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We now have the potential to undertake detailed anal-
ysis of the inner workings of thousands of cancer cells,
one cell at a time, through the emergence of a range of
techniques that probe the genome, transcriptome, and
proteome combined with the development of bio-
informatics pipelines that enable their interpretation.
This provides an unprecedented opportunity to better
understand the heterogeneity of chronic lymphocytic

leukemia and how mutations, activation states, and pro-
tein expression at the single-cell level have an impact on
disease course, response to treatment, and outcomes.
Herein, we review the emerging application of these new
techniques to chronic lymphocytic leukemia and examine
the insights already attained through this transformative
technology. (Blood. 2019;133(13):1446-1456)

Introduction
A defining feature of chronic lymphocytic leukemia (CLL) is its
vast clinical variability. Although we have gained important
understanding of the differences in disease behavior through the
use of prognostic schema based on the Rai and Binet classifi-
cation systems,1,2 immunoglobulin heavy chain variable (IGHV)
region mutational status,3-5 and cytogenetic analyses,6 we still
have incomplete knowledge of the underlying biologic features
that contribute to the tempo of disease, sensitivity, and response
to therapy, and to disease progression and relapse.

CLL has consistently been at the forefront of genomic charac-
terization, with massively parallel sequencing studies of CLL first
reported in 2011.7-9 Since then, a growing series of studies using
sequencing-based technologies have provided us with a new
appreciation of the underlying genetic complexity of this dis-
ease. To date, hundreds of CLL samples have been subjected to
genomic sequencing and analysis, collectively trailblazing the
path to discovery of novel CLL driver mutations, detection of
clonal evolution, and defined transcriptional and epigenomic
signatures.7-14 CLL has been particularly well-suited to this ap-
proach because large numbers of pure malignant cells can be
readily procured via venipuncture. Moreover, because of the
typically indolent course of this disease (characterized by long
periods of observation punctuated with treatment), longitudinal
sample collection from individual patients is feasible. Until now,
the vast majority of these landmark genomic discoveries have
been based on the analysis of bulk leukemia but, by definition,
this approach averages data from an entire population of po-
tentially heterogeneous individual cells. Hence, important aspects
of disease biology can be lost. Single-cell approaches for the
study of the genome, transcriptome, or proteome therefore
provide an opportunity to study malignant disease at a reso-
lution not possible with bulk analysis.

For CLL, an appreciation of the clinical and biologic insights that
can be gained from single-cell analysis has been longstanding.
Indeed, single-cell approaches such as karyotyping and fluores-
cence in situ hybridization (FISH) have been established since
the 1960s and remain in routine clinical use.6 Flow cytometry,
another single-cell approach and a workhorse of modern clinical
laboratories, is routinely used for diagnosis and provides useful
prognostic information through assessment of CD38,3 CD49d,15

and ZAP70.16 It also enables response monitoring, including
detection of minimal residual disease at high sensitivity, which is
important because of its association with inferior outcomes.17-19

The development of higher-dimensional single-cell techniques,
especially sequencing-based approaches, now provides the
ability to broadly interrogate a larger number of variables, creating
new and unprecedented opportunities for in-depth study of the
unique aspects of individual cell biology. Although these tech-
nologies are transformative (extensively reviewed elsewhere20-28),
until recently, they were technically laborious, which limited
analyses to tens or up to a few hundred single cells. However,
recent advances in molecular biology, microfluidics, and
droplet-based technologies combined with a rapidly expanding
arsenal of techniques with automated workflows and data
analysis have now created the opportunity to feasibly char-
acterize tens of thousands of cells from individual samples. For
CLL, application of this new emerging technology promises to
provide the next major step forward in our understanding of
this biologically heterogeneous disease.

Application and considerations of
single-cell technology in CLL
A prerequisite for single-cell analysis is the generation of a sin-
gle-cell suspension, which is relatively straightforward for CLL
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because suspension cells can readily be accessed from blood
and marrow by venipuncture and marrow biopsy. CLL also
commonly exists in the lymph node, which can be sampled by
biopsy and from which single cells can be obtained through
standard tissue disaggregation techniques (Figure 1). To
date, most studies of CLL have focused on circulating leu-
kemic cells because of the ease of access of this tissue from
blood. However, bulk analysis has revealed differences in
CLL gene expression between blood and lymphoid tissues,
especially related to B-cell receptor signaling and phos-
phorylation of downstream targets,29,30 which can be further
dissected at the single-cell level. Of potentially equal interest
is the parallel assessment of the supporting nonleukemic
cells within these tissue compartments, given the potent
prosurvival signals they provide to CLL.31-34 Thus, further
advances in understanding CLL disease biology can be
gained by assessing both the closely apposed leukemic and
nontumor cells from within any of the 3 hemato-lymphoid
compartments (Figure 1).

After a single-cell suspension is generated, individual cells can
be analyzed with established techniques, such as karyotypic
analysis, FISH, and flow cytometry, or a variety of emerging
technologies that probe the genome and epigenome (including
methylation and chromatin assembly). Other transcriptome-
wide assessment techniques include evaluation of miRNA35 and
lncRNA36,37 species that have important roles in CLL biology.
Recent work has demonstrated the ability to assess the single-
cell proteome at higher resolution through mass cytometry38 or
oligonucleotide-tagged antibodies39 that can detect 40 to 80
antigens per cell, respectively (Figure 1).

The currently available single-cell techniques have a spec-
trum of characteristics that makes some of them better suited
for discovery and others better suited for validation (Figure 2).
Discovery-based approaches, such as whole-genome se-
quencing (WGS), whole-exome sequencing (WES), and whole
transcriptome sequencing (RNA-seq), capture information on
a global level. Although this has the potential to be unbiased
by aiming to sequence all of the DNA or messenger RNA
(mRNA) contained within a cell, the minute amount of starting
material (a few picograms of DNA or RNA) necessitates
amplification steps that can result in bias, low coverage, and
introduction of errors.20 Of particular importance is the
concept of dropouts in which DNA sequences and/or mRNA
transcripts are not reliably detected, which cannot be overcome
by increasing the sequencing depth because this provides limited
additional information.40 Single-cell data also suffer from higher
levels of technical and biological noise, with lower and more
variable detection compared with bulk approaches because
of the inherent differences in individual cells, especially at the
transcript level. Furthermore, to detect significant differences
between individual cells, larger numbers of cells need to be ana-
lyzed. Although this is now possible by using droplet-based
techniques, care has to be taken to minimize doublets and
triplets, which have the potential to skew results.

