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Themicrobiota has emerged as an important regulator of
the host immunity by the induction, functional modula-
tion, or suppression of local and systemic immune
responses. In return, the host immune system restricts
translocation and fine tunes the composition and distri-
bution of the microbiota to maintain a beneficial symbi-
osis. This paradigm applies to neutrophils, a critical
component of the innate immunity, allowing their pro-
duction and function to be influenced by microbial
components and metabolites derived from the microbiota,

and engaging them in the process of microbiota contain-
ment and regulation. The cross talk between neutrophils
and the microbiota adjusts the magnitude of neutrophil-
mediated inflammation on challenge while preventing
neutrophil responses against commensals under steady
state. Here, we review the major molecular and cellular
mediators of the interactions between neutrophils and
the microbiota and discuss their interplay and contribu-
tion in chronic inflammatory diseases and cancer. (Blood.
2019;133(20):2168-2177)

Introduction
The microbiota refers to the symbiotic microorganism com-
munities that reside on the mucosal and skin surfaces of all
vertebrates. With estimated 1014 microorganisms in the human
intestine, the microbiota outnumbers host cells by almost 2
orders ofmagnitude, encoding 100 timesmore genes compared
with the host genome, and comprises .1000 species, including
bacteria, fungi, protozoa, and viruses.1,2 In the past decade,
rapidly growing understanding of the microbiota has signifi-
cantly transformed the field of immunology, leading to in-
creasing appreciation of the fundamental functions for the
microbiota in the development and regulation of host immune
system.

Remarkable diversity and spatial partitioning of the microbiota
are observed on distinct barrier surfaces, including the gastro-
intestinal tract, skin, oral cavity, lung, and vaginal tract.3 In the
gastrointestinal tract, the composition and distribution of the
microbiota is anatomically defined by barrier specificity and
nutrient availability. In the small intestine, a discontinuous mucus
layer separates the majority of the microbiota from the epi-
thelium while allowing specific species to adhere and directly
interact with epithelial cells.4 The small intestine is also rich in
monosaccharides, disaccharides, and amino acids, which sup-
port the growth of bacterial species that rely on simple sugars,
including mainly Proteobacteria and Lactobacillales.5 In the
colon, 2 continuous layers of mucus structures mixed with
anticommensal immunoglobulin-A (IgA) and antimicrobial
peptides (AMPs) more strictly compartmentalize the microbiota.
Different from the small intestine, the majority of nutrients in the
colon comprise polysaccharides that the host cannot digest.
Consequently, only bacterial species capable of breaking down
fibers and mucin can survive in the colon, which leads to the
enrichment of Bacteroides and Clostridiales as dominant

populations.5 The microbial communities in the gastrointestinal
tract are shaped by the diet, host metabolic and inflammatory
conditions and pathogen infection, and dysbiosis is often
associated with inflammatory, autoimmune, and metabolic
diseases.5-7

Given the pathogenic potential of large numbers of bacteria, the
symbiosis between the host and microbiota is essential for
health. In fact, the capacity of certain bacteria to act as
a commensal or pathogen is highly dependent on host im-
mune conditions, genetic predispositions, and coinfections.
To maintain a safe union, the host must develop a complex
regulatory system, involving epithelial cells, mucus, IgA,
AMPs, and an array of innate and adaptive immune cells to
control the composition and distribution of the microbiota.8

These structural and immune components form a “mucosal
firewall,” which eliminates invading pathogens, selects
commensal species, prevents microbial translocation, and
places “ambivalent” microbial species with high pathogenic
potential, such as Escherichia coli and segmented filamentous
bacteria (SFB), under serveillance.9 In turn, the microbiota
also communicates with the host via microbial components
and metabolites that diffuse into the host system, which have
demonstrated broad influences on host immunity, metabo-
lism, and tissue homeostasis.1,8,10-12 For example, the
microbiota is essential for the development of mucosal
lymphoid structures, the establishment of commensal-
specific adaptive immunity, and the induction of regulatory
responses in mucosal tissues. Importantly, the influence of
the microbiota goes beyond the area where these micro-
organisms reside, leading to systemic regulation of the production
and function of innate immune cells. These findings also position
the microbiota as a key modulator in various inflammatory
diseases.6-8
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The neutrophil is a critical component of innate immunity. They
defend against pathogens by phagocytosis, releasing AMPs and
reactive oxygen species (ROS), secreting inflammatory cyto-
kines, and forming neutrophil extracellular traps. This arsenal
eliminates effectively the invading pathogens, but may also
promote tissue damage in inflammatory diseases.13-15 In this
review, we will discuss how the microbiota and neutrophils
balance their bilateral cross talk to maintain a beneficial re-
lationship that promotes health and prevents diseases.

