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KEY PO INT S

l The absence of Cdk6
ameliorates MPN
hallmarks, lessens
splenomegaly, and
enhances survival of
JAK2V617F mice.

l CDK6 facilitates MPN
by enhancing
cytokine production
(in conjunction with
NF-kB), activating
leukemic stem cells
and preventing
apoptosis.

Over 80% of patients with myeloproliferative neoplasms (MPNs) harbor the acquired
somatic JAK2V617F mutation. JAK inhibition is not curative and fails to induce a persistent
response in most patients, illustrating the need for the development of novel therapeutic
approaches. We describe a critical role for CDK6 in MPN evolution. The absence of Cdk6
ameliorates clinical symptoms and prolongs survival. The CDK6 protein interferes with
3 hallmarks of disease: besides regulating malignant stem cell quiescence, it promotes
nuclear factor kB (NF-kB) signaling and contributes to cytokine production while inhibit-
ing apoptosis. The effects are not mirrored by palbociclib, showing that the functions of
CDK6 in MPN pathogenesis are largely kinase independent. Our findings thus provide
a rationale for targeting CDK6 in MPN. (Blood. 2019;133(15):1677-1690)

Introduction
Myeloproliferative neoplasms (MPNs) are clonal hematological
stem cell disorders characterized by uncontrolled expansion of
one or more myeloid lineages. Patients with MPN are at risk of
bone marrow (BM) fibrosis and occurrence of thromboembolic
events, conditions that contribute to a poor clinical outcome. A
major complication of MPNs is transformation to secondary
acute myeloid leukemia, which is also associated with a lowered
life expectancy.

The majority of MPNs arise due to somatic mutations that result
in constitutively active tyrosine kinase signaling cascades, pro-
viding the malignant cells with a gain of fitness. The first clinical
insights into MPN pathogenesis stemmed from the discovery
of a single gain-of-function point mutation (Val617Phe) in the
nonreceptor tyrosine kinase JAK2 (JAK2V617F) in .95% of pa-
tients with polycythemia vera (PV) and in 50% to 60% of patients
with essential thrombocythemia and primarymyelofibrosis.1-4 There
have been considerable efforts to develop JAK inhibitors: the
JAK1/2 kinase inhibitor ruxolitinib is approved for use in patients
with advanced primary myelofibrosis and PV who are resistant to
hydroxyurea. Other drugs used to treat MPN patients include

interferon-a and anagrelide. However, there is a lack of curative
therapies: JAK inhibitors reduce splenomegaly and control MPN-
related symptoms quite effectively but fail to eradicate the
malignant clone. There is an immediate need for additional
therapeutic strategies.

MPN patients are characterized by elevated levels of circulating
proinflammatory cytokines arising in both malignant and non-
malignant hematopoietic cells.5 Increased cytokine production
is linked to adverse prognosis and contributes to clinical symp-
toms, BM fibrosis, and extramedullary hematopoiesis.6 The
chronic inflammatory state is mediated by molecular cross talk
between 2 key regulators of inflammation: the JAK2 downstream
target STAT3 and the transcription factor nuclear factor kB
(NF-kB).7 NF-kB is controlled via cytosolic retention by inhibitor
of NF-kB (IkB) proteins. Phosphorylation-dependent proteolytic
degradation of IkBs in response to inducers such as proin-
flammatory cytokines (eg, interleukin [IL]-1 or tumor necrosis
factor-a [TNF-a]) is followed by nuclear translocation and DNA
binding of NF-kB subunits. Within the nuclear compartment,
posttranslational modifications provide an additional layer of
regulation of NF-kB activity. Transactivation of the transcriptionally
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most potent NF-kB subunit p65 is enhanced by phosphorylation
at Ser536 by cyclin-dependent kinase 6 (CDK6). This activation
is required for the interaction between corepressors and coac-
tivators required for the expression of inflammatory genes.8

CDK6 and its close relative CDK4 are critical regulators of cell-
cycle progression. In complex with cyclin D, CDK4 and CDK6
have redundant roles in relieving retinoblastoma-mediated
transcriptional repression to promote exit from the G1 phase
of the cell cycle. The alteration or inhibition of 1 of these 2 cell-
cycle kinases alone does not suffice to inhibit cell-cycle
progression, but the simultaneous deletion of both kinases
induces late embryonic lethality in mice due to defects in
hematopoiesis.9,10 Loss of Cdk6 alone is not lethal but leads
to defects in hematopoietic cell proliferation and mild
anemia.10,11 There is ample evidence for additional substrates
and functional differences between CDK4 and CDK6 that go
well beyond the control of the cell cycle. In a variety of human
lymphomas and leukemias,10,12-23 the CDK6 gene is frequently
amplified or overexpressed, a feature not shared by CDK4.
CDK6 but not CDK4 is a direct regulator of transcription in both
kinase-dependent and -independent manners, interacting
with a range of transcription factors, including STATs and
AP-1.11,24-27 It also serves as a nuclear cofactor for NF-kB p65
and mediates CXCL8 (IL-8) expression.25 In addition, CDK6
stabilizes the cytoskeletal integrity of erythroid cells on a tran-
scriptional and structural level.11 The cycling of human hemato-
poietic stem cells (HSCs) depends on the level of CDK6,28 and
under stress conditions, CDK6 contributes to quiescence of
murine stem cells by the transcriptional regulation of Egr1.26