In general, the large amount of data generated per cell multi-
plied by the total number of cells analyzed yields highly complex
data, which require concerted bioinformatic analysis to fully
resolve.41,42 By contrast, targeted approaches interrogate pre-
determined loci of interest and thus focus on fewer variables,
which enables higher sensitivity and facilitates the analysis of
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Figure 1. Application of single-cell technology to CLL.CLL is present within blood, lymph nodes, and bonemarrow where it coexists with a range of immune and stromal cells
that are central to disease pathogenesis. Analysis of CLL may focus uniquely on leukemia cells, supporting cells, or both from all 3 distinct tissue compartments. A range of
established and developing single-cell techniques characterizing the genome, transcriptome, and proteome have been developed to allow enhanced appreciation of CLL
biology. Ab, antibody; lncRNA, long non-coding RNA; miRNA, microRNA; NK, natural killer; scRRBS, single-cell reduced representation bisulfite sequencing; seq, sequencing;
WES, whole-exome sequencing; WGS, whole-genome sequencing.

SINGLE CELL IN CLL blood® 28 MARCH 2019 | VOLUME 133, NUMBER 13 1447

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/133/13/1446/1556964/blood835389.pdf by guest on 18 M

ay 2024



larger numbers of patient samples (and thereby provides greater
statistical confidence). An appreciation of these differences and
consequent advantages and disadvantages is important not only
when selecting the single-cell technique to be used but also
when analyzing the subsequent data output.

Application of single-cell analyses to CLL
Increasing numbers of studies have begun to explore the ge-
nomic, epigenetic, and transcriptional landscape in CLL at
a single-cell level, as summarized in Table 1. Herein we highlight
the insights they have provided.

DNA-based interrogation
Recent large-scale bulk genomic sequencing of CLL cells has
been revolutionary in the identification of driver mutations such as
within SF3B1 and NOTCH1,7-9,43 while consequently allowing
investigation of their downstream functional significance.44-46

Collectively, these studies have generated a compendium of
CLL-associated somatic copy number alterations (sCNAs)
and somatic single nucleotide variants (sSNVs). More re-
cently analysis of circulating tumor DNA provides the op-
portunity to identify mutations in both circulating CLL cells
and the tumor microenvironment.47 With these approaches,
although it is possible to computationally estimate the cancer
cell fraction of these alterations10,48 (ie, the proportion of cells

within a population carrying that mutation), these bulk analyses
cannot directly distinguish the exact clonal architecture of the cell
population, nor can they dissect whether mutations either track
together or represent unique parallel progeny events (Figure 3A).

To address this, Zhao et al49 applied single-cell WGS to a total of
116 CLL cells across 2 time points, which were individually
isolated into polymerase chain reaction (PCR) tubes and sub-
jected to DNA amplification using multiple displacement am-
plification. sCNAs were identified at the single-cell level that
matched bulk single nucleotide polymorphism analysis, but
through single-cell analysis, it was possible to define how sCNAs
across the entire genome segregated. They demonstrated that
even at the earliest time point, sCNAs were distributed across 5
unique subclones, and after therapy, the emergence of trisomy
12 was restricted to a single subclone.49 However, although
single-cell WGS could reliably detect sCNA events, detection of
sSNVs was limited because of its generally lower coverage. This
study was further limited to a detailed analysis of cells from
a single patient, suggesting that strategies to increase throughput
(ie, using droplet-based technologies) and to increase resolution
will be needed to ensure their greater utility for dissecting clonal
architecture in larger numbers of patients.

In contrast to single-cell WGS and/or WES, several studies have
evaluated the coexpression of CLL-associated mutated events
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Figure 2. Overview of single-cell–based discovery vs vali-
dation approaches. Single-cell approaches such asWGSorWES
and single-cell RNA sequencing (scRNAseq) aim to capture in-
formation across several parameters and to yield an unbiased
global assessment of the genome and transcriptome; hence,
they are suitable for discovery. Because of the relatively high cost
of generating these complex data, a typical study design focuses
these assays on relatively few samples composed of a limited
number of single cells. Conversely, targeted approaches use
defined primers or antibodies to screen a limited number of
parameters but with high sensitivity and statistical confidence.
These assays have typically been used as a validation approach,
which has the advantage of assessing many more independent
patient samples. qPCR, quantitative polymerase chain reaction;
scWGS, single-cell WGS.
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through targeted assays applied to single CLL cells.50,51 In 1
study, Wang et al50 designed a multiplex PCR assay based on
prior bulk sequencing results that analyzed up to 201 ampli-
cons per cell. By using this method, 1152 cells from 5 patients
were analyzed, generating precise subclonal architectures
based on both sCNA and sSNV aberrations. For example, in 1
patient, 2 distinct subclones resulting in inactivation of TP53
were identified: 1 as a result of a 17p deletion and the other as
a result of an inactivating mutation (Figure 3B). This is an ex-
ample of convergent evolution, which was also seen in other
patients and has been described in other cancers.52,53 By
generating more complete and accurate phylogenetic trees,
the authors were also able to identify subclones lacking clear
driver mutations, and they used their approach to validate the
impact of novel mutations in WNK1 and LCP1 on cancer-
driving functions.50