Regulation of neutrophils by
the microbiota
Similar to many other cell types in the body, neutrophils are
regulated by microbial components and metabolites in health
and disease conditions. How these signals are orchestrated to
influence neutrophil production and functions, however, remains
incompletely understood (Figure 1).

The microbiota regulates neutrophil production
Neutrophils are terminally differentiated cells produced in the
bone marrow (BM), where hematopoietic stem cells give rise
to progenitor cell types that hierarchically commit toward
the neutrophilic lineage, including multipotent progenitors,
granulocyte-macrophage progenitors, and unipotent neu-
trophil progenitors.16 The gut microbiota plays a fundamental
role in the tonic regulation of neutrophil production. It was
noted .30 years ago that antibiotic usage was associated
with reduced myelopoiesis in the BM.17,18 Further evidence
suggests that the reduction or absence of microbial content,
as induced by antibiotics or germ-free state, profoundly
reduces neutrophil numbers and their progenitors in neo-
nates and adult mice, resulting in increased susceptibility to
infections.19-24 Neutrophil reductions in microbiota-depleted
models can be rescued by heat-killed E coli strain, autoclaved
cecal content, or lipopolysaccharide (LPS),20,21 indicating that
microbial components derived from the microbiota may
mediate these effects. Indeed, ligands for the pattern rec-
ognition receptors, including Toll-like receptors (TLRs) and
nucleotide-binding oligomerization domain-containing pro-
teins (NODs), such as LPS and peptidoglycan, can be readily
detected in human and murine circulation.1,19,25 These mol-
ecules induce interleukin-17 (IL-17) production from innate
lymphoid cells in the intestine via the TLR4/Myd88 pathway,
resulting in the production of granulocyte colony-stimulating
factor (G-CSF), a master regulator of neutrophil differentia-
tion.21 Interestingly, neutrophils can also be recruited to the
mucosal system via CXCR2, leading to a feedback suppres-
sion of IL-17/G-CSF production.26 Taken together, the pro-
duction of neutrophils is tailored to a need controlled by the
microbiota.

The microbiota also regulates neutrophil production by tar-
geting the niche that supports hematopoiesis in the BM. For
example, NOD1 ligands can be sensed by stromal cells,
resulting in the expression of multiple hematopoietic cytokines
including IL-7, FMS-like tyrosine kinase 3 ligand, stem cell factor,
thrombopoietin, and IL-6.27 Administration of NOD1 ligands in
germ-free mice can thus restore the expression of these cyto-
kines and promote hematopoiesis in bothmyeloid and lymphoid
lineages.27 In addition, a high-fat diet can induce a myeloid bias

in hematopoiesis, which is mediated by deregulation of the
niche characterized by increased mesenchymal stem cell (MSC)
numbers with reduced expression of hematopoietic cytokines
including C-X-C motif chemokine-12, IL-7, Notch2, vascular cell
adhesion molecule-1, and osteopontin.28 Interestingly, high-fat
diet induces a shift in the microbiome, and fecal transplantation
from obese to normal mice produces similar niche deregulation
andmyeloid bias,28,29 suggesting a significant contribution of the
microbiota in these phenomena. Microbiota-derived signals
have also been found to affect macrophages, an important niche
component in the BM, in the context of viral infection.30 Further
investigations into the regulation of macrophages and other
niche constituents by the microbiota in the context of hema-
topoiesis or neutrophil production are needed to advance the
understanding of these processes.

