Hh
signaling.43-45 Instead, the SMO mutation we identified in CLL
seems similar to the missense SMO mutations found to be
associated with Hh pathway activation in solid tumors,13,46,47

T-cell acute lymphoblastic leukemia (T-ALL),48 or basal cell skin
carcinomas.14 We also identified 1 case with CLL cells carrying
a missense mutation in GLI2, causing a serine→arginine sub-
stitution at position 941, which previous studies showed affected
GLI2 phosphorylation and enhanced its capacity to induce
GLI1.40,49 Consistent with this outcome, we found that CLL cells
harboring this mutation expressed high levels of GLI1.

We also found that 14 of the 841 study patients had CLL cells
harboring mutations in FBXW7. FBXW7 encodes an F-box factor
that targets selected proteins for ubiquitin-mediated degradation.50

FBXW7 is mutated in a wide spectrum of human cancers,51

where it acts as a tumor suppressor. Moreover, studies have
identified numerous mutations in FBXW7 and/or its substrates in
cancer cells and found that loss of FBXW7 function associates
with chromosomal instability and tumorigenesis.52,53 The FBXW7
mutations that we and others have identified in CLL, or ALL,1,54,55

result in substitutions within the WD40 domain required for
targeting the destruction of selected proteins,51,56,57 such as
p63,58 which can induce activation of the Hh pathway.59 In the
current study, siRNA-mediated silencing of FBXW7 in CLL cells
expressing wild-type FBXW7 enhanced the expression of GLI1,

indicating that FBXW7 serves to suppress Hh pathway activation
in this leukemia. Consistent with the notion that the deleterious
mutations we identified in FBXW7 can lead to activation of Hh
signaling, we observed that 70% of cases with CLL cells har-
boring FBXW7 mutations overexpressed GLI1. These FBXW7
mutations associated with GLI1 expression almost invariably
were present at allelic fractions of .20%, arguing that such
mutations may be conducive to subclonal disease progression.
Selective growth advantage for subclones with Hh activation due
to deleterious mutations in FBXW7 could contribute to out-
growth of subclones harboring mutations in FBXW7 and BTK or
PLCG2 in leukemia cells of patients who develop resistance to
inhibitors of Bruton tyrosine kinase such as ibrutinib.60,61

Fifteen cases with CLL cells harboring mutations in BCOR were
also identified. BCOR is a BCL6 transcriptional corepressor that
can complex with BCL6 to recruit HDAC3-containing SMRT
complexes that repress transcription of selected genes,62 such
as GLI1 and GLI2, which are critical for Hh pathway activation.63

In the current study, down-modulation of BCOR using specific
siRNA in primary CLL cells that expressed wild-type BCOR in-
creased expression of GLI1, indicating that BCOR may serve to
repress Hh pathway activation in this leukemia. Although non-
synonymous mutations in BCOR can affect its ability to repress
transcription,64 we noted that 75% of the observed BCOR
mutations were either nonsense or frameshift mutations, which
would be expected to abrogate BCOR expression, thus impairing
their capacity to repress Hh pathway activation. Consistent with
this notion, high levels of GLI1 were expressed by all but one of
the CLL samples with a mutation in BCOR; the one sample that
did not express high levels of GLI1 had a benign missense mu-
tation in BCOR that is not expected to affect function. As with
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Figure 5. Relationship between GLI1 expression and TFS. (A) Kaplan-Meier curves depict the TFS probability over time for GLI11 (red squares) or GLI1– (blue squares) CLL
(N5 210). (B) Kaplan-Meier curves depict the TFS probability over time for IGHVUM GLI11 (red circles), IGHVUM GLI1– (blue circles), IGHVMU GLI11 (red triangles), or IGHVMU

GLI1– (blue triangles) subgroups of all patients with CLL and known IGHV status for whom GLI1 expression was evaluated (N 5 206).
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FBXW7, selective growth advantage for subclones with Hh acti-
vation due to deleterious mutations in BCOR could contribute to
outgrowth of subclones harboring mutations in BCOR and BTK in
leukemia cells of patients who develop resistance to ibrutinib.60

We also identified 27 CLL samples in the 841 examined that had
damaging mutations in CREBBP (n 5 20) or EP300 (n 5 7) that
would be expected to impair expression and/or function. EP300/
CREBBP family members can acetylate GLI2 at lysine 757 and
thereby inhibit its capacity to induce expression of GLI1 and
Hh target genes.65 In the current study, down-modulation of
CREBBP in primary CLL cells with specific siRNA increased ex-
pression of GLI1, indicating that CREBBP may serve to repress
Hh pathway activation in this leukemia. Consistent with this
notion, GLI1 was reportedly overexpressed in all CLL cells
harboring CREBBP mutations.

