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France; 10AP-HP, Hôpital Saint-Louis, Unité de Thérapie cellulaire, Paris, France; 11INSERM CICBT 501, Paris, France; 12Institute of Medical Engineering and
Science, Massachusetts Institute of Technology, Cambridge, MA; 13Red Cell Physiology Laboratory, New York Blood Center, New York, NY; and 14AP-HP, Hôpital
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KEY PO INT S

l Mutations in genes
other than RPS19
result in significant
imbalance between
globin and heme
synthesis, leading to
excess free heme.

l Decreased levels of
HSP70 and GATA1
account for excess
free heme in DBA
erythroblasts; HSP70
reexpression restores
the globin/heme
synthesis.

Diamond-Blackfan anemia (DBA) is a congenital erythroblastopenia that is characterized
by a blockade in erythroid differentiation related to impaired ribosome biogenesis. DBA
phenotype and genotype are highly heterogeneous. We have previously identified 2 in vitro
erythroid cell growth phenotypes for primary CD341 cells from DBA patients and following
short hairpin RNA knockdown of RPS19, RPL5, and RPL11 expression in normal human CD341

cells. The haploinsufficient RPS19 in vitro phenotype is less severe than that of 2 other ri-
bosomal protein (RP)mutant genes.We further documented that proteasomal degradation of
HSP70, the chaperoneofGATA1, is amajor contributor to thedefect in erythroid proliferation,
delayed erythroid differentiation, increased apoptosis, and decreased globin expression,
which are all features of the RPL5 or RPL11DBAphenotype. In the present study,we explored
the hypothesis that an imbalance between globin and heme synthesis may be involved in pure
red cell aplasia of DBA. We identified disequilibrium between the globin chain and the heme
synthesis in erythroid cells of DBA patients. This imbalance led to accumulation of excess free
heme and increased reactive oxygen species production that was more pronounced in cells of
the RPL5 or RPL11 phenotype. Strikingly, rescue experiments with wild-type HSP70 restored

GATA1 expression levels, increased globin synthesis thereby reducing free heme excess and resulting in decreased ap-
optosis of DBA erythroid cells. These results demonstrate the involvement of heme in DBA pathophysiology and a major
role of HSP70 in the control of balanced heme/globin synthesis. (Blood. 2019;133(12):1358-1370)

Introduction
Diamond-Blackfan anemia (DBA) is a congenital erythroblastopenia
with an incidence of 7 to 10 cases per million live births.1,2 DBA
is one of the inherited bone marrow failure syndromes related to
a defect in ribosome biogenesis,3 with a mutation in a ribosomal
protein identified in .70% of cases,4-14 primarily in the RPS19,6

RPL5, and RPL119,12 genes.

We have recently shown that HSP70, the chaperone of GATA1, is
one of the factors involved in the erythroid tropism of DBA.15

Indeed, proteasomal degradation of polyubiquitinated HSP70 in
DBA-affected patients with RPL5 and RPL11mutations and other
non-RPS19genes leads to decreased levels of HSP70, with resultant
caspase-3 dependent GATA1 cleavage. Decreased GATA1 levels
account for delayed erythroid differentiation, low proliferative

rate, and increased apoptosis of erythroid cells in these in vitro
phenotypes with non-RPS19 gene mutations.15

Because the phenotype of DBA patients is highly heteroge-
neous, we wondered whether excess heme may account for the
variable phenotypic expression of the disease, because an ex-
cess of free heme is toxic for the cells by increasing reactive
oxygen species (ROS) production, lipid peroxidation, and ap-
optosis.16 During adult terminal erythroid differentiation, there is
a tight regulation for balanced globin and heme synthesis to
produce hemoglobin. Unbalanced globin/heme production due
to excess a-globin chains leads to accumulation of free heme in
b-thalassemia and resultant pathophysiology.17,18 HSP70 has
also been implicated in the mechanistic understanding of thal-
assemia pathophysiology.19,20
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The cellular mechanisms involved in the elimination of excess free
heme in different subcellular compartments has been described
extensively.21 The transcription repressor BTB domain and cnc
homolog 1 (BACH1) regulates the expression of heme oxygenase 1
(HMOX1) and globin genes. Free heme trapped by BACH1 in the
nucleus inhibits BACH1 DNA binding activity and induces BACH1
nuclear export and proteasomal degradation.22 The translation
regulator heme-regulated EIF2a kinase (HRI) is active in heme de-
ficiency; HRI phosphorylates eIF2a, which inhibits globin chain
synthesis. When free heme is in excess, it may be captured by HRI,
which is able to bind 2 hememolecules on its second heme-binding
domain, maintaining HRI in an inactive state. As a consequence,
there is adecrease in thephosphorylationof eIF2a, which leads to an
increase in globin chain translation. The aimof this cellular regulation
is to increase the globin chain translation to incorporate excess free
heme to generate hemoglobin and decrease free heme levels.17,18,23

Feline leukemia virus subgroup C receptor 1 (FLVCR1)24-26 has
been described as the major heme exporter in erythropoiesis,27

and it can balance the globin/heme ratio as well.28 flvcr12/2 mice
exhibit erythroblastopenia, with a malformative syndrome sim-
ilar to DBA.29 FLVCR1 has been proposed to play a role in
modulating DBA phenotype.29,30