Neutrophil “priming” by the microbiota
Microbial components from the microbiota can also regulate
neutrophil functions and thus modulate the magnitude of in-
flammatory responses. These signals can be sensed by local and
distal organs, which secrete factors that promote neutrophil
recruitment or activation. For example, direct contact of SFBwith
the epithelium leads to the release of serum amyloid A, which
induces Th17 differentiation in the intestine,31 and results in low-
grade activation of NF-kB signaling in circulating neutrophils,
enhancing their migration and production of ROS and IL-1b
upon stimulation.32-34 In addition, very low doses of LPS can be
sensed by MSCs in the BM, leading to rapid mobilization of the
neutrophil and monocyte reservoir.35 Further, germ-free mice
exhibit increased IL-10 expression upon inflammatory chal-
lenges in distal organs, such as the lung, leading to reduced
neutrophil recruitment and cytokine production.36,37 In-
terestingly, pretreatment with LPS abrogates the increased IL-10
production and restores neutrophil responses in germ-free
mice,36,37 suggesting a “priming” of the host immune system
to mount neutrophil reactions.

Neutrophils can also sense microbiota-derived signals with their
own pattern recognition receptors, including most TLRs (except
for TLR3), NODs, and inflammasome.13,38 Neutrophils isolated
from germ-free mice exhibit decreased myeloperoxidase
activity,39 and reduced capacity of chemotaxis toward diverse
inflammatory stimuli in vivo, which requires microbiota signaling
through Myd88.40 Further, the absence of the microbiota leads
to significant reductions in the phagocytic killing capacity in BM-
derived neutrophils, which is mediated by NOD1, but not NOD2
or TLR4 signaling pathways.25 Recently, it has been shown that
neutrophil heterogeneity arises from their aging in the circula-
tion, in which they acquire distinct phenotypic, transcriptional,
and functional properties before they get cleared from
blood.19,41-43 Aged neutrophils, characterized by a CD62Llow

CXCR4high phenotype, represent a proinflammatory subset that
exhibits enhanced migration, aMb2 integrin activation, neutro-
phil extracellular trap formation, and phagocytosis under in-
flammatory conditions.19,41 Neutrophil aging is regulated by the
microbiota via TLR/Myd88 pathways. Depletion of the micro-
biota significantly reduces aged neutrophil numbers and dra-
matically improves the inflammation-associated organ damage
of sickle cell disease and endotoxin-induced septic shock.19 The
microbiota thus provides a constitutive low-grade stimulation
that primes neutrophils for a robust response to inflammatory
stimuli. The “priming” of neutrophils by the microbiota serves as
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a double-edged sword that improves defense against invading
pathogens, but also amplifies neutrophil-mediated organ damage
in inflammatory diseases.

Microbial products do not always produce proinflammatory
effects. For example, formyl peptides are well known to acti-
vate neutrophils,15 but can also signal through distinct formyl
peptide receptors based on their length, structure, and con-
centration, leading to diverse responses in different cell
types.44,45 In a Staphylococcus aureus infection model, bac-
terial N-formylated peptides activate sensory neurons via formyl
peptide receptor 1 (FPR1), resulting in inflammatory pain and the
release of nociceptor neuropeptide, calcitonin gene-related
peptide, which significantly inhibits neutrophil recruitment and
activation.46,47 These microbial products thus create an anti-
inflammatory environment that favors bacterial propagation in
this specific model. The microbiota also produces formyl
peptides that contribute to the maintenance of epithelial
homeostasis.48,49 Whether these peptides promote or sup-
press neutrophil activity remains unclear.

Metabolites from the microbiota modulate
neutrophil functions
The microbiota produces a diverse repertoire of metabolites
from the fermentation of dietary compounds, or conversion of

endogenous compounds secreted by the host. These metab-
olites mainly include short-chain fatty acids (SCFAs), secondary
bile acids, tryptophan metabolites, and amines, which have
broad influence on host physiology and diseases.8,10,12,50,51 In this
section, we will focus on the roles of these metabolites in the
regulation of neutrophil functions.

SCFAs are the most studied metabolites that can affect neu-
trophil recruitment and activation. These molecules are pro-
duced in the colon by bacterial fermentation of polysaccharides,
and are rapidly absorbed with only 5% being secreted in the
feces.52 High concentrations of SCFAs, mainly butyrate, pro-
pionate, and acetate, are detected in the colon (80-131mM) and
in peripheral blood (79-375 mM),53 and these levels are dra-
matically diminished in germ-free animals.54 SCFAs can serve as
an important energy source for intestinal epithelial cells,55 and
promote antibody responses by fueling B-cell metabolism.56

