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KEY PO INT S

l Phf6 deficiency
augments HSC self-
renewal and confers
resistance against the
TNFa-mediated
growth inhibition
on HSCs.

l Phf6 deficiency alone
is not sufficient to
induce hematopoietic
transformation.

Recurrent inactivating mutations have been identified in the X-linked plant homeodomain
finger protein 6 (PHF6) gene, encoding a chromatin-binding transcriptional regulator
protein, in various hematological malignancies. However, the role of PHF6 in normal he-
matopoiesis and its tumor-suppressor function remain largely unknown. We herein gen-
erated mice carrying a floxed Phf6 allele and inactivated Phf6 in hematopoietic cells at
various developmental stages. The Phf6 deletion in embryos augmented the capacity of
hematopoietic stem cells (HSCs) to proliferate in cultures and reconstitute hematopoiesis
in recipient mice. The Phf6 deletion in neonates and adults revealed that cycling HSCs
readily acquired an advantage in competitive repopulation upon the Phf6 deletion, whereas
dormant HSCs only did so after serial transplantations. Phf6-deficient HSCs maintained an
enhanced repopulating capacity during serial transplantations; however, they did not
induce any hematological malignancies. Mechanistically, Phf6 directly and indirectly acti-

vated downstream effectors in tumor necrosis factor a (TNFa) signaling. The Phf6 deletion repressed the expression of
a set of genes associated with TNFa signaling, thereby conferring resistance against the TNFa-mediated growth
inhibition on HSCs. Collectively, these results not only define Phf6 as a novel negative regulator of HSC self-renewal,
implicating inactivating PHF6mutations in the pathogenesis of hematological malignancies, but also indicate that a Phf6
deficiency alone is not sufficient to induce hematopoietic transformation. (Blood. 2019;133(23):2495-2506)

Introduction
Recent advances have clearly demonstrated the significance of
transcriptional regulation by chromatin modifiers in normal he-
matopoiesis and leukemogenesis. Genomic studies on patients
with hematological malignancies have provided insights into
a series of mutations in genes considered to be involved in
epigenetic gene regulation. These mutations occur in genes
known, or suspected, to play a role in modifying the chromatin
structure.1-4 However, it currently remains unclear how many of
these genes regulate hematopoiesis under normal conditions
and also how mutations in these genes contribute to leuke-
mic transformation and/or progression. This is mainly attributed
to the lack of suitable mouse models to evaluate the role of
genes in normal hematopoiesis. Knockout mouse models
have shown that the loss of Tet2 or Dnmt3a, inactivating
mutations that function as driver mutations in human hemato-
logical malignancies, confers a growth advantage on hemato-
poietic stem/progenitor cells,5-7 thereby contributing to clonal
hematopoiesis.

The plant homeodomain (PHD) finger protein 6 (PHF6) gene,
located on the X chromosome, encodes a chromatin-binding
protein with 2 atypical PHD-like zinc finger domains (aPHDs) that
has been implicated in transcriptional regulation.8 Germline muta-
tions in PHF6 were initially identified in patients with Börjeson-
Forssman-Lehmann syndrome, which is characterized by X-linked
mental retardation of varying severities,9 whereas somatic-
inactivating mutations frequently occur in patients with T-cell
acute lymphoblastic leukemia (T-ALL) and, to a lesser extent, in
acute myeloid leukemia (AML), secondary AML, and myelodys-
plastic syndrome.10-12 Genome-scale short hairpin RNA (shRNA)
screening revealed that the inhibition of PHF6 expression had
a negative impact on the growth of B-cell acute lymphoblastic
leukemia (B-ALL) cells, but that it enhanced the tumor progression
of AML.13 These findings indicate that PHF6 has oncogenic and
tumor-suppressive functions in a context-dependent manner.