We now report a new component of the oncogenic mecha-
nisms that underlie MPN pathobiology in JAK2V617F mice: the
absence of Cdk6 attenuates clinical symptoms. In JAK2V617F

progenitor cells, the CDK6 protein acts as a transcriptional
regulator of NF-kB signaling, apoptosis, and HSC activation.
The cell-cycle kinase CDK6 is thus required to sustain the fitness
of JAK2V617F-transformed progenitors to maintain disease. A
CDK6/NF-kB–dependent axis contributes to regulating the
levels of circulating cytokines in JAK2V617F mutant mice. Our
data thus identify CDK6 as a molecular node that integrates
NF-kB–dependent inflammation, apoptosis, and malignant stem
cell activation in JAK2V617F-mediated MPN and provide a
rationale for therapeutic evaluation of CDK6 inhibition in
this disease.

Methods
Mouse strains and transplantation studies
Mice were maintained under specific pathogen-free conditions
at the Institute of Pharmacology and Toxicology, University of
Veterinary Medicine, Vienna and at the Institute of Molecular
Biotechnology, Vienna. Mice carrying a floxed heterozygous
conditional knock-in (KI) allele of JAK2V617F 29,30 were crossed
with VavCre and Cdk62/2 mice.31 All strains were bred on the
C57BL/6N background. NOD/SCID/IL-2Rg2/2 (NSG) and B6.SJL-
Ptprca (Ly5.11) mice were bred at the University of Veterinary Medi-
cine, Vienna. Eight- to 32-week-old mice were used for experiments.
All procedures were approved by the institutional ethics and animal
welfare committee of the University of Veterinary Medicine, Vienna
(BMWFW-68.205/0112-WF/V/3b/2016, BMWF-68.205/0103-WF/

V/3b/2015, BMWFW-68.205/0093-WF/V/3b/2015) and at the In-
stitute of Molecular Biotechnology, Vienna (BMWFW-66.015/0004-
WF/V/3b/2016) and the national authority according to §§26ff. of
the Animal Experiment Act, Tierversuchsgesetz 2012-TVG 2012.

RNA sequencing and bioinformatics analysis
Purified Lineage2Sca11cKit1 (LSK) cells were isolated from BM
of 8-week-old VavCre; Jak21/1; Cdk61/1, VavCre; JAK2V617F;
Cdk61/1, VavCre; JAK2V617F; Cdk62/2, VavCre; Jak21/1; Cdk62/2

mice and VavCre; JAK2V617F; Cdk61/1mice treated with palbociclib.
RNA was extracted using the RNeasy Micro Kit according to
the manufacturer’s instructions (Qiagen, Venlo, The Nether-
lands). The amount of total RNA was quantified using the Qubit
2.0 Fluorometric Quantitation system (Life Technologies,
Carlsbad, CA), and the RNA integrity number was determined
using the Experion Automated Electrophoresis System (Bio-Rad,
Hercules, CA). RNA-seq libraries were prepared with the TruSeq
StrandedmRNA LT sample preparation kit (Illumina, San Diego, CA)
usingbothScicloneandZephyr liquidhandling robotics (PerkinElmer,
Waltham, MA). Library concentrations were quantified with the
Qubit 2.0 Fluorometric Quantitation system (Life Technolo-
gies), and the size distribution was assessed using the Experion
Automated Electrophoresis System (Bio-Rad). For sequencing,
samples were diluted and pooled into NGS libraries in equi-
molar amounts. Expression profiling libraries were sequenced on
Illumina HiSeq 3000/4000 instruments in 50-base-pair single-end
mode, and base calls provided by the Illumina Realtime Anal-
ysis software were subsequently converted into BAM format
(Illumina2bam) before demultiplexing (BamIndexDecoder) into
individual, sample-specific BAM files via Illumina2bam tools
(1.17.3 https://github.com/wtsi-npg/illumina2bam). After qual-
ity control of raw data with FastQC, NGS reads were trimmed
based on quality and adapter sequence content with Trimmomatic
(0.36) and mapped to the GENECODE M13 genome using STAR
(2.5.2b) with default parameters. FeatureCounts from the Subread
package (1.5.1) was used to obtain gene counts for union gene
models. Statistical analysis was conducted in the R environment32

using the DESeq2 package33 (1.18.1) for differential expres-
sion analysis, the RUVSeq package34 (0.99.1) for removing un-
wanted variation in the data, and the pheatmap package (1.0.8)
for visualization purposes. Differentially expressed genes with
adjusted P value,.05 and absolute log2-fold change.1 were
considered significant. Gene set enrichment analysis (GSEA)35,36

(2.2.4) was used for gene set enrichment analysis against Hall-
mark Gene Set Collection.37 False discovery rate ,0.25 was
considered significant.

These data can be accessed under the Gene Expression Om-
nibus database, accession number GSE123401.