However, there is currently no evidence supporting a similar role
for SCFAs in neutrophils, which have long been known to ex-
clusively rely on glycolysis.57,58 SCFAs can also regulate the
immune system by acting as inhibitors of histone deacetylases
(HDACs),59,60 or ligands for G protein–coupled receptors, in-
cluding mainly GPR43, GPR41, and GPR109A.51 For neutrophils,
SCFA-mediated HDAC inhibition inactivates NF-kB signaling,
resulting in reduced expression of proinflammatory cytokines
and recruitment to inflamed tissues on challenge.61-64 In
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Figure 1. Regulation of neutrophils by the micro-
biota. (A) All vertebrates host a large and diverse
bacterial community in their intestine. The microbiota
produces a variety of small molecules that can com-
municate with the host, includingmicrobial components
and metabolites. Microbial components, as well as di-
rect contact between specific species such as SFB and
the epithelium, induces IL-17 secretion from Th17 cells
and ILCs, which induces the synthesis of G-CSF,
a master regulator of neutrophil production. (B) The
microbial products and metabolites can diffuse into the
circulation, directly regulating the function of neu-
trophils in blood. Nascent neutrophils released from the
BM exhibit limited proinflammatory activity. They ac-
quire enhanced capacities of migration, integrin acti-
vation, ROS production, and NET formation as they age
and sense microbiota-derived signals in the circulation.
This process requires the presence of microbiota, and is
dependent on TLR/Myd88 pathways. Conversely,
microbiota-derived metabolites including SCFAs ex-
hibit anti-inflammatory properties. (C) Microbial prod-
ucts from the microbiota can also diffuse into the BM,
and be sensed by MSCs, which produce cytokines that
support lineage differentiation from HSCs. In addition,
the phagocytic capacities of BM neutrophils are also
regulated by microbiota-derived NOD1 ligands. GMP,
granulocyte-monocyte progenitors; HSC, hematopoi-
etic stem cell; ILC, innate lymphoid cell; LPS, lipo-
polysaccharide; PGN, peptidoglycan; MPP, multipotent
progenitor; NET, neutrophil extracellular trap; ssDNA,
single-stranded DNA.
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addition, SCFAs can induce apoptosis of neutrophils via
HDAC inhibition, promoting the resolution of inflammation.65

The effects of SCFAs on neutrophils through G protein–coupled
receptors are more complex and contextual. Neutrophils ex-
press GRP43 and GPR109A, but not GPR41.51 Signaling through
GPR43 has been shown to trigger calcium flux in neutrophils,
induce chemotaxis toward SCFAs at high concentrations, and
promote ROS production and phagocytosis.66-70 However,
neutrophils from Gpr432/2 mice exhibit enhanced ROS pro-
duction and chemotaxis on microbial stimulation in vitro and
show increased recruitment and activation in inflamed tissues in
the models of colitis, inflammatory arthritis, allergic airway dis-
ease, and infection,66,71 suggesting a suppressive role of GPR43
signaling on neutrophils. In addition, SCFA treatments have also
been reported to reduce ROS production and proinflammatory
cytokine secretion from neutrophils.67,72 These contradictory
observations lead to an SCFA paradox; it remains unclear how
SCFA produces opposite effects on neutrophils via the same
receptor. One possible explanation is that SCFAs at low con-
centrations (plasma levels) suppress neutrophil recruitment and
activation via GPR43 signaling and HDAC inhibition to prevent
immune response against commensals, but that at high con-
centrations (colon levels), they promote neutrophil elimination of
the pathogens. Further studies are needed to reach a definitive
explanation.

Emerging evidence suggests that several other metabolite
species are involved in neutrophil regulation. First, the micro-
biota plays an essential role in regulating bile acid homeostasis
by converting primary bile acids into secondary bile acids, and
by modulating the conjugation of bile acids.10 Although evi-
dence supporting a direct effect on neutrophils is lacking, bile
acids have been shown to mediate anti-inflammatory effects on
monocytes, macrophages, natural killer T (NKT) cells, and en-
dothelial and epithelial cells, which creates an environment that
suppresses neutrophil recruitment and activation.73-77 For ex-
ample, bile acids, particularly secondary bile acid lithocholic
acid, can suppress NLRP3 inflammasome-mediated IL-1b se-
cretion, leading to reduced neutrophil recruitment during in-
flammation.75 In addition, mice deficient in Farnesoid X receptor,
the receptor that senses bile acids, exhibit enhanced
osteopontin production from NKT cells in the liver, leading to
increased neutrophil-mediated liver injury in a model of
autoimmune hepatitis.73,74 The microbiota can also metabolize
dietary tryptophan into indole derivatives, such as indole-3-
acetate, indole-3-aldehyde, and indole-propionic acid, which
act as ligands for aryl-hydrocarbon receptor (AHR) in host
tissues.50 Microbiota-derived AHR ligands promote the immune-
suppressive functions of Tregs during inflammation, which
indirectly affects neutrophil recruitment and activation.78,79