PHF6 binds to double-stranded DNA in vitro through its aPHD
domain and to histone H3 in the absence of DNA. PHF6 has
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been reported to bind to a subunit of the nucleosome remodeling
and deacetylase (NURD) chromatin-remodeling complex,14 a com-
ponent of the transcriptional elongation complex polymerase-
associated factor 1 (PAF1),15 and the transcriptional activator for
ribosomal RNA, upstream binding factor 1 (UBF1).16 Furthermore,
integrated genomics revealed that PHF6 binds to nucleosomes
surrounding the transcription start site (TSS) of lineage-specific
genes and that it modulates the binding of lineage-specific
transcription factors.17 For example, PHF6 binds to the 61 nu-
cleosome flanking the TSSs of B-cell–specific genes and allows
B-cell–specific transcription factors to bind and activate genes
in B-ALL cell lines. In contrast, PHF6 binds nucleosomes sur-
rounding the TSSs of T-cell–specific genes and promotes chro-
matin compaction, thereby restricting the binding of T-cell–specific
transcription factors. Thus, these findings provide a model for
explaining why the deletion of PHF6 leads to the downregulation
of B-cell–specific genes and ectopic activation of the T-cell pro-
gram in B-ALL cell lines.17

To date, despite frequent inactivating mutations in leukemia,
limited information is currently available on the role of PHF6
in the hematopoietic system and the characterization of Phf6
knockout mice has not yet been reported. We generated
a mouse line carrying a floxed Phf6 allele and investigated the
role of Phf6 in mouse hematopoietic stem cells (HSCs). We
herein demonstrated that Phf6 negatively regulates HSC self-
renewal, partly through the activation of genes in tumor necrosis
factor a (TNFa) signaling.

Materials and methods
Regarding the conditional deletion of Phf6, Phf6fl/wt mice were
crossed with Vav1-Cre (The Jackson Laboratory), Rosa::Cre-ERT
mice (TaconicArtemis GmbH), or Mx1-Cre (The Jackson Labo-
ratory). To induce Cre-ERT activity, mice were injected with
100 mL of tamoxifen dissolved in corn oil at a concentration of
10 mg/mL intraperitoneally for 5 consecutive days. All condi-
tional Phf6 knockout mice were maintained on a B6-CD45.2 (Japan
SLC) genetic background. Polyriboinosinic acid/polyribocytidylic
acid (pIpC; InvivoGen) was dissolved in phosphate-buffered
saline at a concentration of 4 mg/mL and annealed according
to the manufacturer’s instructions. To activate the Mx1-Cre trans-
gene, adult mice were injected with 400 mg of pIpC 3 times every
second day, whereas 3-week-oldmice were injected with 160mg
of pIpC once. C57BL/6 mice congenic for the Ly5 locus (B6-
CD45.1) were purchased from Sankyo-Laboratory Service
(Tsukuba, Japan). Mice were bred and maintained in the Animal
Research Facility of the Graduate School of Medicine, Chiba
University in accordance with institutional guidelines (approval
ID: 29-289).

Results
Generation of mice carrying the Phf6fl allele and
Phf6 deletion in hematopoietic cells
To elucidate the biological role of Phf6, we generated mice
harboring a Phf6fl mutation in which exons 4 and 5 encoding
the second aPHD were floxed (Figure 1A), and then crossed
Phf6fl/w mice with Vav1-iCre mice that express Cre specifically in
hematopoietic cells (Vav1-iCre;Phf6fl/y) from the fetal stage.
We confirmed the efficient deletion of Phf6 in CD1501CD342

lineage marker–negative (Lin2) Sca-11c-Kit1 (CD1501CD342

LSK) HSCs using quantitative polymerase chain reaction (qPCR)
and the western blotting of splenocytes and thymocytes (Figure
1B-C). We hereafter refer to Vav1-iCre;Phf6wt/y and Vav1-iCre;
Phf6fl/y mice as VC and VC;Phf6D/y mice, respectively. We fo-
cused on male mice in the present study because PHF6 muta-
tions are exclusively found in male patients with AML and
T-ALL.10,11 VC;Phf6D/y mice were born, grew healthily, and did
not exhibit any obvious growth retardation or hypoplasia in their
hematopoietic organs at 12 weeks of age (Figure 1D). VC;Phf6D/y

mice had slightly higher white blood cell (WBC) counts than
those of the control, which was mainly attributed to increased
B lymphopoiesis, whereas they had similar red blood cell counts,
hemoglobin levels, and platelet counts (Figure 2A-B). Flow
cytometric analyses showed no significant differences in the
numbers of long-term HSCs (LT-HSCs), CD342LSK HSCs, com-
mon myeloid progenitors (CMPs), granulocyte-macrophage
progenitors (GMPs), megakaryocyte-erythrocyte progenitors
(MEPs), and common lymphoid progenitors (CLPs) between VC
and VC;Phf6D/y (Figure 2C; supplemental Figure 1A-C, available
on the Blood Web site). A cell-cycle analysis using Ki67 ex-
pression as a marker for cell proliferation revealed that a sig-
nificantly higher proportion of VC;Phf6D/y CD342LSK HSCs was
actively cycling than control cells (Figure 2D). Because the exit of
HSCs from the dormant state is often associated with HSC ex-
haustion, we examined the repopulating capacity of VC;Phf6D/y