Results
Cdk6 influences the course of MPN in JAK2V617F

KI mice
To investigate the role of Cdk6 in the development of MPN, we
crossedVavCre; JAK2V617FKI29,30 withCdk62/2mice31 (supplemental
Figure 1A, available on the Blood Web site). As expected, mice
expressing JAK2V617F (VavCre; JAK2V617F; Cdk61/1) had markedly
elevated red blood cell numbers, an elevated hematocrit, andmore
hemoglobin in the peripheral blood (PB) than wild-type (WT) control
mice (VavCre; Jak21/1; Cdk61/1 and VavCre; Jak21/1; Cdk62/2) over
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the course of 30 weeks. In line with published reports, lymphocytes,
monocytes, and granulocytes were increased, and the VavCre;
JAK2V617F KI mice displayed a pronounced thrombocytosis. In
the absence of Cdk6, the effects of JAK2V617F on erythropoiesis
decreased as the mice aged (from 24 weeks). The absence of
Cdk6 was associated with a significantly lower platelet count
from an early age. The effects of Cdk6 deficiency on erythro-
poiesis were only evident in older JAK2V617F mice, suggesting

that CDK6 exerts its effects by different mechanisms in younger
and older mice, and in platelets and erythrocytes (Figure 1A).

As observed by others, heterozygous JAK2V617F (VavCre; JAK2V617F;
Cdk61/1) animals develop a lethal MPN with 100% penetrance, and
their median survival was 98 days. In contrast, the VavCre; JAK2V617F;
Cdk62/2 cohort has a median survival of 316 days. All Jak21/1

animals with or without Cdk6 remained disease free (Figure 1B).
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Figure 1. Cdk6 deletion ameliorates symptoms associated with JAK2V617F mutation. (A) Time course of blood counts of transgenic mice (n5 6 per genotype). Results are
presented as means 1 standard deviation (SD). Two-way analysis of variance (ANOVA) with subsequent Bonferroni posttest was used, and significance between VavCre;
JAK2V617F; Cdk61/1 and VavCre; JAK2V617F; Cdk62/2 is indicated. *P , .05; **P , .01;***P , .001; ****P , .0001. HCT, hematocrit; HGB, hemoglobin; n.s., not significant; RBC,
red blood cells. (B) Survival of mice is shown as Kaplan-Meier curves. The experiment was terminated after 365 days. Mean survival, 98 days (VavCre; JAK2V617F; Cdk61/1),
316 days (VavCre; JAK2V617F; Cdk62/2). Log-rank test was used for statistical comparison. *P , .05; ****P , .0001. The group sizes were n (VavCre; JAK2V617F; Cdk61/1) 5 23,
n (VavCre; JAK2V617F; Cdk62/2) 5 23, n (VavCre; Jak21/1; Cdk61/1) 5 10, and n (VavCre; Jak21/1; Cdk62/2) 5 10. (C) Spleen weights at 8 weeks of age are depicted. The
group sizes were n (VavCre; Jak21/1; Cdk61/1)5 19, n (VavCre; JAK2V617F; Cdk61/1)5 15, n (VavCre; JAK2V617F; Cdk62/2)5 13, and n (VavCre; Jak21/1; Cdk62/2)5 15. Error bars
indicate 1 SD. One-way ANOVA with subsequent Bonferroni posttest was used, and significance is indicated. **P , .01; ****P , .0001.
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Figure 2. Histopathology and analysis of erythroid precursors in Cdk6-deficient JAK2V617F transgenic mice. Mice were euthanized at 8 weeks of age. (A) Summary of
histopathologic features of 8-week-old mice with indicated genotypes. (i) Light microscopically discernible presence of erythroid and myeloid cells in the splenic red pulp
indicative of an active extramedullary hematopoietic process. (ii) Nonquantitative assessment of the histologic presence of erythroid and myeloid cells. (iii) Variably increased
representation of myeloid cells. (iv) Variable degree of resolution of the neoplastic process and features of dyspoiesis (modest in some samples and muchmore in some others).
(v) Variable restoration of splenic follicular architecture (marginal to modest in some samples and much more in some others). Total numbers of CD411 megakaryocytes (B) or
total numbers of Ter1191 erythrocytes (C) per 1 3 106 cells are shown for BM and spleen. Error bars indicate 1 SD *P , .05; **P , .01; ***P , .001; ****P , .0001. (D-E) Total
numbers of erythroid precursors per 1 3 106 cells are shown for BM (D) and spleen (E). Ter119medCD71high (proerythroblasts), Ter119highCD71high (basophilic erythroblasts),
Ter119highCD71med (late basophilic and polychromatophilic erythroblasts), and Ter119highCD71low (orthochromatophilic erythroblasts) represent the regions R1-R4, respectively.
Statistical analysis was performed with one-way ANOVA with subsequent Bonferroni posttest, and significance is indicated (n$ 10 per genotype). *P, .05; **P, .01;
***P , .001; ****P , .0001.
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The MPN phenotype observed in JAK2V617F transgenic mice is as-
sociated with prominent splenomegaly that increases with age. The
average spleen weight in 8-month-old VavCre; JAK2V617F; Cdk61/1

animals is 15-fold higher than in age-matched WT controls. The
absence of Cdk6 reduces the severity of splenomegaly in JAK2V617F

mutant mice; spleen weights are only marginally enhanced (1.5- or

threefold) in 2- and 8-month-old mice (Figure 1C; supplemental
Figure 1B-D). This indicates that Cdk6 accelerates the myelo-
proliferative neoplastic progression in JAK2V617F mutant mice.