Although host-derived AHR ligands have been suggested to act
on neutrophils to suppress chemotaxis during inflammation,80,81

whether microbiota-derived AHR ligands directly communicate
with neutrophils remains unknown.

Further, the microbiota can convert dietary amino acids into
bioactive amines, such as histamine, which is well known to
modulate inflammation.82 Host cells can also produce amines,
making it difficult to specify the contribution from microbiota-
derived sources. Recently, histamine-secreting microbes have
been identified in the intestine,83,84 and histamine from the

microbiota has been shown to suppress the production of tumor
necrosis factor-a (TNF-a) in human monocytic cells,84 and reg-
ulate AMP production via the NLRP6 inflammasome in the
mucosal system.85 In addition, trimethylamine, an amino acid
metabolite exclusively derived from the microbiota, and its de-
rivative trimethylamine-N-oxide, have been shown to promote
thrombosis and atherosclerosis,86,87 although its effects on
neutrophils have not yet been explored. Last, there is
increasing appreciation of the complex interactions among the
microbiota, nervous system, and immunity.88,89 Although direct
evidence linking the “gut-brain axis”with neutrophil biology is still
lacking, it will not be surprising if such connections exist, given that
neutrophils are under the control of neural signals in both steady
state and inflammatory conditions.90

Neutrophil response toward
the microbiota
The immune system maintains a delicate balance between
tolerance toward the microbiota and immune reactions against
pathogens. Under steady state, commensal-derived signals in-
duce a regulatory network that suppresses immune activation
and leukocyte recruitment,8 thus preventing immune responses
against the commensals. When the host does not recognize an
existing microorganism, both the innate and adaptive branches
of the immune system are rapidly activated to eliminate the
potential liabilities. Neutrophils contribute to the regulation of
microbiota as a major effector cell type that eliminates unwanted
species (Figure 2).

Neutrophils contribute to microbiota containment
Given that activation of neutrophils may cause damage to the
commensals and healthy host tissues, neutrophil recruitment to
the mucosal epithelium is tightly controlled by the local immune
system and the microbiota. In the intestine, mononuclear
phagocytes, including macrophages and dendritic cells, pro-
duce high amounts of Pro-IL1b, an inactive precursor of the
proinflammatory cytokine IL-1b, but are not responsive to mi-
crobial products from commensals. The presence of pathogenic
species, such as Salmonella or Pseudomonas, can trigger the
conversion of these precursor proteins into active cytokines
through the NLRC4 inflammasome, leading to upregulation of
endothelial adhesion molecules followed by robust neutrophil
recruitment.91 Recruited neutrophils can migrate into the in-
testinal lumen to generate an organized structure that prevents
direct contact between commensals and the epithelium via
FPR1. Neutrophils in these “luminal casts” produce high
amounts of ROS, constraining microbial translocation and
overgrowth during infection.92

The recruitment of neutrophils to the mucosal epithelium
depends on neutrophil chemotaxis receptor CXCR2, as sug-
gested by reduced recruitment of neutrophils to peripheral
tissues, and impaired immune defense against intestinal
infections in Cxcr22/2 mice.26,93-95 Interestingly, deficiency in
CXCR2 alone leads to significant shifts of the microbiota
composition.26,96 In addition, IL-17, a cytokine enriched in the
mucosal system, has been shown to promote neutrophil re-
cruitment to the epithelium.94,97 Neutrophils recruited via
IL-17/CXCR2 can produce IL-22,94,98 a cytokine known to con-
tribute to the containment of themicrobiota by inducingAMP and
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IgA production.5,8 The induction of IL-22 in neutrophils is most
likely mediated by local stimulation by IL-23 via the mTOR
pathway.99 Consequently, IL-17–induced neutrophil recruit-
ment significantly limits the expansion of SFB,94 a major
Th17–inducing species, suggesting neutrophils acting as a
key component of the feedback mechanisms that precisely
control commensal species.

