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Langerhans cell histiocytosis (LCH) is characterized by granu-
lomatous lesions with pathologic CD2071 dendritic cells.1 More
than 40% of children with high-risk LCH (involving bone marrow,
liver, and/or spleen) are not cured by frontline chemotherapy,
with the highest risk of morbidity andmortality in those with poor
initial response.2 Uncontrolled LCH is associated with increased
morbidity,3 including progressive LCH-associated neurodegener-
ation (LCH-ND).4 Activating somatic mutations in MAPK pathway
genes occur in most cases of LCH, with ;60% attributable to
BRAFV600E5-8; otherwise, themutation burden is low.6,7 Recently,
BRAF V600E mutations were identified in mononuclear cells from
peripheral blood and in brain biopsies of patients with LCH-ND,
supporting LCH-ND as a tissue-specific process driven by ERK
activation.9,10

High-dose nucleoside analogs and hematopoietic cell trans-
plantation are effective salvage strategies, although they are as-
sociated with high treatment-related morbidity and mortality.11-13

Given the central role ofMAPKpathway activation in pathogenesis,
targeted inhibition of the MAPK pathway may be an effective
therapeutic strategy for LCH.14,15 Phase 1 to 2 trials and series of
adults with LCH and the related disorder of Erdheim-Chester dis-
ease (ECD) treated with the BRAF V600E inhibitor vemurafenib
reported universal metabolic response (objective response rate
of 43% when using RECIST criteria; additional studies using meta-
bolic response criteria by positron emission tomography dem-
onstrated objective response rates of 100%).16-18 Discontinuation
of therapy frequently resulted in relapse, with 75% of adults with
ECD progressing after discontinuation of therapy in the LOVE
study.19 Although early reports of MAPK pathway inhibition in
adults with LCH and/or ECD have demonstrated promising
response rates, the efficacy and safety of MAPK pathway in-
hibition in children with LCH remains uncertain. There are few
reports in pediatric LCH, although a few cases have suggested
potential for responses to MAPK inhibition.20-22 The optimal
therapy for this age group is not well established, and improved
strategies are urgently needed for children with refractory/
relapsed high-risk LCH and LCH-ND.

NACHO-LIBRE (North American Consortium for Histiocytosis–
Registry Study of LCH and Related Disorders: Inhibition of MAPK

Pathway Activation [RAS, BRAF,MEK, and ERK]) was designed to
systematically evaluate the efficacy and toxicity of MAPK inhib-
itors in a retrospective cohort of children with LCH. Institutional
review board approval was obtained from Baylor College of
Medicine, and NACHO member and partner institutions con-
tributed outcomes for children with LCH (systemic and/or LCH-
ND) treated with MAPK pathway inhibitors; none of the patients
were enrolled in a clinical trial for these drugs. Early data from
patients 1, 4, 12, and 21 have been reported previously, with
extended treatment course and toxicity information reported
here.9,23

Medical records from 21 pediatric patients with LCH (systemic
and/or LCH-ND) from 14 institutionswere systematically reviewed
(supplemental Table 1, available on the Blood Web site). All pa-
tients had experienced failure of at least 1 prior therapy and had
a proven MAPK pathway somatic mutation (BRAF V600E, n 5 20;
MAP2K1_c293_310del, n 5 1; supplemental Table 1). Response
assessments were based on best response using applicable
criteria for each individual, according to modified RECIST 1.1
criteria specific for LCH (supplemental Methods),24 including
positron emission tomography (metabolic) criteria, bone marrow
evaluation, serial brain magnetic resonance imaging, and ataxia
rating score using the Scale for Assessment and Rating of
Ataxia.25 All patients were age,21 years (median age at start of
therapy, 6.9 years; range, 0.4-20.7 years), with a median disease
duration of 4 years before start of MAPK inhibitor (range, 0.07-
18.4 years) andmedian of 3 prior treatments (range, 1-9 treatments).
At the start of MAPK inhibition, 13 patients had LCH-ND (clinical
and radiographic evidence of disease, n 5 11; radiographic evi-
dence only, n 5 2); the remaining 8 patients had systemic disease
without LCH-ND (7with high-risk organ involvement). Patientswere
treated for a median of 12.4 months (range, 0.6-44.6 months), with
a median follow-up time of 13.3 months (range, 0.6-45.8 months)
from start of MAPK inhibitor therapy. Reasons for treatment
discontinuation are noted in supplemental Table 1.