Methylation, chromatin assembly,54 and histone modification14

are key epigenetic mediators of biology; bulk assessment by
dense array technology reveals global hypomethylation with

distinct areas of hypermethylation in CLL compared with
normal B cells.55-57 Applying reduced representation bisulfite
sequencing (RRBS) to CLL revealed high levels of disordered
methylation as measured by the proportion of discordant reads
(PDR), which itself has been linked to the presence of subclonal
driver mutations and adverse outcomes.13 In 1 study, single-cell
RRBS demonstrated that CLL cells have more uniform PDR
compared with normal B cells that showmuch greater cell-to-cell
variation. Thus, PDR may function as a molecular clock, with
uniformly high PDR reflecting multiple divisions of a CLL pre-
cursor cell, whereas variable PDR in nonmalignant B cells reflect
the admixture of naı̈ve andmemory B cells of various ages.58 This
group also used single-cell RRBS to reconstruct the phylogenetic
relationships between CLL cells. The subsequent lineage trees
show early branching in contrast to normal B cells, consistent
with rapid evolutionary drift after initial malignant transformation
in CLL.59 They also demonstrated linkage between single-cell
transcriptional profiles and the underlying methylome, with
transcriptional similarity between cells decreasing with increasing
phylogenetic distance.59

Table 1. Summary of single-cell studies in CLL

Reference Sample input Methodology Insight

Zhao et al49 116 CLL cells from 2 time points Whole-genome DNA amplification in
individual PCR tubes

sCNA identified and subclonal
architecture determined

Wang et al50 1152 CLL cells from 5 patients Plate-based targeted multiplex PCR assay
following whole-genome amplification

sCNA and sSNV identified and subclonal
architecture determined

Landau et al58 393 CD191 B cells from 2 healthy donors
and 111 CLL cells from 1 patient

Multiplexed scRRBS Uniformly high proportion of discordant
reads in CLL cells compared with
normal B cells

Chaligne et al59 383 CD191 B cells from 4 healthy donors
and 324 CLL cells from 3 patients

Multiplexed scRRBS Epigenetic phylogenetic tree
reconstruction

Chaligne et al59 42 CLL cells Multiplexed scRRBS and scRNA
sequencing

Increasing phylogenetic distance
correlates with decreasing
transcriptional similarity

Zhao et al49 362 CLL cells from 5 time points (35-126
cells per time point)

Plate-based Smart-Seq2 scRNA
sequencing

Identification of 6 transcriptional clusters
and their evolution over time and with
treatment

Wang et al50 289 CLL cells from 4 patients Fluidigm C1 System Smart-Seq scRNA
sequencing

Using pathway and gene set
overdispersion analysis identified
unique biological processes
demonstrating transcriptional
heterogeneity

Wang et al44 845 CLL cells from 6 patients Plate-based targeted qPCR using Fluidigm
BioMark

Single-cell correlation of alternative
splicing variants with SF3B1mutational
status

Landau et al13 310 CLL cells from 4 patients Fluidigm C1 System Smart-Seq scRNA
sequencing

Correlational of single-cell transcriptional
heterogeneity with methylation data

Burger et al12 473 cells from 3 time points Plate-based targeted qPCR using Fluidigm
BioMark

Mutation detection to determine
subclonal architecture

Burger et al12 Polydimethylsiloxane microfluidic device
and targeted qPCR

High-sensitivity mutation detection,
including demonstration of the
presence of rare resistant cells before
ibrutinib initiation

PCR, polymerase chain reaction; qPCR, quantitative PCR; sCNA, somatic copy number alteration; scRNA, single-cell RNA; scRRBS, single-cell reduced representation bisulfite
sequencing; sSNV, somatic single nucleotide variant.
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More recently, Beekman et al14 performed a global assess-
ment of the CLL epigenome, including methylation, chromatin
assembly, and histone modification status. This work revealed
that CLL cells show similarities in chromatin assembly with
multiple stages of differentiating B cells (from naı̈ve to plasma
cells), such that unmutated IGHV CLL cells show features of
proliferating germinal center (GC) B cells despite their cell-of-
origin being pre-GC. In addition, by linking DNA mutations to
the epigenome, they demonstrated that mutated MYD88 and
trisomy 12 CLL represent distinct molecular subgroups based
on chromatin activity and accessibility.14 The application of
single-cell techniques such as single-cell assay for transposase-
accessible chromatin sequencing (scATAC-seq)60,61 and single-
cell chromatin immune-precipitation sequencing62 to further
dissect these various facets of CLL can provide additional
context to our understanding of the bulk CLL epigenome. For
example, scATAC-seq, as applied to acute myeloid leukemia,
has uncovered the intriguing expression of multiple, normally
distinct regulatory programs in single cells.63

Transcriptomic analysis
Bulk transcriptomic studies using microarrays or via tran-
scriptome sequencing have demonstrated that thousands of

genes are differentially expressed between normal B cells and
CLL cells. These studies have led to the search for unique tran-
scriptional signatures of CLL as well as discriminating antigens.64,65

For example, 1 study identified that gene expression associated
with poor prognosis was enriched for transcripts involved in BCR
signaling similar to that seen in CLL lymph nodes, despite cells
being isolated from the peripheral blood.29 Furthermore, al-
though both mutated and unmutated IGHV CLL are associated
with differing cells of origin,3,4 DNA mutations,66 and epigenetic
profiles,56 bulk transcriptional profiles have revealed considerable
overlap of these subtypes. Altogether, these collective studies
suggest that a single-cell approach may be needed to identify
transcriptionally defined subpopulations (Figure 3A).

A range of methodologies has been developed to capture
the global transcriptional profiles of single cells, and we direct
readers to previous comprehensive reviews22,40,67 for more in-
formation. Briefly, techniques that analyze full-length transcripts
provide more reliable information about isoforms, splicing
events, and SNVs, but they require processing as separate
single-cell libraries for a greater number of steps than tag-based
methods, which reduces throughput and increases the relative
costs. In comparison, tag-based methods incorporate specific
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Figure 3. Novel insights into CLL based on single-cell anal-
ysis. (A) Bulk analysis of heterogeneous tumor samples, in-
cluding those admixed with immune and stromal cells, provides
useful global gene expression data but results in loss of gran-
ularity. Single-cell approaches allow analysis within individual
cells as well as in similar cell populations that have clustered to
identify unique signatures, cellular processes, networks, and rare
cell populations, which provides higher resolution biological
insights. (B) Single-cell mutational analysis can yield detailed
phylogenetic trees to identify which mutations occur in specific
unique subclones and which track together. In this example,
multiple sCNA and sSNV were interrogated by using targeted
sequencing to establish the underlying clonal architecture of the
leukemia. This demonstrated convergent loss of TP53 with 17p
deletion in 1 subclone and TP53 mutation in another, which
was further corroborated by conventional FISH analysis by
Wang et al.50
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oligonucleotides that can include both unique cell barcodes
and unique molecular identifiers, which enable increased
multiplexing, earlier pooling of libraries, and reduced costs per
cell. Furthermore, tag-based methods provide more accurate
estimation of transcript abundance because of the inclusion of
the unique molecular identifiers, but they sequence only
a small portion of each transcript.