In the present study, we explored the hypothesis that the imbal-
anced synthesis of globin and heme inDBAmay be responsible for
the excess free heme content in DBA erythroid cells and the
consequent deleterious effects on erythropoiesis. We docu-
mented, in primary erythroid cells, a greater imbalance in the
globin/heme ratio and resultant large excess of free heme in the
DBA patients who carried mutations in RPL5 and RPL11, RP genes
other than RPS19. These findings enabled us to account for the
duality of the RP phenotypes based on excess free heme and a role
for HSP70 in this process. Furthermore, we showed that HSP70
controls GATA1 and globin chain expression, as well as heme
levels and the other GATA1 targets involved in heme metabolism,
such as HRI and d-aminolevulinate synthase 2 (ALAS2).

Methods
Study population
Twelve individuals affected with DBA registered in the French
DBA registry (National Commission for Computing and Liberties
[CNIL] acceptance #911387, Advisory Committee on Information
Processing in Material Research in the Field of Health [CCTIRS]
#11.295) and 12 hematologically normal individuals were studied.
DBA was diagnosed according to established criteria.2 Table 1
shows the biological and clinical data for the DBA patients.

Cell culture
Cell lines and human primary cells The UT-7–erythropoietin
(EPO) and HEK-EBNA 293T cell lines, as well as human primary
CD341 cells isolated from the peripheral blood of DBA patients
and controls or from human cord blood, were cultured as pre-
viously described.31 The UT-7-EPO–dependent cell line, a human
leukemic cell line, was used because of its ability to proliferate
and differentiate specifically along the erythroid lineage and its
ability for cell hemoglobinization. Titers of viral particles were
determined by quantifying the number of GFP1 ormCherry1 cells
following infection of the HEK-EBNA 293T cell line.

Cell culture and heme treatment UT-7–EPO and primary
erythroid cells were treated for 4 hours with heme arginate
(Normosang human hemin; Orphan Europe, Puteaux, France) at
concentrations ranging from 0 to 0.3 mg/mL.

Sorting of erythroblasts at burst–forming
unit-erythroid (BFUe) and colony–forming
unit-erythroid (CFUe) stages by flow cytometry
Synchronized erythroid cells from phase 1 of culture were sorted
to obtain pure populations of erythroid progenitors using a pre-
viously published method.32

Erythroid cell proliferation and differentiation of
CD341 cells
Erythroid differentiation was characterized based on the extent
of cell hemoglobinization (benzidine staining), cell cytology
(May–Grünwald–Giemsa staining), and stage of erythroid
differentiation by immunophenotyping by flow cytometry
(FACSCanto; Becton Dickinson).31

Lentiviral vectors and infection
The short hairpin RNA (shRNA) constructs targeting RPS19,
RPL5, and RPL11 have been generated and validated by our
group.15,31 The effectiveness of shRNA was assessed at day 9
(supplemental Figure 1, available on the BloodWeb site). pTRIP-
ZEPHYR-mCherry control or the pTRIP-ZEPHYR-HSP70-mCherry
lentivirus was cotransduced as previously described.15

RT-qPCR
Real–time reverse transcription-polymerase chain reaction (RT-
qPCR) assays were performed using a LightCycler FastStart DNA
Master SYBR Green I kit (Roche, Bale, Switzerland). The specific
human primers used are listed in supplemental Table 1.

Western blotting
Pellets of 2.5 to 5 3 104 cells (DBA patients and controls) or
105 shRNA-infected erythroid cells were lysed in Laemmli buffer.
Nitrocellulose membrane was immunostained overnight with
the primary antibody (anti-human FLVCR1, b-globin, a-globin,
HSP70, HMOX1, ferrochelatase [FECH], GATA1, EIF2a, phos-
phorylated EIF2a [P-EIF2a], RPL5, RPS19, RPL11, ALAS2
[courtesy of Agios Pharmaceuticals], BACH1, HRI, b-actin, or
GAPDH) (supplemental Table 2).

Heme measurements
Total heme quantification A QuantiChrom Heme Assay kit
(DIHM-250; Gentaur, Kampenhout, Belgium) was used to assess
heme content. A total of 105 cells was lysed for 5 minutes at 95°C
in 50 mL of ultrapure water. Heme content was quantified in
a spectrophotometer at 400 nm in conjunction with a 62.5-mM
heme standard. The total heme concentration of a sample is
calculated as [(ODsample2ODblank)/(ODstandard 2ODblank)]*62.5*50,
where OD 5 optical density. Another method based on
protoporphyrin quantification by direct molecule fluorescence
and adapted from the protocol of Sinclair et al was also used.33

Free heme quantification Pellets of 105 cells were lysed in
50 mL of buffer (0.1 MNaOH) and protease inhibitor cocktail and
centrifuged for 5 minutes at 1500 rpm (4°C). An OD scan from
200 to 800 nm was performed with a spectrophotometer. Free
heme was calculated as the ratio between 380 nm6 2 nm (heme
band) and 560 nm 6 2 nm (hemoglobin band).
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FLVCR1 flow cytometry measurement
To analyze FLVCR1 expression by flow cytometry, we used a new
methodology based on the FLVC sequence cloned as a receptor
binding domain (FLVCR1-R100 kit; Metafora Biosystems, Institut
Cochin, Paris, France).