Neutrophil-derived AMPs fine tunes themicrobiota
That the host can select for commensal species suggests that the
immune system can recognize its microbial allies. This recog-
nition is at least partially dependent on adaptive immune
responses because mice carrying distinct major histocompati-
bility complex alleles exhibit individualized microbial commu-
nities in their intestine.100 AMPs also play an important role in this
process. In the intestine, themicrobiota is compartmentalized by
layers of mucus mixed with IgA and AMPs, leading to consti-
tutive exposure of commensal species to these molecules.
Similar to the effect of long-term antibiotic treatment, the
commensal species develop strategies, such as modification of
their membrane structures, to acquire resistance to high levels of
AMPs, establishing a mechanism that distinguishes commensals
from pathogens and maintaining stability and resilience of
a healthy microbiota.101 AMPs include 2 major groups, defensins
and cathelicidins, both of which are small molecules that sup-
press the growth of microorganisms by membrane per-
meabilization.13 Neutrophils store large quantities of AMPs in
their granules and rapidly release them on pathogen encounter.
In mouse models that are deficient in the mouse ortholog of
cathelicidin (LL-37), cathelin-related antimicrobial peptide
(CRAMP), the deficiency leads to significant dysbiosis and in-
creased susceptibility to dextran sulfate sodium–elicited colitis,
suggesting loss of microbiota protection of the mucosal epi-
thelium.102 Notably, when CRAMP is deleted from neutrophils
and macrophages using LysM-Cre, or from intestinal epithelial

cells using Villin-Cre, LysM-Cre/Crampf/f mice exhibit the most
significant defects in their microbiota.102 In addition, neutrophil
elastase, another major neutrophil granular protein that can
convert inactive cathelicidins into functional LL-37, has been
suggested to mediate shifts in microbiota composition during
infection.103 These findings thus support the idea that neu-
trophils play a fundamental role in the regulation of microbiota
composition by secreting AMPs.

Pathogen strategies to hijack neutrophils for their
growth advantage
In the turf war between neutrophils and pathogens, certain
pathogen species have evolved strategies to use neutrophil-
mediated inflammation to gain growth advantage over the
commensals. One example is Salmonella, a diarrheal pathogen
that can cause acute gut inflammation by its virulence factors.
Salmonella-induced inflammation results in robust neutrophil
recruitment into the intestinal lumen, where they produce ROS
that can react with an endogenous luminal sulfur compound,
thiosulfate, to form tetrathionate.104,105 The normal microbiota
cannot use tetrathionate, or ethanolamine, a complex carbon
compound abundant in the intestine. However, Salmonella has
the ttrSR ttrBCA gene cluster that allows it to use tetrathionate as
a respiratory electron acceptor and thus consumes ethanol-
amine as a nutrient resource. Consequently, Salmonella side-
steps nutritional competition and gains growth advantage over
the commensals, leading to its overgrowth during intestinal
inflammation.104,105 Similarly, pathogenic E coli can also benefit
from intestinal inflammation. During inflammation, recruited
leukocytes and the epithelium upregulate inducible nitric oxide
synthetase, leading to the production of nitrate.106 The patho-
genic E. coli can use nitrate as an electron acceptor to generate
energy, whereas the majority of gut microbiota species cannot,
leading to a growth advantage for these pathogens.106
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Figure 2. Neutrophil response toward the micro-
biota. (A) Under steady state, the microbiota induces
a regulatory network that suppresses neutrophil re-
cruitment to prevent inflammatory responses toward the
epithelium and commensals. (B) SFB and other com-
mensals can induce Th17 cells, which secrete IL-17 to
recruit neutrophils to the intestinal epithelium, resulting
in a negative feedback control of the microbiota by
neutrophils. Neutrophils also produce IL-22, which can
elicit AMP secretion from the epithelium and IgA pro-
duction from intestinal B cells. (C) Macrophages and
dendritic cells in the mucosal system constitutively
produce large amounts of pro-IL1b, the inactive form of
the pleiotropic cytokine IL-1b. Signals from pathogenic
microorganisms trigger the conversion through the
NLRC4 inflammasome pathway, which induces robust
neutrophil recruitment. Recruited neutrophils can mi-
grate into the lumen of intestine to form an organized
intraluminal structure that prevents translocation and
expansion of both commensal and pathogenic species.
(D) Certain pathogenic species, such as Salmonella, can
take advantage of neutrophil-mediated defense mech-
anisms to acquire growth advantages by using S4O6