Zhao et al49 used a plate-based Smart-Seq2 protocol68,69 that
captures full-length transcript data to investigate the transcrip-
tional signatures of 362 CLL cells across 5 time points spanning
18 years and consisting of 35 to 126 cells per time point in
a single patient. Through hierarchical clustering and principal
component analysis, cells could be divided into 6 unique clusters,
which varied over time and therapy. Interestingly, the pre-
dominant cluster at the earliest time point, which was enriched
for MAPK4, ERBB4, and PDGFRA1 transcripts, diminished with
disease progression but re-expanded when the patient was in
a partial remission after a splenectomy 16 years later. A separate
study that assessed global transcriptional profiles of 289 single
CLL cells from 4 patients identified differences in biological
processes, including cell cycle and immune responses, which
corroborated corresponding DNA mutational signatures and
also identified deregulation of genes involved with phospholipid
binding and protein folding, facets of CLL biology that were
previously unappreciated.50

As an adjunct to transcriptome-wide profiling at the single-cell
level, targeted single-cell reverse transcription PCR–based
analysis can provide consistent information about transcripts that
is not reliably captured by whole transcriptome studies and can
also enable increased throughput. Wang et al44 demonstrated
the ability to detect mutations in SF3B1 in single cells and also
used primers for genes known to be differentially spliced as
a result of the K700E mutation to confirm aberrant splicing at the
single-cell level. This aberrant single-cell splicing was seen for 4
of 5 SF3B1 mutations (E622D, K666Q, K700E, G742D) but not
Q903R, which is localized outside the mutation-rich hotspot
region of SF3B1. The results highlighted that, although SF3B1
mutations give rise to disordered splicing, the exact gene targets
seem to be mutation dependent.

The cellular transcriptional state of CLL cells can also be affected
by epigenetic mechanisms. Landau et al13 previously analyzed
the relationship between promoter methylation PDR and the
subsequent transcriptional profile; high PDR were associated
with lower but more variable gene expression. Through single-
cell analysis, it was apparent that genes with promoters exhib-
iting high PDR tended to be expressed in larger numbers of cells
at lower levels, whereas genes with promoters exhibiting low
PDR tended to be expressed in smaller numbers of cells but at
a higher expression magnitude. This analysis thus provided in-
sight into the impact of locally disorderedmethylation on cell-to-
cell transcriptional variability.

An important question in defining the clonal evolution of CLL is
whether mutations arise in response to pressure induced by
therapy or whether a small clone of resistant cells is present at
the outset of the disease and these resistant cells gain a growth
advantage in response to therapy. Burger et al12 examined clonal
architecture and evolution in response to chemoimmunotherapy
and to the irreversible Bruton tyrosine kinase (BTK) inhibitor

ibrutinib by assessing single cells at the complementary DNA
level. This approach is more sensitive than previous methods
that analyzed genomic DNA because there are many more RNA
molecules than DNA molecules per cell. In 1 patient, exposure
to fludarabine, cyclophosphamide, and rituximab led to the
eradication of a major subclone harboring an SF3B1 mutation,
whereas ibrutinib therapy at a subsequent relapse led to the
emergence and expansion of 4 distinct mutations in the down-
stream target of BTK, PLCg2, which is thought to contribute to
ibrutinib resistance.70-72 Although bulk sequencing could iden-
tify these mutations on treatment, only single-cell sequencing
could demonstrate that these 4 mutations were present in
mutually exclusive distinct subclones. In addition, a sensitive
targeted approach that harnessed high-throughput droplet
microfluidics was used to directly identify rare individual cells
bearing resistance-associated mutations in pretreatment sam-
ples,12 which supported earlier predictions that resistant cells are
present before treatment is initiated.73

This approach relied on a two-stage design. In the first stage,
individual cells were encapsulated in droplets, allele-specific
quantitative PCR was performed with a fluorescent probe in
each droplet, and the number of mutant cells was determined by
counting the number of fluorescent droplets. This stage ach-
ieved detection at a level of 1 in 1000 cells. For the second stage,
the allele-specific PCR was performed by using a larger number
of encapsulated cells, the emulsion was broken, and the total
amount of amplicon was quantified by digital PCR. This quan-
tification was related back to cellular concentration by com-
paring to a standard curve prepared by spiking a known number
of mutant cells into a normal cell background. By using this
second approach, the authors were able to detect a PLCG2-
M1141R mutation that was present before ibrutinib was initiated
at a frequency of 1 in 500 000 cells (0.0002%), which confirmed
the hypothesis that a minuscule number of resistant clones are
present at the outset of the disease. These data highlight the
evolutionary capacity of leukemia cells and provide an un-
derstanding of the mechanics that underlie the kinetics of re-
lapse after the strong selective pressure imposed by targeted
inhibitor therapy.

Using single-cell RNA sequencing to study a range of physio-
logical and pathological disease processes within hematology
has provided a better understanding of normal hematopoiesis25

as well as better characterization of acute myeloid leukemia and
chronic myeloid leukemia stem cells,74,75 circulating and relapsed
plasma cells,76,77 megakaryocyte differentiation in myelofibrosis78

and therapy-resistant minimal residual disease–positive acute
lymphoblastic leukemia cells.79 Furthermore, a recent study by
Milpied et al80 characterized GC B cells at single-cell resolution,
integrating phenotypic, genetic, and transcriptomic analyses
to demonstrate that follicular lymphoma B cells are not tran-
scriptionally arrested in a GC B-cell state but have their own
unique transcriptional signature. Similar investigations of
CLL, which build upon the insights made thus far (summarized
in Table 1), will undoubtedly reveal nuances of CLL biology in
its natural environment.