Histopathological evaluation of BM and spleen sections from
JAK2V617F KI mice reveals prominent megakaryocytosis and
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Figure 3. Altered composition of the hematopoietic stem and progenitor cells uponCdk6 ablation in JAK2V617Fmutant BM.Micewere euthanized at 8 weeks of age. (A-D)
Total numbers of HSCs and progenitors per 13 106 BM cells are shown. Error bars indicate1 SD. *P, .05; **P, .01; ***P, .001; ****P, .0001. The group sizes were n$ 10 per
genotype. CMP (common myeloid progenitor), LKS2CD34intCD16/32int; GMP (granulocyte/macrophage progenitor): LKS2CD341CD16/321; LT-HSC, CD1501CD482LSK;
MEP (megakaryocyte/erythroid progenitor): LKS2CD342CD16/322. (E-F) Overview of distribution of HSCs (E) and myeloid progenitors (F) in BM. Chart size corresponds to
absolute numbers of LSK (E) and LKS2 (F) cells in mice of respective genotype.
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megakaryocyte dyspoiesis featuring micromegakaryocytes,
macromegakaryocytes (frequently with foamy vacuolated cyto-
plasm), megakaryocytes with variable nuclear lobation (from
hypolobated to hypersegmented), and megakaryocytes with
multiple nuclei (Figure 2A; supplemental Figure 2A-F). The
sections also reveal an increased proportion of myeloid cells
among the erythroid precursors, although the extents differ.
Pronounced myeloid proliferation reminiscent of myeloid leu-
kemia is evident in some JAK2V617F KI mice. Lymphoid follicles
are frequently obscured by the myeloproliferative neoplastic
process in spleens of JAK2V617F KI mice, whereas follicular ar-
chitecture is normal in the absence of Cdk6 (supplemental
Figure 2E). These features are not evident inWT Jak2micewith or
without Cdk6 (Figure 2A; supplemental Figure 2A-D). Equal
numbers of megakaryocytes are found in the BM of 2-month-old
mice (Figure 2B). Flow cytometry profiling38 revealed enhanced
numbers of late erythroid precursors in young JAK2V617F mutant
mice when Cdk6 is absent (Figure 2C-E).

JAK2V617F-transformed HSCs and progenitor cells
depend on Cdk6 for their fitness
The MPN-initiating cell is in the HSC compartment,39 where the
disease originates, with the JAK2V617F mutation detectable in
HSCs of humanMPN patients.4 Because Cdk6 plays a key part in

activating stem cells under stress,26 we investigated the effects
of Cdk6 on HSC number and function in the presence of the
JAK2V617F mutation, which will induce oncogenic and/or repli-
cative stress. LSK cells in BM of young JAK2V617F mice (2 months
old) are increased, and the proportion is further enhanced in the
absence of Cdk6, although the overall number of cells in the BM
is nearly unaltered (Figure 3A,E; supplemental Figure 3A). We
attribute the change in LSK numbers to the accumulation of
CD1501CD482LSKs (long-term [LT]-HSC) and CD1501CD481

LSKs (short-term [ST]-HSC)40 in the VavCre; JAK2V617F; Cdk62/2

cohort. In accordance with our previous publication,26 the
LT-HSC fraction in JAK2V617F BM was enriched with the most
dormant HSCs (CD1501CD481CD1352CD342 LSK) whenCdk6
was absent (supplemental Figure 3B). The proportion of
CD1502CD481LSKs (MPP) cells40 remained largely unchanged
(Figure 3B,F). Similar alterations were found in the spleens of
2-month-old VavCre; JAK2V617F; Cdk62/2 mice (supplemental
Figure 3C-D,G).

Because JAK2V617F-positive disorders originate from an early
stem cell with multipotent potential (able to differentiate to
the myeloid and lymphoid lineages),41 we examined the mye-
loid progenitor compartment. Young adult VavCre; JAK2V617F;
Cdk62/2 mice accumulate myeloid-primed progenitors (LKS2)
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Figure 4. Altered composition of the myeloid lineages upon Cdk6 ablation in JAK2V617F mutant mice. Mice were euthanized at 8 weeks of age (n $ 10 per
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due to increased proportions of megakaryocyte/erythroid pro-
genitor and in the BM but not in the spleen (Figure 3C-D,F;
supplemental Figure 3E-F,H). Nevertheless, the proportion of
Gr11/Mac11 cells is drastically reduced in the BM (and the
spleen) of JAK2V617F mice without Cdk6 (Figure 4A-C). Similarly,
VavCre; JAK2V617F; Cdk62/2 animals harbor decreased numbers
of monocytes, eosinophils, and neutrophils (in PB only by trend),

as confirmed by colony formation assays (Figure 4D; supple-
mental Figures 4 and 5). The influence ofCdk6 is not restricted to
the myeloid compartment: the lymphoid compartment also has
significantly different B- and T-cell fractions in VavCre; JAK2V617F;
Cdk62/2 mice (Figure 4A-C). The findings are depicted graph-
ically in Figure 3E-F and supplemental Figure 3F-G, in which the
size of the circles indicates the total number of cells in the BM or
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spleen. The results are consistent with the idea that Cdk6 has
tissue- and stage-specific functions in regulating lymphoid and
myeloid differentiation.