Overall response rate was 86% for the entire cohort based
on best response using RECIST criteria modified for LCH
(supplemental Table 1; supplemental Methods). Four (19%)
of 21 patients achieved a complete response (CR), and
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14 patients (67%) achieved a partial response (PR), whereas 2 pa-
tients (10%) achieved stable disease (SD), and 1 patient (4%) died
early during therapy as a result of progressive disease complicated
by secondary macrophage activation syndrome (supplemental
Table 1; Figure 1). Of the 13 patients who had any LCH-ND,
none achieved a CR, but 12 (92%) achieved a PR and 1 patient
(8%) maintained SD by either clinical or radiographic assessment
(supplemental Table 1). Of the 10 patients who had any other
LCH disease at start of therapy, 4 (40%) achieved a best response
of CR, 3 (30%) achieved a PR, 1 (10%) had SD, and 1 (10%) had
progressive disease.

Patients who had a shorter duration of LCH-ND or were clinically
asymptomatic before start of MAPK inhibitor tended to have
the best response to MAPK inhibition (supplemental Table 1).
Median progression-free survival time after start of therapy was
14.2 months (range, 4.6-44.7 months). Among those who ex-
perienced an event, median time to disease progression or
recurrence was 2.8 months (range, 0.6-21.2 months). Kaplan-
Meier progression-free survival estimate from start of therapy to
last contact was 37% (median follow-up time, 14 months; range,
0.6-46.5 months), and overall survival was 90% (1 death resulting
from transplantation-related mortality; Figure 1). Four (19%) of
the 21 patients experienced grade 3 or 4 toxicity, and 2 patients

required dose modification. Five patients (24%) received con-
current therapies (supplemental Table 1).

Ten patients had measurable BRAF V600E–mutated peripheral
blood mononuclear cells (PBMCs) or bone marrow cells before
the start of MAPK inhibition, with subsequent molecular as-
sessments obtained after start of MAPK inhibitor. In contrast to
patients treated with chemotherapy, in whom the presence of
BRAF V600E1 PBMCs reflects disease burden,11 the percentage
of BRAF V600E1 PBMCs in patients treated withMAPK inhibition
in this series did not reliably correlate with disease activity or
clinical response (supplemental Figure 1).

In this multisite retrospective review of patients with multiple
previous treatment failures, MAPK pathway inhibition was associ-
ated with an overall response rate of 86% and no treatment-related
mortality, which compares favorably to alternative chemotherapy
salvage strategies.12,13 These data are valuable as a collection of
experiences from a challenging cohort of LCH patients for whom
previous therapies failed. Patients with relapsed/refractory high-
risk systemic LCH generally experienced early benefit from this
strategy, although few achieved a sustained CR. Patients with
relatively early onset of LCH-ND had better radiologic and clinical
responses compared with patients with longstanding LCH-ND.
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Figure 1. Outcomes of pediatric LCH patients treatedwithMAPK pathway inhibitors. (A) [18F]fluorodeoxyglucose–positron emission tomography scan from patient 17 with
disseminated high-risk LCH before (left) and 2 months after (right) treatment with vemurafenib, scored as a partial metabolic response. (B) Magnetic resonance imaging brain (axial
T2 fluid-attenuated inversion recovery) from patient 6 with radiologic LCH-ND before (right) and 7 months after (left) treatment with vemurafenib, scored as a partial radiologic
response. (C) Graphic representation of progression-free survival (PFS) time (37%) for all patients treated withMAPK inhibition (MAPKi; n5 21). (D) Individual swimmer plots for each
patient (n5 21), depicting PFS withMAPKi. Responses for patients (5 and 13) who had both LCH-ND and systemic LCH at start of MAPKi are subdivided as follows: 5.1, swimmer plot
for LCH-ND; 5.2, swimmer plot for parietal bone lesion; 13.1, swimmer plot for LCH-ND; 13.2, swimmer plot for LCH liver involvement. BMT, bone marrow transplantation.
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We hypothesize that inhibition of theMAPK pathway may confer
clinical benefit by blocking differentiation and proliferation of
precursor cells with hyperactive MAPK signaling.15 However,
MAPK inhibition may have limited cytotoxic potential, as sup-
ported by persistence of BRAF V600E1 mononuclear cells in
blood and bonemarrow, even in patients with impressive clinical
responses, and relapse after discontinuation of therapy. If MAPK
inhibition arrests pathogenic mechanisms but does not kill LCH
precursor cells, alternative approaches may therefore be nec-
essary for cure. For example, combination of MAPK inhibition
with conventional cytotoxic chemotherapies may be a consid-
eration for future trials to test potential to achieve sustained
clinical improvement and eradicate the underlying precursor
cells. Acknowledging intrinsic limitations of multicenter retro-
spective series, this study demonstrates potential for patients
with refractory or relapsed LCH or LCH-ND to respond to MAPK
inhibition. Future prospective trials are required to determine
optimal patient population, timing and duration of MAPK in-
hibition, mutation-specific responses to specific inhibitors,26 and
potential for improved outcomes with strategies that combine
MAPK inhibitors with other targeted agents and/or chemo-
therapeutic agents for children with LCH.
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