HSCs. We transplanted bone marrow (BM) cells from VC or VC;
Phf6D/yCD45.2malemice together with CD45.1 competitor cells
into lethally irradiated CD45.1 recipient mice. The chimerism of
VC;Phf6D/y cells in peripheral blood (PB) CD451 cells was greater
than that of the control in primary (1°) recipients and increased
further in secondary (2°) and tertiary (3°) recipients over time
(Figure 2E). A lineage distribution analysis 16 weeks after 1°, 2°,
and 3° transplantation showed that VC;Phf6D/y contributed
to all 3 hematopoietic lineages more efficiently than VC cells
(Figure 2F). The increased chimerism of VC;Phf6D/y cells was also
evident in the HSC fractions (LT-HSCs and CD342LSK HSCs) and
lineage-committed progenitor fractions (GMP and CLP) in 1°, 2°,
and 3° recipients (Figure 2G), indicating that the repopulation
capacity of VC;Phf6D/y HSCs was enhanced. Of note, VC;Phf6D/y

HSCs maintained higher chimerism and retained a multilineage
differentiation capacity even in 3° transplantation (Figure 2E-G),
and did not induce any hematological malignancies (data not
shown). We also noted that VC;Phf6D/y HSCs showed better
growth than VC HSCs under HSC culture conditions supple-
mented with stem cell factor (SCF) and thrombopoietin (TPO).
The growth advantage of VC;Phf6D/y HSCs was completely
canceled by retrovirally expressed Phf6 (Figure 2H). These re-
sults support a role for Phf6 in the regulation of proliferation. In
contrast, the replating capacity of VC;Phf6D/y LSK hematopoietic
stem and progenitor cells under myeloid culture conditions
supplemented with SCF, TPO, interleukin-3, and granulocyte
macrophage–colony-stimulating factor was similar to that of VC
(supplemental Figure 1D).

Phf6 deletion in neonatal and adult
hematopoietic cells
To examine the effects of the Phf6 deletion in neonatal and adult
hematopoietic cells, we generated Mx1-Cre;Phf6fl/y mice, in
which Mx1 promoter-driven Cre expression was induced by
injecting pIpC.Mx1-Cre;Phf6wt/y andMx1-Cre;Phf6fl/y mice were
injected with pIpC at 2 weeks (neonatal stage) or 9 weeks (adult
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stage) of age, and BM cells were then harvested for competitive
transplantation 3 weeks later (Figure 3A). Regardless of the stage
of the pIpC injection, genomic qPCR revealed no marked dif-
ference in the efficiency of the Phf6 deletion (pIpC treatment
at 2 weeks of age [80.0%] and 9 weeks of age [76.4%]).
We hereafter refer to pIpC-treated Mx1-Cre;Phf6wt/y and Mx1-
Cre;Phf6fl/y mice as MC and MC;Phf6D/y mice, respectively.
The transplantation of MC;Phf6D/y BM cells in which Phf6 had
been deleted for 3 weeks from the neonatal stage gave rise
to markedly higher chimerism in all fractions tested than MC,
whereas the deletion of Phf6 in the adult stage had a minimal
effect and moderately increased chimerism only in myeloid cells
and lineage-committed progenitors (GMPs and CLPs), and not
in the HSC fractions (Figure 3B-C). The administration of pIpC
is known to trigger HSC cycling, which leads to HSC exhaustion
in a similar manner to proinflammatory cytokines, such as
interferons.18-20 We found that the chimerism of MC cells, which
were administrated with pIpC at 2 weeks of age, was repro-
ducibly lower than that ofMC cells treated with pIpC at 9 weeks
of age (Figure 3B-C), indicating that neonatal HSCs, but not adult
HSCs, are susceptible to proinflammatory cytokines. Therefore,
it is important to note that VC;Phf6D/y neonatal HSCs established
higher chimerism than that ofMC neonatal HSCs, indicating that
VC;Phf6D/y HSCs are more resistant to proinflammatory cyto-
kines. These results together with those obtained from VC;
Phf6D/y HSCs indicate that the Phf6 deletion potentiated the
repopulating capacity of HSCs more when deleted in embryos
or neonates than in adults.