The numbers of cells in the BM of 8-month-old VavCre;
JAK2V617F; Cdk62/2 mice were markedly lower than those of their
JAK2V617F counterparts (supplemental Figure 6A). There were
proportionally more LSKs, including LT-HSCs and ST-HSCs, in
the BM and spleen of 32-week-old JAK2V617F mutant mice lacking
Cdk6, and there appeared to be more myeloid precursors (LKS2)
in the BM and spleen (supplemental Figure 6B-C). As in young
animals, the absence of Cdk6 alters the lymphoid/myeloid
lineage (supplemental Figure 6D-F), consistent with a role of
CDK6 in the effects of JAK2V617F on the hematopoietic pool.

To test whether the effects of Cdk6 on JAK2V617F-induced MPN
are cell autonomous, we transplanted total BM cells from VavCre;
JAK2V617F; Cdk61/1 or VavCre; JAK2V617F; Cdk62/2 transgenic
mice into nonirradiated NSG mice. The procedure triggers dis-
ease that depends on the constant replenishment of peripheral
cells by JAK2V617F-positive malignant stem cells. Recipient mice
were sacrificed upon signs of clinical illness. Similar to primary
Cdk6-deficient JAK2V617F mice, recipients of the BM cells from
VavCre; JAK2V617F; Cdk62/2 mice exhibit extended disease la-
tency and have a significant survival benefit. Mice that receive
Cdk6-deficient BM cells without a Jak2 mutation (VavCre;
Jak21/1; Cdk62/2) remain disease free (Figure 5A). This confirms
that CDK6 has effects within the hematopoietic cell compart-
ment. Megakaryocytic abnormalities and myeloid and megakar-
yocytic proliferation are less pronounced in recipients of VavCre;
JAK2V617F; Cdk62/2 BM than in diseased animals transplanted
with VavCre; JAK2V617F; Cdk61/1 BM (Figure 5B; supplemental
Figure 7A), although there is no significant difference in spleen
weight (supplemental Figure 7B). Increased numbers of LT-HSCs
in the spleen (Figure 5C; supplemental Figure 7C) are consistent
with the reduced capacity of Cdk6-deficient JAK2V617F mutant
progenitors to replenish the blood system, although there is no
effect on myeloid precursors (LKS2) (Figure 5D; supplemental
Figure 7D). The effects cannot be explained by an altered
homing capacity of Cdk6-deficient stem cells (Figure 5E).

The data are consistent with a model in which the effects of
Cdk6 on JAK2V617F-inducedMPN are cell autonomous and Cdk6
is required for the JAK2V617F mutation to maintain disease.

CDK6 coordinates NF-kB signaling, apoptosis and
HSC activation in JAK2V617F LSKs
To investigate how Cdk6modulates JAK2V617F-induced MPN, we
compared the messenger RNA (mRNA) profiles of hematopoietic

cells with or without mutations in Jak2 and Cdk6 by RNA se-
quencing using BM-derived LSK cells from 2-month-old mice.
Principal component analysis identified WT Jak2 vs JAK2V617F

as the dominant factor (principal component 1) that explains
50% of the variation (supplemental Figure 8A). The second most
prominent difference was attributed to loss of Cdk6 vs WT Cdk6,
which accounts for 17% of the variation. Cdk6 ablation in the
context of JAK2V617F led to altered levels of .60 protein-coding
transcripts (Figure 6A; supplemental Table 1; supplemental
Figure 8B). We overlaid the list of altered transcripts with gene
sets for bipotentmegakaryocyte/erythroid progenitors, granulocyte/
macrophage progenitors, and common lymphoid progenitors.42

The enrichment of megakaryocyte/erythroid progenitors and
granulocyte/macrophage progenitors genes confirmed the early
myeloid bias of JAK2V617F LSKs in the absence ofCdk6 (Figure 3D;
supplemental Figure 8C). In Cdk6-deficient JAK2V617F mutant
LSKs, competitive GSEA uncovered an enrichment of apoptosis
signatures and TNF-a signaling via NF-kB, which contained pre-
dominantly negative regulators of NF-kB signaling (Figure 6B;
supplemental Figure 8D).