Investigating accessory cells in CLL
It has long been acknowledged that CLL (and indeed the
other B-cell malignancies) have close interactions with the
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microenvironment. Given the heterogeneity of immune cell
populations, single-cell analysis provides advantages over
conventional bulk approaches and is highly relevant because the
tumor microenvironment is critical to the pathogenesis of CLL
and other lymphoproliferative disorders. For example, bulk gene
expression studies of follicular lymphoma demonstrate that the
gene signature of the infiltrating immune cells is a key de-
terminant of outcomes.81 In addition to this, we are in the midst
of an immunotherapy revolution with the increasing use of
checkpoint inhibition,82 chimeric antigen receptor (CAR) T-cell
therapy,83,84 bispecific T-cell engaging antibodies,85 and cancer
vaccines.86 Information from these immunotherapy studies is
highly relevant for CLL because CLL is characterized by T-cell
dysfunction, increased levels of exhaustion markers, abnormal
immunologic synapse formation, reduced proliferation, and
muted cytotoxicity.87-89 Indeed, insights to be gained from
single-cell analysis have the potential to shed light on the basis
of the poor responses seen in CLL in response to checkpoint
inhibitors82 and lower responses to CAR T-cell therapy com-
pared with acute lymphoblastic leukemia.90 A better under-
standing of the factors that modulate the immune system at a
single-cell level is therefore timely for developing rational thera-
peutics and synergistic combinational strategies.

Flow cytometry has been used extensively over the years for
characterizing the immune landscape in CLL as well as defining
their functional states. For example, these studies have revealed
CLL to have increased circulating FoxP31 T regulatory cells,91

skewed proportion of Th17 cells,92 dysregulated natural killer
cells,93 and increased levels of nonclassical monocytes.94 More
recently, ibrutinib has been shown to reverse these defects,
which allows enhanced function of CAR T cells84,95-97 and bispecific
antibodies,85 whereas immunomodulation with lenalidomide
allows recovery of synapse formation.88 Although flow cytometry
is an extremely useful and high-throughput technique, it is limited
by the number of antigens that can be simultaneously resolved
because of the spectral overlap of fluorophores.Mass cytometry is
a higher-dimensional approach that uses antibodies conjugated
to metal isotypes (in contrast to fluorophores) followed by sample
ionization and time-of-flight mass spectrometric analysis. Metal
isotopes overcome limitations with spectral overlap so that in-
creased numbers of antigens can be resolved simultaneously, but
unlike flow cytometry, cells cannot be recovered for downstream
functional analysis. Mass cytometry has been useful in higher-
order characterization of immune cell subsets in a range of ma-
lignancies including Hodgkin lymphoma98 and identification of
disease-associated immune phenotypes that correlate with re-
sponse rates.99 This technology has become an established
technique in its own right. Within CLL, initial data reveal highly
variable expression of inhibitory receptors between patients,100

but T cells overall express multiple checkpoint molecules and
these molecules are at higher levels compared with normal
controls. In addition, CD81 T cells demonstrate a predominantly
senescent phenotype.101 Another approach to analyzing tumor-
associated immune cells is with single-cell RNA (scRNA) se-
quencing in parallel with tumor assessment. This overcomes the
limitations of prior selection of antibodies for flow or mass
cytometry, which allows unbiased and higher-complexity analysis.
In breast cancer, it has provided a compendium of infiltrating
immune cells and identified a CD81 tissue-resident memory
signature associated with enhanced survival.102,103 By focusing
on individual T cells, it has linked T-cell receptor clonotypes with

their underlying cellular activation state. Assessment of T cells
within the CLL microenvironment, given their potential for
antileukemic effects and inherent dysfunction, are therefore of
great interest. In addition to the immune component, stromal
cells provide survival factors, chemokines, cytokines, and cell
surface proteins such as integrins that enhance CLL survival.
Although much progress has been made in understanding their
contribution to CLL biology, further mechanistic insights into
how stromal cells support CLL can be obtained through single-
cell analysis. scRNA sequencing has led to an appreciation of the
complexity of lymph node stromal cells (albeit in mice, but with
likely parallels in humans)104 as well as the supportive relation-
ship between stromal cells and tumor cells in solid tumors.105,106

Multiomic contextual assessment
As single modality assays have become increasingly available,
newer assays that aim to capture multidimensional genomic,
transcriptomic, and protein information from a single cell have
been emerging.107-109 For example, cellular indexing of tran-
scriptomes and epitopes by sequencing (CITE-seq) uses
oligonucleotide-tagged antibodies to assess protein expres-
sion in combination with scRNA sequencing, thereby providing
phenotype-transcriptional correlation.39 This approach over-
comes the limitation that single-cell transcriptome analysis
alone cannot consistently detect the expression of surface
markers used for classifying cell subsets.39 These efforts promise
to provide a more complete insight by linking genetic aberrations
with transcriptional signatures and/or protein expression,110 with
the aim of combining all of these assays into a single platform.

Despite advances in technologic assays looking at global or
targeted gene expression or circulating free DNA, immunohis-
tochemistry is still central to diagnosis, because it provides useful
information about the overall architecture, cell types, and level of
infiltration within biopsies and resection samples. Combining
these types of data with single-cell approaches could be highly
informative by enabling correlation of cell-cell interactions within
the microenvironment. This would show us how adjacent cells
interact and define their consequent transcriptional and proteo-
mic profiles. In addition, single-cell analysis could identify rare cell
populations of interest, and correlative studies of their location
would help assess their functional impact. One example of this
type of endeavor is imaging mass cytometry in which tissue
sections are stained with metal isotope-labeled antibodies, and
protein expression is linked to location by using mass cytometry
analysis.111 An alternative is the use of single-molecule RNA FISH,
which uses short conjugated probes to determine mRNA ex-
pression and spatial distribution within cells and tissue sections.112

Within CLL, this has clear applicability for assessing the lymph
node and marrow microenvironment, especially within pseudo-
follicles, which represent a unique site of CLL proliferation and
where there is also a substantial presence of T cells.