Effects of the Phf6 deletion on steady-state
hematopoiesis
To test the effects of the Phf6 deletion on steady-state hema-
topoiesis, we generated CreERT;Phf6fl/y mice in which Cre
was activated by injecting tamoxifen. We transplanted whole
BM cells from CreERT;Phf6wt/y and CreERT;Phf6fl/y with CD45.1

competitor cells into lethally irradiated CD45.1 recipient mice.
After confirming engraftment, we deleted Phf6 by intraperito-
neal injections of tamoxifen 4 weeks after transplantation
(Figure 4A). The efficient deletion of Phf6 was confirmed by
genomic PCR on peripheral WBC and the western blotting of
peripheral B cells (supplemental Figure 2A-B). We hereafter refer
to tamoxifen-treatedCreERT;Phf6wt/y andCreERT;Phf6fl/ymice as
CE and CE;Phf6D/y mice, respectively. The tamoxifen injection to
recipient mice did not increase the chimerism of CE;Phf6D/y cells
in PB (Figure 4B-C). In contrast, CE;Phf6D/y cells outcompeted
CD45.11 competitor cells in all 3 hematopoietic lineages of PB
in 2° recipients (Figure 4B-C). The chimerism of CE;Phf6D/y cells
also increased in HSCs and progenitor cells in 2° recipients
(Figure 4C). These results were in marked contrast to neonatal
HSCs, which acquired a competitive advantage immediately
after the deletion of Phf6 (Figure 3), and indicate that adult HSCs
require long periods of time or hematopoietic stress, such as
transplantation, which activates dormant HSCs, to exert an
obvious competitive advantage. It is also important to note
that 2° recipients reconstituted with CE;Phf6D/y cells had mild
splenomegaly and increased numbers of LSK cells in the spleen
(Figure 4D-F), indicating that VC;Phf6D/y HSCs established more
active extramedullary hematopoiesis than the control. Consis-
tent with these results, the Phf6 deletion did not have any
significant impact on the proliferation of HSCs in cultures im-
mediately after the deletion (Figure 4G).

Expression profiling of Phf6D/y HSCs
To elucidate the molecular mechanisms underlying the en-
hanced self-renewal capacity of HSCs in the absence of Phf6, we
performed RNA sequencing using CD1501CD342LSK HSCs
from 12-week-old VC and VC;Phf6D/y, 12-week-old MC and MC;
Phf6D/y that had been injected with pIpC at 3 weeks of age, and
1° recipients reconstituted with CE or CE;Phf6D/y BM cells. BM
cells from 12-week-old MC;Phf6D/y mice that had been injected
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with pIpC at 7 weeks of age (young adult) also showed an en-
hanced repopulating capacity (data not shown). Therefore, we
also performed RNA sequencing using CD1501CD342LSKHSCs
from 12-week-old MC and MC;Phf6D/y that had been injected
with pIpC at 7 weeks of age. The results of this analysis revealed
that gene-expression profiles were specific to the deleter strain
and/or developmental stages of the Phf6 deletion; for example,
only 2 of 296 upregulated genes and 7 of 95 downregulated
genes in VC;Phf6D/y HSCs relative to VC HSCs were common
in these 4 gene sets (supplemental Figure 3A-B), whereas all
4 Phf6-deficient HSCs showed similar gene-expression changes
in the principal component analysis (supplemental Figure 3C).
To identify the gene(s) and/or pathway (s) responsible for the
enhanced self-renewal of Phf6-deficient HSCs, we divided these
data sets into 2 groups according to the Phf6 genotypes, Phf6W/y

and Phf6D/y, and performed a statistical analysis and gene-set
enrichment analysis (GSEA). Seventy-two differentially expressed
genes with a q value of ,0.05 were identified between Phf6W/y

and Phf6D/y HSCs (Figure 5A-B) and some of these expression
changes were confirmed by reverse transcription (RT)-qPCR
(Figure 5C). Sixty-eight of the 72 differentially expressed genes
were downregulated in Phf6D/y HSCs, indicating that Phf6 is pri-
marily implicated in transcriptional activation in HSCs; however,
Phf6 has been reported to modulate the local chromatin structure
in both transcriptionally active and inactive gene promoters.17