The significant dysregulation of a set of cell-death regulators
in Cdk6-deficient JAK2V617F LSKs, including Btg2,43 Pmaip1
(Noxa),44 Klf6,45,46 and its downstream target Atf3,43,46,47 was
verified by quantitative polymerase chain reaction (Figure 6C).
We also observed a Cdk6-dependent alteration in the expres-
sion of genes regulating NF-kB signaling: Cdk6-deficient LSK
cells displayed a pronounced upregulation of NF-kB inhibitor
zeta (NFkBiz) and of suppressor of cytokine signaling 3 (Socs3),
a negative regulator of JAK/STAT activation and NF-kB signaling,48-51

as well as a downregulation of Prkcb, a protein kinase involved
in activating NF-kB activation and frequently overexpressed in
JAK2V617F1 PV patients52 (Figure 6D). Cdk6 is thus involved
in regulating the levels of circulating inflammatory cytokines
linked to the onset of JAK2V617F-positive MPN. A Luminex-based
profiling is consistent with this conclusion: the levels of IL-6 and
IL-1b, 2 cytokines essential for myeloid lineage output, are sig-
nificantly decreased in JAK2V617F plasma upon Cdk6 deletion
(Figure 6E). These alterations presumably contribute to impaired
myeloproliferation and the reduced myeloid expansion.

The core genes in the GSEA signal “TNF-a signaling via NF-kB”
(supplemental Figure 9A) includemany genes known to regulate
stem cells. Because CDK6 has recently been shown to represent
a transcriptional node that controls stem cell quiescence under
stress conditions,26 we examined the signature genes associated
with CDK6 on a JAK2V617F background, looking for genes that
regulate quiescence and proliferation of HSCs (supplemental
Figure 9B). We found a number of mouse and human tran-
scription factors that are known to be regulated by CDK653-65

Figure 6. CDK6 acts as a central node in apoptotic network, NF-kB signaling, and HSC activation in JAK2V617Fmutant LSKs. (A) Heat map shows differentially expressed
genes from LSKs of indicated genotype (adjusted P# .05; absolute log2-fold changes.1; contrast: VavCre; JAK2V617F; Cdk62/2 vs VavCre; Jak21/1; Cdk61/1). Regularized
log-transformation of count data was used as input for the heat map. For full data set, see supplemental Figure 9B and supplemental Table 1. Color code: red,
upregulation; blue, downregulation. n5 3 per genotype. (B) Gene set enrichment analysis for gene expression signatures of apoptosis and TNF-a signaling via NF-kB in
LSKs of VavCre; JAK2V617F; Cdk62/2 compared with VavCre; JAK2V617F; Cdk61/1. For full data set, see supplemental Figure 8D. Color code: red, upregulation; blue,
downregulation. FDR, false discovery rate; NES, normalized enrichment score. (C-D) Expression of indicated genes was determined by quantitative real time polymerase
chain reaction in LSKs of respective genotype. Relative expression levels were normalized to the housekeeping genes Rplp0 andHprt. Results are presented as means1 SD
(n 5 3 per genotype). One-way ANOVA with subsequent Bonferroni posttest was used, and significance is indicated. *P , .05; **P , .01; ***P , .001; ****P , .0001.
(E) Levels of indicated proinflammatory cytokines were measured in plasma samples of respective genotype. Error bars indicate 1 SD (n $ 5 per genotype). One-way
ANOVA with subsequent Bonferroni posttest was used, and significance is indicated *P, .05. IFN, interferon; N/A, not detected. (F) Bubble plot showing relative mRNA
levels for indicated genes determined by quantitative real time polymerase chain reaction in LSKs (n5 3 per genotype). Relative expression levels were normalized to the
housekeeping genes Rplp0 and Hprt. Circled area corresponds to relative expression. Significance is indicated in supplemental Figure 9C.
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(Figure 6F; supplemental Figures 9C and 10), which binds to their
chromatin.25,66 This gene set includes the quiescence-inducer
Egr126 (supplemental Table 2). When serially passaging BM
cells in methylcellulose containing myeloid/erythroid-promoting
cytokines (IL-3, IL-6, stem cell factor, and erythropoietin), we
noticed that VavCre; JAK2V617F; Cdk62 /2–derived BM cells
have a decreased replating capacity (Figure 7A; supplemen-
tal Figure 11A-B). This is consistent with the accumulation of
dormant HSCs and the elevated expression of inducers of
quiescence. The higher replating capacity of VavCre; JAK2V617F;
Cdk61/1 BM is not only a consequence of increased LT-HSC
proliferation (supplemental Figure 11C) but also associated
with a greater accumulation of annexin V1 apoptotic cells inCdk6-
deficient JAK2V617F LSKs, but not in total BM (Figure 7B; sup-
plemental Figure 11D-E).

The CDK6-dependent alterations were confirmed in the human
JAK2V617F HEL cell line. Knockdown of CDK6 enhanced apo-
ptosis, as evidenced by increased poly(ADP-ribose)polymerase
cleavage and elevated levels of the cell-death inducer BTG2
(supplemental Figure 12A-C). Moreover, CDK6 knockdown in-
creases the levels of quiescence regulators and NFkBiz (sup-
plemental Figure 12C). Exposure to IMD-0354, a potent inhibitor
of NF-kB,67 induces apoptosis more potently upon CDK6
knockdown (supplemental Figure 12D).