Finally, we identified 16 samples in the 841 samples examined
that had mutations in MED12, encoding Mediator complex
subunit 12 (MED12), which can be targeted by activated GLI3 to
reverse suppression of Hh target gene transcription.66 GLI3-
dependent Hh signal transduction is negatively modulated by
MED12 by anchoring CDK8 in the Mediator of the preinitiation
gene-transcriptional complex. A previous study by Kämpjärvi
et al67 screened .700 CLL samples for MED12 mutations in
exons 1 and 2 and found that 10% of all MED12 mutations
occurred within mutation hotspots (codons L36 and Q43).
Mutations within exons 1 and 2 were previously reported to
share similar gene expression profiles; functional analyses in-
dicated that these mutations contributed to the decrease of
Mediator-associated kinase activity.68,69 Of the 16 cases of
MED12 mutations identified in the current study, one half were
located in exon 2 and 37% were in L36 or Q43 hotspots; such
mutations would be anticipated to impair function. Consistent
with this notion, we found that CLL cells harboring MED12
mutations almost invariably had high-level expression of GLI1.
Exceptions to this were noted in 3 cases that had MED12
mutations outside exon 2 that were predicted to not affect
function; none of these cases expressed GLI1.

Although we found that a significantly higher proportion of the
CLL cases with mutations in Hh-pathway genes expressed GLI1
than CLL without such mutations, a major finding of this study
was that an unexpectedly large number of cases without iden-
tified Hh pathway mutations were GLI11. Although 84% of pa-
tients with CLL cells with mutations in the 10 Hh-pathway genes
overexpressed GLI1, we discovered that more than one third
(38%) of samples lacking identifiedmutations also expressed high
levels of GLI1. As such, nearly one half (49%) of the subcohort of
210 CLL cases examined had activation of the Hh pathway.

The finding that a high proportion of CLL cells express GLI1 has
apparent functional and clinical significance. We found that
expression of GLI1 was associated with significant increases in
the transcript and protein levels of downstream targets of GLI1,
namely E2F1 and AKT1, which were associated with increased
expression and phosphorylation, respectively, of BIM. Further-
more, patients with GLI11 CLL cells were observed to have
a significantly shorter median TFS than patients with GLI1– CLL
cells independent of IGHV mutation status. The finding that the
expression of GLI1 could segregate even those patients with CLL
cells that used unmutated IGHV into subgroups with significantly

different median TFS implies that activation of the Hh pathway
can strongly influence disease progression in CLL, as has been
noted in other cancers.18-21

Human lymphoid malignancies, such as T-ALL,70 diffuse large
B-cell lymphoma,71 anaplastic large cell lymphoma driven
by nucleophosmin-anaplastic lymphoma kinase,72 mantle cell
lymphoma,73 or multiple myeloma,24,74 have been shown to have
frequent activation of the Hh signaling pathway and sensitivity to
SMO and GLI1 inhibitors. In this study, we found that GLI11 CLL
cells were significantly more sensitive to treatment with GANT61
than GLI1– CLL cells, regardless of whether the CLL cells had
mutations in any 1 of the 10 Hh-pathway genes. This outcome
suggests that the survival of GLI11 CLL cells may have a greater
dependency on activation of the Hh pathway. Activation of
this pathway apparently may result from mutations in genes
encoding proteins downstream of SMO, making cells harboring
such mutations potentially insensitive to agents that solely in-
hibit SMO. Such cells still would be expected to be sensitive to
inhibition of GLI1, which is a primary effector of Hh signaling.
Finding frequent mutations in genes associated with the Hh
pathway downstream of SMO could account for the relatively
low activity of SMO inhibitors compared with GLI1 inhibitors in
killing CLL cells in vitro.27,28,30

Nonetheless, the current study identified that a high proportion
of the patients have CLL cells that have activation of the Hh
pathway. Agents that block expression or function of GLI may be
particularly active in such patients. Targeting GLI1 could block
ligand-independent and ligand-dependent Hh pathway acti-
vation and perhaps overcome the apparent resistance to SMO
inhibitors. As such, this report shows that the Hh pathway fre-
quently is activated in CLL and associated with relatively rapid
disease progression, while identifying a new avenue for thera-
peutic intervention for patients with this disease.
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