22 as
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Interplay between neutrophils and the
microbiota in chronic diseases
Neutrophils provide essential immune protection against
pathogens, but also promote chronic inflammatory diseases and
cancer by producing organ damage or suppressing adaptive
immune reactions.13,15 The microbiota has also been shown to
profoundly influences the pathophysiology of inflammatory
diseases and cancer.6-8

IBDs and airway disorders
Inflammatory diseases at the barrier sites, such as the intestinal
and pulmonary epithelium, arise from a complex confluence of
genetic factors, the host immune system, and the microbiota.
Inflammatory bowel diseases (IBDs), such as Crohn disease and
ulcerative colitis, are often associated with variants of genes
involved in barrier maintenance, such as NOD2, IL23R, CARD9,
and IL18RAP.107 Following a triggering factor (eg, infection),
genetic predispositions can lead to a compromised intestinal
immune system, which may break down the regulatory network
that prevents immune activation in the epithelium and may in-
duce dysbiosis. Disrupted microbial communities, in turn, pro-
mote robust neutrophil recruitment and activation, leading to
chronic inflammation and tissue injury.108 Consistent with this
theory, T-bet2/2Rag22/2 mice (TRUC mice) exhibit severe
defects in both adaptive and innate immunity, resulting in
a spontaneous transferrable form of ulcerative colitis.109 The
deficiencies also transform the microbiota to become col-
itogenic, which promotes TNF-a secretion from intestinal
dendritic cells, leading to severe infiltration of neutrophils,
epithelial injury, and colorectal cancer.109,110 The de-
velopment of colitis in these animals largely depends on the
microbiota, as demonstrated by transmission of the disease
between TRUCmothers and wild-type offspring, and between
TRUC and wild-type animals upon cohousing.109 Further,
several “proinflammatory” pathogen and microbiota species
have been pinpointed to induce the disease in IBD-susceptible
mice, including adherent-invasive E coli, Clostridium difficile,
and commensal Bacteroides.111-113 Conversely, IBDs are also
associated with reductions in the commensal species that me-
diate immune regulations. For example, patients with IBDs
exhibit depletion of Firmicutes species,114 which are known
to produce SCFAs and induce Tregs to suppress immune
activation.115

Similar with IBDs, the interplay between neutrophils and the
microbiota is also implicated in airway inflammatory disorders. In
cystic fibrosis, inactivating mutation in the cystic fibrosis trans-
membrane conductance regulator gene leads to accumulation
of mucus on the surface of pulmonary epithelium, resulting in
outgrowth of several commensal species, with Pseudomonas
and Staphylococcus most relevant for disease progression.116

The expansion of microbes drives robust neutrophil infiltration
and activation, which have been shown to be the best markers
for disease severity in cystic fibrosis.117 Neutrophils, in turn,
contribute to persistent expansion of lung microbes by sup-
pressing T-cell recruitment and activation118 and promoting
anaerobic respiration in these microbes.119 Close interactions
between neutrophils and the lung microbiome have also been
reported for other airway disorders such as chronic obstructive
pulmonary disease and asthma.120,121