The effects of CDK6 in JAK2V617F LSKs do not
depend on its kinase activity
The CDK6 kinase is known to regulate the transcription of
a number of genes and to have functions that are either de-
pendent on or independent of its kinase activity. To evaluate the
contribution of the CDK6 kinase activity to JAK2V617F-induced
MPN, we examined the effects on mRNA expression profiles
of LSKs from JAK2V617F KI mice treated with the CDK4/6 kinase
inhibitor palbociclib (trade name IBRANCE; Pfizer) (supplemental
Figure 13A). CDK6 kinase inhibition led to the dysregulation
of .20 protein-coding transcripts, but apart from Socs3, the sig-
nature genes implicated in NF-kB activation, regulation of cell
death, and activation of HSCs were not affected (Figure 7C; sup-
plemental Figure 13B). Similarly, theGSEA signals “TNF-a signaling
via NF-kB” and “apoptosis signatures” were not altered by
palbociclib-treated JAK2V617F LSKs (Figure 7D; supplemental
Figure 13C). The results show that the effects of CDK6 in LSKs are
largely independent of its kinase activity. Our conclusion is sup-
ported by studies on primary mononuclear cells from the BM of
JAK2V617F-positive MPN patients. Although palbociclib blocked
cell-cycle progression of the bulk of MPN cells, treatment does not
induce apoptosis of disease-initiating JAK2V617F-positive
CD341CD382CD45dim stem/progenitor cells (Figure 7E; supple-
mental Figure 14) and has no consistent effect on allelic burden

(Figure 7F). The antiapoptotic function of CDK6 in the hemato-
poietic cell compartment of human MPN patients is thus at least
predominantly kinase independent.

Discussion
MPNs are stem cell–derived clonal myeloidmalignancies with an
unsatisfactory outcome. Following the discovery of dysregulated
JAK/STAT signaling in patients with MPN, significant efforts
have been directed toward the development of molecularly
targeted therapies. The dual JAK1/2 kinase inhibitor ruxolitinib
has been approved for the treatment of patients with intermediate-
or high-risk myelofibrosis and PV who are resistant to hydroxy-
urea. Despite substantial benefits to patients, JAK inhibitors
are not curative and usually have little if any effect on the mu-
tational burden of MPN patients.

We have examined the contribution of CDK6 to the develop-
ment of MPN using conditional JAK2V617F KI and Cdk6-deficient
mice. We show that CDK6 has a crucial function in JAK2V617F-
induced MPN progression and maintenance: the absence of Cdk6
results in a significant and lasting reduction of splenomegaly,
improves disease-related symptoms, and delays persistence asso-
ciated with the JAK2V617F mutation. The phenotype is reproduced
by BM transplantation and is associated with changes in gene
expression within the LSK compartment. CDK6 is a central signaling
node that connects cell-cycle control, NF-kB–dependent inflam-
mation, apoptosis, and malignant stem-cell function.

HSC homeostasis requires the tight regulation of cell pro-
liferation and self-renewal to ensure the maintenance of repop-
ulation capacity. CDK6 contributes to JAK2V617F-positiveMPNby
regulating the number and function of HSCs. JAK2V617F-driven
stem-cell homeostasis requires Cdk6; in the absence of Cdk6,
there is an increased proportion of LSK/SLAM cells, which
contains the most quiescent HSC fractions, and a reduced
number of peripheral cells. This indicates a road block and is
parallel to the case of stress-induced hematopoiesis. CDK6 is
required for stem cell activation, cell-cycle entry, and self-
renewal under conditions of stress.26,28 Although CDK6 is of minor
importance under steady-state conditions, under situations
of stress, the suppression of the quiescence-inducer Egr1 by
CDK6 is necessary for murine dormant HSCs to exit G0.26 Our
data extend these findings to JAK2V617F malignant stem cells
and identify additional transcriptional targets of Cdk6 in this
setting. The transcriptional network regulated by CDK6 enables
JAK2V617F hematopoietic stem and progenitor cells to maintain
disease efficiently and to avoid apoptosis.

In our study, we failed to detect differences in the cell cycle of
LSKs among the genotypes; Chen et al68 found that JAK2V617F

Figure 7 (continued) posttest was used, and significance is indicated. *P , .05. EPO, erythropoietin; SCF, stem cell factor. (B) Representative histograms showing annexin V
positivity of LSK cells in BM of indicated genotype. (C) Heat map depicts expression of validated signature genes involved in apoptosis, NF-kB signaling, and stem cell
quiescence in LSKs. Regularized log-transformation of count data was used as input for the heat map. Color code: red, upregulation; blue, downregulation. Mean of 3 replicates
is depicted. For full data set, see supplemental Figure 13A. (D) Overview of gene set enrichment analysis in indicated contrasts. The Hallmark Gene Set Collection was used as
reference. False discovery rate ,0.25 was considered significant. no: gene sets only enriched in VavCre; JAK2V617F; Cdk62/2 vs VavCre; JAK2V617F; Cdk61/1; Yes, gene sets
enriched in both VavCre; JAK2V617F; Cdk62/2 vs VavCre; JAK2V617F; Cdk61/1 and VavCre; JAK2V617F; Cdk61/1 palbociclib vs untreated. (E) Primary mononuclear cells were exposed
to increasing concentrations of palbociclib or dimethyl sulfoxide (DMSO) for 48 hours. Apoptosis was evaluated by labeling primary CD341CD382CD45dim stem/progenitor cells
with annexin V and 49,6-diamidino-2-phenylindole (DAPI) followedby flow cytometry analysis. (F) Primary patient samples (1.23 105) were embedded inmethocult with or without
palbociclib. Colonies were picked at days 13 to 15, and allele-specific polymerase chain reaction was performed. Allelic burden is presented as % JAK2V617F1/2 colonies vs
total colony number DMSO control or palbociclib treated. DN, down; TGF, transforming growth factor; TNFA, tumor necrosis factor-a.
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LSKs contain more proliferating cells, whereas Mullally et al69