Clinical applications of insights from
single-cell analysis
With the vast amount of information that will be generated from
ongoing and future single-cell studies in CLL and across he-
matologic disorders overall, we can anticipate relating this new
knowledge back to the patient. Advances in bulk genomics have
defined the spectrum of mutations and genomic changes within
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CLL and are undergoing evaluation for impact on prognosis and
prediction of outcomes in CLL,11,72,113-115 as well as incorporation
of newer epigenetic and transcriptional insights.116-119 Single-cell
level information can provide valuable insights for CLL patients
at diverse points in their disease course (Figure 4). At diagnosis,
when leukemia cells are in abundance, single-cell analytics will
enable a detailed snapshot of the precise composition of the
leukemia and also an assessment of the accessory immune cells.
By informing us about the classification of the patient’s CLL into
a particular biologic subgroup and/or the status the patient’s
host immune microenvironment, we will be better able to
provide advanced prognostication beyond what is possible with
traditional cytogenetics and global mutational profiles. Conse-
quently, more accurate decisions on the timing and modality of
therapy can be made. For example, when therapy is initiated,
assessment of mutational status of key genes or distinct tran-
scriptional profiles implicated in resistance would help optimize
treatment decisions, especially in an era in which many targeted
agents are available. Indeed, identifying multiple subclones
may highlight a subclone associated with higher risk and war-
rant subclone-specific therapy. In addition, coevaluation of the
immune system will help identify the role of the many potential
novel immunomodulatory agents on a patient-specific basis.
This will maximize targeted efficacy through rational deploy-
ment, such as combinational use of checkpoint inhibitors be-
yond CTLA-4 and the PD-1/PD-L1 axis, reversal of inhibitory
pathways limiting T-cell responses, and better targeting of mi-
croenvironmental support. After initial therapy, single-cell
technology provides the sensitivity needed to enable screen-
ing for the emergence of resistant clones, which would poten-
tially allow tailored treatment early in the course of relapse and
minimize ongoing clonal evolution associated with treatment
resistance. An ever-present clinical consideration in CLL is the
potential to undergo Richter’s transformation, for which out-
comes are poor and treatments are limited, especially in the

context of advanced age. Single-cell approaches to under-
standing this disease entity are therefore urgently required to
help better understand the disease process and enable de-
velopment of therapeutics. Here again, one can certainly en-
vision a scenario in which monitoring the peripheral blood may
detect a Richter’s signature and lead to earlier detection,
treatment optimization, and improved outcomes for patients.
The high costs associated with scRNA sequencing combined
with the requirement for dedicated bioinformatics workflows to
obtain meaningful interpretation has to be balanced against
the cost of novel cancer therapies. Potential savings are pos-
sible by choosing the optimal therapy at the outset and by
sensitive monitoring to detect resistance to treatment early,
which will allow prompt discontinuation of treatment and appro-
priate re-treatment. With increasing knowledge of single-cell
analytics, one can envisage this technology being incorporated
into clinical trial design to determine its wider applicability.

Although the field of single-cell technology has rapidly evolved
over the last few years and continues to advance rapidly, the
recent emergence of high-throughput relatively user-friendly
methods means that high levels of information can readily
be gleaned from single leukemic or supporting cells, which
makes it feasible to thoroughly investigate all aspects of
cellular biology across the disease course of CLL. Using gene
editing technologies to enable paired assessment of single-
cell gene perturbation combined with scRNA sequencing will
provide additional insights.120,121 Assuredly, the ability to analyze
thousands of cells in multiple patients and ongoing work in this
area, akin to the advances with bulk sequencing, will catalyze our
understanding of CLL biology with unparalleled detail. We expect
that these insights will help transform our knowledge of the
pathophysiology and clinical behavior of CLL, help guide the
selection of optimal therapeutics, and enable appropriate mon-
itoring, with the aim of improving patient outcomes.
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Figure 4. Clinical application of single-cell technologies
for CLL. Single-cell approaches allow for deeper charac-
terization of leukemic and immune cells to help aid prog-
nostication, optimize and rationalize treatments, and modulate
the immune system to enhance potential immunothera-
peutic approaches at diagnosis and relapse. At diagnosis or
during follow-up, monitoring can identify clones that rep-
resent higher risk, and appropriate treatment can be in-
stituted or defects within immune cells can be characterized
and then addressed. After treatment, single-cell approaches
have the potential to detect relapse earlier, identify the un-
derlying resistance-drivingmutations, and select the optimum
strategy for overcoming the problem. An ever-present clinical
concern is Richter’s transformation, in which single-cell
approaches may also be able to help with earlier diagnosis
and treatment optimization. This approach is not limited to
CLL but has applicability across the range of hematologic
malignancies. PFS, progression-free survival; OS, overall sur-
vival; WBC, white blood cell.
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19. Böttcher S, Ritgen M, Fischer K, et al.
Minimal residual disease quantification is an
independent predictor of progression-free
and overall survival in chronic lymphocytic
leukemia: a multivariate analysis from the
randomizedGCLLSGCLL8 trial. J Clin Oncol.
2012;30(9):980-988.

20. Gawad C, Koh W, Quake SR. Single-cell
genome sequencing: current state of the
science.Nat Rev Genet. 2016;17(3):175-188.

21. Wang Y, Navin NE. Advances and applica-
tions of single-cell sequencing technologies.
Mol Cell. 2015;58(4):598-609.

22. Hedlund E, Deng Q. Single-cell RNA se-
quencing: Technical advancements and
biological applications. Mol Aspects Med.
2018;59:36-46.