GSEA revealed the positive enrichment of gene sets for E2F
targets, MYC targets, and oxidative phosphorylation in Phf6D/y

HSCs. In contrast, gene sets for TNFa signaling (which restricts
HSC activity),21 transforming growth factor b signaling (an im-
portant niche-associated signaling pathway that maintains HSCs
in a dormant state),22 and the apoptosis pathway were negatively
enriched in Phf6D/y HSCs (Figure 5D). These signaling pathways
have a negative impact on HSC proliferation and/or survival and
may contribute to the unique characteristics of Phf6-deficient
HSCs, which showed active cell cycling and proliferation. We
then investigated the effects of the TNFa treatment on HSC

Figure 2 (continued)plus orminus SEM (n5 5 or 6). (F) The chimerism ofMy, B-, and T-cell lineages in PB 16, 32, and 48 weeks after 1° transplantation are shown as themean plus
orminus SEM (n5 5 or 6). (G) The chimerism of LT-HSCs, CD342LSK, GMPs, andCLPs 16, 32, and 48weeks after 1° transplantation are shown as themean plus orminus SEM (n5 5 or
6). (H) Growth of VC and VC;Phf6D/y CD1501CD342LSK HSCs in vitro. Freshly sorted HSCs were transduced with a control retrovirus (pMYs) or retrovirus expressing Phf6 (Phf6).
After GFP sorting, GFP1 cells were cultured under HSC culture conditions (SCF1TPO) for 7 days. Data are shown as the mean plus or minus SEM of triplicate cultures. Insets,
Western blot data of cells in culture on day 7. *P , .05, **P , .01, ***P , .001 by the Student t test. BMT, BM transplantation.
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proliferation. VC;Phf6D/y HSCs grew significantly better than the
control even in the presence of TNFa. The proliferation of VC
HSCs was inhibited to the same degree by 1 ng/mL TNFa
as 20 ng/mL TNFa. In contrast, the same amount of TNFa did
not significantly affect the proliferation of VC;Phf6D/y HSCs.
VC;Phf6D/y HSCs proliferated to a similar degree as nontreated
VC HSCs even in the presence of 5 ng/mL TNFa (Figure 5E).
These results indicate that VC;Phf6D/y HSCs are significantly
more resistant to TNFa-induced growth inhibition than VC HSCs

and at least partially explain why the loss of Phf6 confers a
competitive advantage on HSCs.

Phf6 activates downstream effectors of
TNFa signaling
Fourteen of the 72 differentially expressed genes, such asNr4a1,
Egr1, and Junb, were included in the gene set for TNFa sig-
naling and were downregulated in Phf6D/y HSCs (marked as a in
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Figure 5B). Nr4a1 is a member of the Nr4a family of genes
encoding orphan nuclear receptors, including Nr4a1, Nr4a2,
and Nr4a3. In contrast to typical nuclear receptors, NR4A

subfamily members act as ligand-independent constitutively
active transcription factors.23 Nr4a1 andNr4a3 are tumor-suppressor
genes in hematological malignancies and the concomitant deletion
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of Nr4a1 and Nr4a3 was previously shown to induce myeloid
malignancies associated with the abnormal expansion of LT-
HSCs.24,25 The overexpression of Nr4a2 has an adverse impact
on the repopulating capacity and in vitro proliferation of HSCs by
enforcing the quiescence of HSCs.26 Furthermore, the expres-
sion of Nr4a1 is known to be under the control of TNFa in
fibroblasts and dopamine neurons.27 Egr1 and Junb have also
been implicated in the negative regulation of HSC functions,28,29

and are downregulated in leukemia cells that weakly express
Nr4a.25 Collectively, these findings strongly indicate that Nr4a1
is a target of Phf6 and negatively regulates HSC proliferation,
similar to Nr4a2, possibly by activating Egr1 and Junb under the
control of TNFa. This idea was supported by the results showing
that the enforced expression of Phf6 significantly induced the
expression of Nr4a1 in LSK cells (Figure 6A) and that Phf6 binds
to the NR4A1 promoter in K562 leukemic cells (Figure 6B).