showed an unaltered cell-cycle distribution of JAK2V617F LSKs.
These discrepancies may be explained by the use of different
JAK2V617F KI models or of assays differing in sensitivity. In our
model, we find an increased fraction of dividing cells within the
JAK2V617F LT-HSCs.

There is support in the literature for the concept that CDK6 reg-
ulates apoptosis. In cyclin D3-CDK6–high human tumors, CDK6
inhibits the glycolytic enzymes PFK1 and PKM2 to prevent apo-
ptosis of T-cell acute lymphoblastic leukemia cells.70 Similarly,
CDK6 facilitates the survival of FLT3-ITD1 acute myeloid leukemia
cells.27 Our data reveal a newmechanismbywhich CDK6 interferes
with apoptosis: in JAK2V617F; Cdk62/2 hematopoietic progenitors,
the transcription of the cell-death inducer Klf6, and its mediator
Atf3 as well as Btg2, a NF-kB–responsive gene, and Pmaip1, a
p53-inducible antiproliferative gene, is significantly enhanced.

MPN is characterized by a chronic state of inflammation. Plasma
levels of inflammatory cytokines (eg, IL-1, IL-2, IL-6, IL-8, IL-12,
TNF-a, and interferon-g) are increased and linked to an adverse
outcome. NF-kB is a master regulator of inflammation and is
constitutively active in malignant and nonmalignant hematopoi-
etic cells inmousemodels ofMPN.7 CDK6 interacts physically and
functionally with the NF-kB subunit p65; the complex is found at
the promoters of transcriptionally active NF-kB target genes.8,25

We now add another layer of complexity: in the context of
JAK2V617F, Cdk6 promotes NF-kB signaling by suppressing tran-
scription of genes such as NFkbiz, Socs3, Nr4a1/2, Egr1, Klf4,
Klf6, and Atf3 that encode inhibitors of NF-kB signaling.49,50,71-76

The tight control of the NF-kB pathway is thus relaxed, promoting
inflammation. We propose that this represents one of the mech-
anisms by which CDK6 interferes with MPN progression.

Inflammatory responses involve cytokines that target the he-
matopoietic hierarchy at multiple levels. Although interferons
or TNFs act on HSCs,77-79 IL-6 acts on MPPs and promotes
the production of myeloid cells while reducing the output of
the lymphoid lineage.80,81 In a transgenic Bcr/Abl mouse model,
IL-6–producing myeloid cells create a pathogenic feed-forward
loop where normal and transformed MPPs produce IL-6, which
stimulates the production of more myeloid cells.80 Similarly, IL-1
and IL-17 exert myelopoietic effects, although they act on different
target cells.82,83 Because IL-1b and IL-6 rely on a CDK6/NF-kB axis
in the context of the JAK2V617Fmutation, we speculate that the lack
of this interaction prevents the expansion of maturing Gr11/Mac11

myeloid cells as well as monocytes, eosinophils, and neutrophils in
JAK2V617F-positive animals that lack Cdk6. The notion is consistent
with the rapid clinical benefits upon administration of IL-1Ra, an
antibody-based inhibitor of the receptor bound by the proin-
flammatory IL-1b.84 Our findings provide a rationale for the ther-
apeutic evaluation of CDK6 shutdown in MPN.

When CDK6 was initially found to regulate transcription, it
was initially believed that its transcriptional function was inde-
pendent of its kinase activity.24,26 Subsequent work revealed that
CDK6 also controls the transcription of some genes in a manner
that requires its kinase activity.11,27 In the context of the JAK2V617F

mutation, CDK6 kinase activity does not contribute to its functions
in NF-kB activation, induction of cell death, and HSC kinetics: the
proapoptotic effects of loss of the CDK6 protein is not mimicked
by palbociclib treatment in primary stem cells fromMPN patients.

In summary, our data reveal a critical role for CDK6 in co-
ordinating the activation of HSCs, in promoting prosurvival
signals, and in enhancing inflammatory responses in JAK2V617F-
mediated MPN, at least partially by direct transcriptional reg-
ulation of key genes involved in these processes. CDK6 thereby
functions in a manner that is independent of its kinase activity.
Our work indicates that fine-tuning of the level of CDK6 could
potentially improve the quality of life of MPN patients and thus
provides a rationale for the therapeutic use of CDK6-specific
degraders based on proteolysis-targeting chimeras.
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