23. Wang L, Livak KJ, Wu CJ. High-dimension
single-cell analysis applied to cancer. Mol
Aspects Med. 2018;59:70-84.

24. Kelsey G, Stegle O, Reik W. Single-cell
epigenomics: Recording the past and

predicting the future. Science. 2017;
358(6359):69-75.

25. Povinelli BJ, Rodriguez-Meira A, Mead AJ.
Single cell analysis of normal and leukemic
hematopoiesis. Mol Aspects Med. 2018;59:
85-94.

26. Stubbington MJT, Rozenblatt-Rosen O,
Regev A, Teichmann SA. Single-cell tran-
scriptomics to explore the immune system in
health and disease. Science. 2017;
358(6359):58-63.

27. Kolodziejczyk AA, Kim JK, Svensson V,
Marioni JC, Teichmann SA. The technology
and biology of single-cell RNA sequencing.
Mol Cell. 2015;58(4):610-620.

28. Stegle O, Teichmann SA, Marioni JC.
Computational and analytical challenges in
single-cell transcriptomics. Nat Rev Genet.
2015;16(3):133-145.

29. Herishanu Y, Pérez-Galán P, Liu D, et al. The
lymph node microenvironment promotes
B-cell receptor signaling, NF-kappaB acti-
vation, and tumor proliferation in chronic
lymphocytic leukemia. Blood. 2011;117(2):
563-574.

30. Herishanu Y, Katz BZ, Lipsky A, Wiestner A.
Biology of chronic lymphocytic leukemia in
different microenvironments: clinical and
therapeutic implications. Hematol Oncol
Clin North Am. 2013;27(2):173-206.

31. Burger JA, Tsukada N, Burger M, Zvaifler NJ,
Dell’Aquila M, Kipps TJ. Blood-derived
nurse-like cells protect chronic lymphocytic
leukemia B cells from spontaneous apoptosis
through stromal cell-derived factor-1. Blood.
2000;96(8):2655-2663.

32. Burger JA, Kipps TJ. Chemokine receptors
and stromal cells in the homing and ho-
meostasis of chronic lymphocytic leukemia
B cells. Leuk Lymphoma. 2002;43(3):
461-466.

33. Purroy N, Wu CJ. Coevolution of leukemia
and host immune cells in chronic lymphocytic
leukemia. Cold Spring Harb Perspect Med.
2017;7(4).

34. Ding W, Nowakowski GS, Knox TR, et al. Bi-
directional activation between mesenchymal
stem cells and CLL B-cells: implication for
CLL disease progression. Br J Haematol.
2009;147(4):471-483.

35. Faridani OR, Abdullayev I, Hagemann-
Jensen M, Schell JP, Lanner F, Sandberg R.
Single-cell sequencing of the small-RNA
transcriptome. Nat Biotechnol. 2016;34(12):
1264-1266.

1454 blood® 28 MARCH 2019 | VOLUME 133, NUMBER 13 GOHIL and WU

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/133/13/1446/1556964/blood835389.pdf by guest on 18 M

ay 2024

mailto:cwu@partners.org
https://doi.org/10.1182/blood-2018-09-835389
https://doi.org/10.1182/blood-2018-09-835389


36. Li X, Meng X, Wei C, et al. Dissecting
LncRNA roles in renal cell carcinoma me-
tastasis and characterizing genomic hetero-
geneity by single-cell RNA-seq. Mol Cancer
Res. 2018;16(12):1879-1888.

37. Hu W, Wang T, Yang Y, Zheng S. Tumor
heterogeneity uncovered by dynamic ex-
pression of long noncoding RNA at single-
cell resolution. Cancer Genet. 2015;208(12):
581-586.

38. Simoni Y, Chng MHY, Li S, Fehlings M,
Newell EW. Mass cytometry: a powerful tool
for dissecting the immune landscape. Curr
Opin Immunol. 2018;51:187-196.

39. Stoeckius M, Hafemeister C, Stephenson W,
et al. Simultaneous epitope and tran-
scriptome measurement in single cells. Nat
Methods. 2017;14(9):865-868.

40. Haque A, Engel J, Teichmann SA, Lönnberg
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79. Ebinger S, Özdemir EZ, Ziegenhain C, et al.
Characterization of rare, dormant, and
therapy-resistant cells in acute lymphoblastic
leukemia. Cancer Cell. 2016;30(6):849-862.

80. Milpied P, Cervera-Marzal I, Mollichella ML,
et al. Human germinal center transcriptional
programs are de-synchronized in B cell
lymphoma. Nat Immunol. 2018;19(9):
1013-1024.

SINGLE CELL IN CLL blood® 28 MARCH 2019 | VOLUME 133, NUMBER 13 1455

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/133/13/1446/1556964/blood835389.pdf by guest on 18 M

ay 2024



81. Dave SS, Wright G, Tan B, et al. Prediction of
survival in follicular lymphoma based on
molecular features of tumor-infiltrating im-
mune cells. N Engl J Med. 2004;351(21):
2159-2169.

82. Ding W, LaPlant BR, Call TG, et al.
Pembrolizumab in patients with CLL and
Richter transformation or with relapsed CLL.
Blood. 2017;129(26):3419-3427.

83. Fraietta JA, Lacey SF, Orlando EJ, et al.
Determinants of response and resistance to
CD19 chimeric antigen receptor (CAR) T cell
therapy of chronic lymphocytic leukemia.Nat
Med. 2018;24(5):563-571.

84. Fraietta JA, Beckwith KA, Patel PR, et al.
Ibrutinib enhances chimeric antigen receptor
T-cell engraftment and efficacy in leukemia.
Blood. 2016;127(9):1117-1127.

85. Robinson HR, Qi J, Cook EM, et al. A CD19/
CD3 bispecific antibody for effective immu-
notherapy of chronic lymphocytic leukemia
in the ibrutinib era. Blood. 2018;132(5):
521-532.

86. Rajasagi M, Shukla SA, Fritsch EF, et al.
Systematic identification of personal tumor-
specific neoantigens in chronic lymphocytic
leukemia. Blood. 2014;124(3):453-462.