To understand the impact of deregulatedNr4a1 in Phf6D/y HSCs,
we conducted gain- and loss-of-function analyses on Nr4a1 in
HSCs. CD1501CD342LSK HSCs from wild-type (WT) mice were
transduced with an empty or Nr4a1 virus, sorted according to
the expression of green fluorescent protein (GFP) as a marker of
transduction, and then cultured for 12 days in media containing
SCF and TPO. The enforced expression of Nr4a1 severely com-
promised the proliferation of HSCs (Figure 6C), similar to
Nr4a2.26 In contrast, the shRNA-mediated knockdown of Nr4a1
promoted the proliferation of HSCs (Figure 6D). We then in-
vestigated the effects of Nr4a1 overexpression on VC and VC;
Phf6D/y HSCs in vivo. VC or VC;Phf6D/y HSCs were transduced
with a control or Nr4a1 retrovirus and transplanted into lethally
irradiated recipients along with Ly5.1 rescue cells. Exogenous
Nr4a1 induced progressive declines in the chimerism of VC and
VC;Phf6D/y donor cells in PB and HSCs (Figure 6E). These results
suggest that the reduced expression of Nr4a1 at least partially
accounts for the enhanced repopulating capacity of Phf6D/y HSCs.

To clarify whether the Phf6 deletion has any impact on the
chromatin configuration in HSCs, we performed an Assay for
Transposase Accessible chromatin with high-throughput se-
quencing (ATAC-Seq) analysis on CD342LSK HSCs from VC and
VC;Phf6D/ymice with 2 independent biological replicates. ATAC-
Seq profiles open chromatin regions enriched for transcrip-
tional regulatory regions, such as enhancers and promoters.
We detected 75230 peaks after peak calling by counting the
peaks in VC and VC;Phf6D/y HSCs. These ATAC peaks were
mostly located in intergenic regions, promoter TSSs, and introns
(Figure 6F). Among them, only 781 and 858 peaks were con-
sistently upregulated (log2 fold change. 1) and downregulated
(log2 fold change less than21), respectively, in 2 VC;Phf6D/yHSC
replicates from those in VC control HSC replicates. A motif
analysis of ATAC peaks in the proximal promoter (TSS 6 2 kb)
revealed that only a few DNA motifs were weakly enriched in

VC;Phf6D/y HSCs (supplemental Figure 3D), whereas none were
in VC HSCs. We then extracted ATAC peaks in the proximal
promoter, compared them with expression profiling data, and
found that ATAC signal intensities in proximal promoters pos-
itively correlated with the expression levels of genes in VC HSCs
(supplemental Figure 3E), which supported the validity of ATAC-
Seq data. However, no correlation was observed between fold
changes in gene expression and ATAC signals in VC;Phf6D/y

HSCs relative to VC HSCs (Figure 6G). For example, the ATAC
signal was similarly observed at the Nr4a1 promoter in VC and
VC;Phf6D/y HSCs (Figure 6H), even though the expression of
Nr4a1 had clearly decreased in VC;Phf6D/y HSCs. These results
demonstrate that the Phf6 deletion had a minimal effect on the
chromatin configuration, suggesting that Phf6 regulates tran-
scriptional activation at the step after chromatin relaxation around
transcriptional regulatory elements.

PHF6 has been reported to bind to gene bodies and proximal
promoter/enhancer regions of many annotated genes, where it
modulates the binding or activity of lineage-specific transcription
factors.17 The binding motifs of NF-kB, an important downstream
effector in the TNFa signaling pathway, were enriched in PHF6-
bound DNA fragments.17 Physical interaction of PHF6 with NF-kB
has also been reported.17 These results imply that PHF6 physically
interacts with transcription factors, such as NF-kB, and augments
their capacity to activate transcription. However, we could not
reproduce the physical interaction between PHF6 andNF-kB (p65)
in TNFa-treated K562 cells (data not shown). We then performed
chromatin immunoprecipitation (ChIP) combined with high-
throughput sequencing of PHF6 and NF-kB (p65) using K562
cells treated with TNFa. PHF6 and NF-kB peaks were mainly
detected in the intergenic regions, introns, and promoter TSSs
(Figure 7A). The average sizes for the PHF6 and NF-kB peaks
were 162 bp and 223 bp, respectively. Of note, PHF6 and NF-kB
peaks significantly overlapped in K562 cells treated with TNFa
(Figure 7B-C). NF-kB signals were markedly enhanced in all
genomic regions upon TNFa treatment, whereas PHF6 signals in
these NF-kB–bound regions were moderately albeit significantly
enhanced in the promoter TSSs regions and, to a lesser extent,
in introns (Figure 7D). These observations strongly indicate
the functional interaction between PHF6 and NF-kB. When we
checked the colocalization of the PHF6 and NF-kB peaks within
100 bp upstream and downstream of each peak, an additional
52 peaks appeared to be in close proximity to each other,
suggesting that PHF6 also facilitates p65 binding in an indirect
way via changing the chromatin accessibility in the locus.