Autoimmune and vascular diseases
As a major cell type recruited during the effector phase, neu-
trophils play important roles in autoimmune diseases, such as
rheumatoid arthritis and multiple sclerosis, by promoting in-
flammation, producing tissue damage, and facilitating autoan-
tibody production and disposition.122-125 In vascular diseases,
heterotypic interactions between neutrophils and red blood cells
or platelets promote vaso-occlusion in sickle cell disease,126 and
produce vascular damage in transfusion-related acute lung
injury.126,127 These neutrophil-mediated inflammatory events
occur far from the mucosal epithelium and thus do not involve
direct microbe-neutrophil interactions. However, the microbiota
can influence disease progression by regulating neutrophil
production and activation via systemically diffused microbial
products. For example, the germ-free condition has been found
to strongly alleviate arthritis in K/BxN and IL1rn2/2 mouse
models, which results from a reduction of Th17 cells in the small
intestinal lamina propria.128,129 Th17 cells produce IL-17, which
can directly act on B cells to induce autoantibodies128 and
promote neutrophil production by inducing G-CSF.21,26 In-
terestingly, expansion of Prevotella, a specific intestinal com-
mensal species, is reported to correlate with enhanced
susceptibility to arthritis, and reduction of Prevotella by dietary
modulation leads to reduced pro-IL-1b secretion in distal
neutrophils.130,131 Similarly, mice maintained in germ-free con-
ditions are fully protected from multiple sclerosis,132 although
the specific effects on neutrophils remain unclear. Further, the
heterotypic interactions between neutrophils and other blood
cell types are mediated by activated aMb2 integrin,126 a function
enhanced by the time that neutrophils spend in the circulation.
Neutrophil aging is driven by the microbiota through TLR/
Myd88 pathways; microbiota depletion protects mice from vaso-
occlusion and chronic organ damage in sickle cell disease.19 In
addition, depletion of commensal bacteria also improves
neutrophil-mediated thrombosis in endotoxin-induced sepsis
and prevents transfusion-related acute lung injury by reducing
neutrophil recruitment to the lung.19,133

Cancer
Neutrophils are abundant in malignant lesions and play an
important role in modulating tumor progression. Tumor-
associated neutrophils can promote tumorigenesis by
producing angiogenic factors, enhancing metastasis, and
suppressing antitumor immune responses.13 Under certain
circumstances, such as invariant NKT activation or TGF-b
inhibition, tumor-associated neutrophils can also switch to
antitumor phenotypes134,135 to suppress tumor growth. The
interactions between neutrophils and the microbiota have
been shown to affect tumor progression. For example, in
a mouse model of serrated polyps (SPs), a premalignant lesion
of the colon, the expression of the endothelial growth factor
receptor ligand throughout the intestine promotes the de-
velopment of SPs only in the cecum. The development of SPs
requires a specific microbial niche in the cecal mucosa, and is
associated with barrier dysfunction, bacteria invasion, neu-
trophil infiltration, and inflammatory cytokine secretion. An-
tibiotic treatment or neutrophil depletion both abrogates SP
development, suggesting an important role for neutrophils
and the microbiota in this disease.136 In addition, specific
intestinal commensal or pathogen species, such as Lacto-
bacillus johnsonii or Helicobacter hepaticus, can modulate
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the progression of various cancer types by regulating sys-
temic inflammatory tone.137-140 Similarly, the lung microbiota
can also promote pulmonary tumor progression by inducing
IL-17 secretion from the epithelium, which enhances neu-
trophil recruitment by cancer cells.141 Importantly, the
microbiota also modulates host response to cancer therapy by
regulating drug metabolism and the innate and adaptive
responses following treatment.142 An efficient cancer therapy
requires robust activation and ROS production from neutrophils,
which is significantly impaired in microbiota-depleted or TLR/
Myd88-deficient mice.143

Concluding remarks
Neutrophils are involved in close interactions with the micro-
biota in both normal and pathological conditions; however, the
mechanisms mediating the communications between neu-
trophils and the microbiota remain incompletely understood.
For example, it is not clear whether other components of the
microbiota, including commensal protozoa, viruses, and fungi,
play an important role in neutrophil regulation. In addition, only
a small subset of metabolites and nutrients from the microbiota
has been studied with regards to their regulation of neutrophil
functions. Different metabolites andmicrobial components have
been shown to produce distinct effects on neutrophils by either
enhancing or suppressing their functions. How these microbiota-
derived signals are orchestrated remains unclear. In chronic
diseases, the roles of microbiota and neutrophils are highly
contextual and can both improve or worsen disease activity.
Dissection of their interactions in different disease conditions is
still in the early stage. Although much remains to be learned
about the interplay between neutrophils and the microbiota,
these studies hold enormous potential for clinical application.
Understanding of the molecular mechanisms mediating the

cross talk and identification of specific “proinflammatory” or
“anti-inflammatory” commensal species may allow the de-
velopment of novel therapeutic approaches for the treatment of
chronic inflammatory diseases and cancers.
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Control of pathogens and pathobionts by the
gut microbiota. Nat Immunol. 2013;14(7):
685-690.

6. Kamada N, Seo SU, Chen GY, Núñez G. Role
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