87. Riches JC, Davies JK, McClanahan F, et al.
T cells from CLL patients exhibit features of
T-cell exhaustion but retain capacity for cy-
tokine production. Blood. 2013;121(9):
1612-1621.

88. Ramsay AG, Johnson AJ, Lee AM, et al.
Chronic lymphocytic leukemia T cells show
impaired immunological synapse formation
that can be reversed with an immunomo-
dulating drug. J Clin Invest. 2008;118(7):
2427-2437.

89. Palma M, Gentilcore G, Heimersson K, et al.
T cells in chronic lymphocytic leukemia dis-
play dysregulated expression of immune
checkpoints and activation markers.
Haematologica. 2017;102(3):562-572.

90. Fraietta JA, Schwab RD,MausMV. Improving
therapy of chronic lymphocytic leukemia with
chimeric antigen receptor T cells. Semin
Oncol. 2016;43(2):291-299.

91. Piper KP, Karanth M, McLarnon A, et al.
Chronic lymphocytic leukaemia cells drive
the global CD41 T cell repertoire towards
a regulatory phenotype and leads to the
accumulation of CD41 forkhead box P31
T cells. Clin Exp Immunol. 2011;166(2):
154-163.

92. Jain P, Javdan M, Feger FK, et al. Th17 and
non-Th17 interleukin-17-expressing cells in
chronic lymphocytic leukemia: delineation,
distribution, and clinical relevance.
Haematologica. 2012;97(4):599-607.

93. MacFarlane AW IV, Jillab M, Smith MR, et al.
NK cell dysfunction in chronic lymphocytic
leukemia is associated with loss of themature
cells expressing inhibitory killer cell Ig-like
receptors. OncoImmunology. 2017;6(7):
e1330235.

94. Maffei R, Bulgarelli J, Fiorcari S, et al. The
monocytic population in chronic lymphocytic

leukemia shows altered composition and
deregulation of genes involved in phago-
cytosis and inflammation. Haematologica.
2013;98(7):1115-1123.

95. Podhorecka M, Goracy A, Szymczyk A, et al.
Changes in T-cell subpopulations and cyto-
kine network during early period of ibrutinib
therapy in chronic lymphocytic leukemia
patients: the significant decrease in T regu-
latory cells number. Oncotarget. 2017;8(21):
34661-34669.

96. Yin Q, Sivina M, Robins H, et al. Ibrutinib
therapy increases T cell repertoire diversity in
patients with chronic lymphocytic leukemia.
J Immunol. 2017;198(4):1740-1747.

97. Long M, Beckwith K, Do P, et al. Ibrutinib
treatment improves T cell number and
function in CLL patients. J Clin Invest. 2017;
127(8):3052-3064.

98. Cader FZ, Schackmann RCJ, Hu X, et al. Mass
cytometry of Hodgkin lymphoma reveals
a CD41 regulatory T-cell-rich and exhausted
T-effector microenvironment. Blood. 2018;
132(8):825-836.

99. Krieg C, Nowicka M, Guglietta S, et al. High-
dimensional single-cell analysis predicts re-
sponse to anti-PD-1 immunotherapy. Nat
Med. 2018;24(2):144-153.

100. Muftuoglu M, Li L, Chen H, et al. Mass
cytometry reveals heterogeneity in the ex-
haustion profile of T-cells in chronic lym-
phocytic leukemia and the CD4:CD8 ratio
may be a reliable predictor of CD81 T cell
compartment “fitness” [abstract]. Blood.
2016;128(22). Abstract 353.

101. Muftuoglu M, Li L, Mak D, et al. Evaluation of
T cell compartment by mass cytometry
reveals distinct patterns of expression of
exhaustion markers in chronic lymphocytic
leukemia [abstract]. Blood. 2017;130(suppl
1). Abstract 4283.

102. Azizi E, Carr AJ, Plitas G, et al. Single-cell
map of diverse immune phenotypes in the
breast tumor microenvironment. Cell. 2018;
174(5):1293-1308.e36.

103. Savas P, Virassamy B, Ye C, et al; Kathleen
Cuningham Foundation Consortium for Re-
search into Familial Breast Cancer (kConFab).
Single-cell profiling of breast cancer T cells
reveals a tissue-resident memory subset as-
sociated with improved prognosis. Nat Med.
2018;24(7):986-993.

104. Rodda LB, Lu E, Bennett ML, et al. Single-cell
RNA sequencing of lymph node stromal cells
reveals niche-associated heterogeneity.
Immunity. 2018;48(5):1014-1028.e6.

105. Darmanis S, Sloan SA, Croote D, et al. Single-
cell RNA-seq analysis of infiltrating neo-
plastic cells at the migrating front of human
glioblastoma. Cell Reports. 2017;21(5):
1399-1410.

106. Tirosh I, Izar B, Prakadan SM, et al. Dissecting
the multicellular ecosystem of metastatic
melanoma by single-cell RNA-seq. Science.
2016;352(6282):189-196.

107. Macaulay IC, Haerty W, Kumar P, et al. G&T-
seq: parallel sequencing of single-cell

genomes and transcriptomes. Nat Methods.
2015;12(6):519-522.

108. Dey SS, Kester L, Spanjaard B, Bienko M, van
Oudenaarden A. Integrated genome and
transcriptome sequencing of the same cell.
Nat Biotechnol. 2015;33(3):285-289.

109. Angermueller C, Clark SJ, Lee HJ, et al.
Parallel single-cell sequencing links tran-
scriptional and epigenetic heterogeneity.
Nat Methods. 2016;13(3):229-232.

110. Macaulay IC, Ponting CP, Voet T. Single-cell
multiomics: Multiple measurements from
single cells. Trends Genet. 2017;33(2):
155-168.

111. Levenson RM, Borowsky AD, Angelo M.
Immunohistochemistry and mass spectrom-
etry for highly multiplexed cellular molecular
imaging. Lab Invest. 2015;95(4):397-405.

112. Cui C, Shu W, Li P. Fluorescence in situ hy-
bridization: cell-based genetic diagnostic
and research applications. Front Cell Dev
Biol. 2016;4:89.
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