Among 68 of the 72 differentially expressed genes downregulated
in Phf6D/y HSCs, only 11 genes (Gstm2, Klf2, Fbp1, Cd82, Mpzl1,
Sox6, Cd53, Cldn5, Ptger4, Ror2, and Selp) appeared to be the
direct targets of PHF6 in K562 cells. Although the peak calling
failed to identify PHF6 peaks at the NR4A1 locus, TNFa

Figure 7. TNFa enhances the genomic binding of PHF6. (A) Pie chart showing the distribution of PHF6 andNF-kB (p65) peaks. (B) Venn diagram showing the overlap between
PHF6 and NF-kB (p65) peaks. (C) Gene tracks showing PHF6 and NF-kB (p65) peaks in control and TNFa-treated K562 cells at theMETRNL locus. The x-axis indicates the linear
sequence of genomic DNA, and the y-axis represents the total number of mapped reads. (D) Box-and-whisker plots showing NF-kB (p65) and PHF6 ChIP combined with high-
throughput sequencing signals in the NF-kB–bound regions identified in TNFa-treated K562 cells. Boxes represent 25 to 75 percentile ranges. Vertical lines represent 10 to
90 percentile ranges. Horizontal bars represent medians. Mean values are indicated by red crosses. (E) Gene tracks showing PHF6 and NF-kB (p65) peaks in control and TNFa-
treated K562 cells at the NR4A1 locus. The x-axis indicates the linear sequence of genomic DNA, and the y-axis represents the total number of mapped reads. The region
detected by ChIP qPCR is indicated by a red bar. (F) ChIP qPCR assays for NF-kB (p65) and PHF6 in control and TNFa-treated K562 cells at theNR4A1 locus. The relative amounts
of immunoprecipitated DNA are depicted as percentages of input DNA. Data are shown as themean plus or minus SEM of triplicate PCRs. *P, .05, **P, .01, ***P, .001 by the
Student t test. NA, not applicable; n.s., not significant.
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enhanced binding of PHF6 to the region encompassing introns 3
and 4 ofNR4A1, in which the ENCODE project identified the peak
of acetylated histone H3 at lysine 27 (https://genome.ucsc.edu)
(Figure 7E). This observation was validated by ChIP qPCR
(Figure 7F). These results indicate that PHF6 regulates expression
of the downstream effector genes of TNFa signaling at the step
after chromatin relaxation around transcriptional regulatory ele-
ments, bymodulating the function of transcription factors, such as
NF-kB.

Discussion
In the present study,wedemonstrated that Phf6 is a critical negative
regulator of HSC self-renewal. The loss of Phf6 potentiated the
repopulating capacity of adult HSCs independently of the devel-
opmental stages of the Phf6 deletion. However, we observed
a marked difference in kinetics; neonatal HSCs acquired a com-
petitive advantage immediately after the loss of Phf6, whereas adult
HSCs required a longer time period or hematopoietic stress, such
as secondary transplantation, indicating that actively cycling HSCs
are more sensitive to the Phf6 deletion than dormant HSCs. In the
S phase of the cell cycle, chromatin undergoes transient disruption
and restoration to replicate parental chromatin. During the resto-
ration process, parental nucleosomes containing histone marks are
diluted by the deposition of newly synthesized histones. Thus,
chromatin replication is a time window of opportunity for changing
the chromatin structure, thereby altering the transcription factor
profile on chromatin.30 A proteomic analysis identified PHF6 as
a component of nascent chromatin.31 These findings implicate
PHF6 in the loading of transcription factors on chromatin or the
functional regulation of transcription factors in the Sphase. Thismay
explain why cycling HSCs acquired enhanced repopulating activity
in a shorter time than dormant HSCs upon Phf6 deletion. Of note,
the CRISPR/Cas9-mediated deletion of Phf6 did not affect the pro-
liferation of ES cells or leukemic cell lines (S. Miyagi, unpublished
data), indicating that Phf6 is not a general negative regulator of cell-
cycle progression, but functions in a cell-context–dependent
manner. The Phf6 deletion led to the downregulation of a set of
genes associated with TNFa signaling and conferred resistance
against the TNFa-mediated growth inhibition on HSCs by directly
and indirectly activating the downstream effectors of TNFa sig-
naling, such as Nr4a1, Egr1, and Junb. TNFa is induced by he-
matopoietic stress, such as total-body irradiation, infection, and
inflammation. Correspondingly, a previous study demonstrated
that the deletion of genes encoding receptors for TNFa, Tnfrsf1a
and Tnfrsf1b, enhanced the repopulating capacity of HSCs without
affecting the HSC pool size in donor mice after transplantation21;
however, the role for TNFa in steady-state hematopoiesis
remains controversial. Therefore, the impact of Phf6 loss may
become more apparent under stress conditions, such as trans-
plantation, but not under steady-state conditions.

Recurrent inactivatingmutations havebeen identified in the X-linked
PHF6 gene in various hematological malignancies. Consistent with
this, Phf6D/y HSCs showed better chimerism than control HSCs
in a competitive setting, which was maintained in the long-term in
a serial transplantation setting, indicating that a Phf6 deficiency
promotes HSC self-renewal. The expression and secretion of in-
flammatory cytokines, such as TNFa and interleukin-6 (which are
inhibitory toward normal HSCs),32-34 are deregulated in hema-
tological malignancies, includingmyelodysplastic syndrome and
AML. These findings together with the present results showing

that the loss of Phf6 confers resistance to TNFa on HSCs suggest
a role for inactivating mutations in PHF6 in promoting the
transformation and clonal evolution of hematopoietic cells.
Because cycling HSCs readily acquired a growth advantage over
dormant HSCs by the loss of Phf6, a PHF6 insufficiency in infants
and young children may have a stronger impact on the path-
ogenesis of hematological malignancies than in adults. PHF6 has
been identified as the second most frequently mutated gene
in pediatric cancers.35 However, VC;Phf6D/y HSCs retained a mul-
tilineage differentiation capacity during serial transplantations
and did not induce any hematological malignancies, even in
3° recipient mice. These findings indicate that a Phf6 insufficiency
alone is not adequate to induce hematopoietic transformation;
cooperating mutations are needed. This idea is supported by
the overexpression of microRNA targeting Phf6 accelerating the
onset of leukemia in Notch1-induced T-ALL in mice.36 In this
regard, it will be interesting to examine whether the deletion of
Phf6 accelerates the development of AML induced by RUNX1
mutants because RUNX1 mutations significantly co-occur with
PHF6 mutations in patients with myeloid malignancies.12

HSCs from VC;Phf6D/y male mice showed an enhanced re-
populating capacity; therefore, HSCs from VC;Phf6D/D females
and VC;Phf6D/wt females with inactivatedWT X chromosomes are
considered to acquire an enhanced repopulating capacity in
a similar manner to HSCs from Phf6D/y males. Although PHF6
mutations are highly male biased in AML and T-ALL,10,11 it will
also be interesting to investigate the phenotypes of HSCs from
VC;Phf6D/wt and VC;Phf6D/D female mice.

During the preparation of our revised manuscript, Wendorff et al
reported that the Phf6 deletion using Vav1-iCre and CreERT
deleter lines enhances self-renewal of HSCs in a setting of serial
transplantation.37 Their findings are consistent with ours. How-
ever, there are several differences in profiles of altered gene
expression and chromatin accessibility upon the deletion of Phf6.
Wendorff et al performed these analyses using the CreERT2
deleter, whereas we used the Vav1-iCre deleter. We speculate
that the discrepancies are mainly attributed to the deleter strains
and the developmental stages of Phf6 deletion. As we showed
in the present study, the expression profiles of HSCs upon the
deletion of Phf6 are greatly affected by these factors.
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Stevenson KE, Wagers AJ. The transcription
factor EGR1 controls both the proliferation
and localization of hematopoietic stem cells.
Cell Stem Cell. 2008;2(4):380-391.
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