ROS quantification
A total of 1 3 104 cells was washed and suspended in 500 mL
of Hanks’ Balanced Salt Solution - No Phenol Red (Invitrogen,
Carlsbad, CA) with 10 mM luminol and 2.5 IU/mL horseradish
peroxidase. Samples were incubated for 200 minutes in the dark
at 37°C in a luminometer AutoLumat LB 953 (EG&G Berthold,
Bad Wildbad, Germany). Relative ROS production was calcu-
lated as the ratio between integral of sample curve/integral of
control curve over 200 minutes. The second method used is

based on flow cytometry using a CellROX Deep Red Reagent
kit, according to the manufacturer’s instructions (Invitrogen).

Statistical analysis
Statistical analyses were performed with GraphPad Prism (version
5.0; GraphPad Software). Differences were considered significant
at P , .05 (*P , .05; **P , .01; ***P , .001).

Results
Kinetics of heme and globin synthesis during
normal erythroid differentiation
Prior to characterization of the kinetics of heme and globin
synthesis and on defining potential changes in DBA, we first
analyzed the expression levels of a large number of proteins
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involved in heme metabolism and trafficking and total heme
production during normal human erythroid differentiation. The
proteins studied included (1) the housekeeping heme synthesis
enzyme ALAS1, the first enzyme in the mammalian heme bio-
synthetic pathway, and the erythroid tissue–specific ALAS2 and
FECH, the first and the last mitochondrial enzymes, respectively,
which are responsible for heme synthesis in erythroid cells; (2)
HMOX1, FLVCR1, and BACH1, proteins involved in regulating
intracellular levels of free heme; (3) GATA1, which controls
globin transcription; (4) EIF2a and P-EIF2a, proteins that control
globin translation; (5) TfR1 (CD71), the transferrin receptor in-
volved in iron delivery; and (6) the a- and b-globin chains, which
generate hemoglobin following incorporation of heme and iron.

Total heme content of cells increased gradually, as expected,
during normal terminal erythroid differentiation that occurs
from day 7 to day 14 in our human erythroid culture system as
proerythroblasts differentiate to orthochromatic erythroblasts
(Figure 1A). Concomitant with the increase in heme content,
expression levels of FECH and ALAS2 increased starting at day 7
and were expressed at high levels during all stages of erythroid
differentiation (days 7-14). Interestingly, the expression level of
nontissue-specific ALAS1 was highest in erythroid progenitors
generated during the first phase of culture (days 1-4), suggesting
that ALAS1 sustained heme synthesis in progenitor cells prior
to the expression of erythroid-specific ALAS2 during terminal
erythroid differentiation (Figure 1B-C). GATA1 expression in-
creased gradually from day 0 to day 4, with maximal expression
at day 7. GATA1 expression decreased with the progression of
terminal erythroid differentiation from day 7 to day 14. Strikingly,
the highest GATA1 expression occurs at the time when a and
b globin chains are beginning to be synthesized, and themaximum
level of synthesis occurs at the end of erythroid differentiation,
at day 14. The expression of proteins linked to translation, such
as the ribosomal proteins (RPS19, RPL5, RPL11), and that of the
EIF2a/P-EIF2a ratio is also highest at the onset of globin chain
translation, at day 7. Expression of TfR1 (CD71) tracked with ex-
pression levels of proteins involved in heme biosynthesis.

The balance between heme and globin chain production during
erythropoiesis can be monitored indirectly by studying the ex-
pression pattern of proteins involved in the generation and
elimination of heme from erythroid cells. Because globin chain
production does not reach significant levels until day 11, we
expect increased expression levels of proteins involved in heme
scavenging during the early stages of erythropoiesis (days 0-9).

Indeed, we noted that, starting at day 2, free heme scavengers
FLVCR1 and HMOX1 were highly expressed. Interestingly,
BACH1, which is subject to proteasomal degradation due to
excess free heme, was expressed at low levels. Thus, at steady-
state during the early stages of erythropoiesis, there is little or no
excess free heme due to the expression of heme scavengers.
When the globin chains are synthesized at later stages of eryth-
ropoiesis (days 7-14), thepool of free heme is incorporated into the
globin chains, and there is little need for heme scavengers. Indeed,
at day 7 we observed a decrease in the expression of FLVCR1 and
HMOX1 and increased BACH1 expression (Figure 1B-C).

Depletion of RPS19, RPL5, or RPL11 leads to
excess free heme and increased ROS production
in human erythroid cells
shRNAs against RPS19, RPL5, and RPL11 were generated and
validated as previously described (supplemental Figure 1).31

Following knockdown of RPS19, RPL5, or RPL11messenger RNA
(mRNA), total heme content of erythroid cells at day 9 of culture
decreased significantly (Figure 2A). Strikingly, free heme levels
increased significantly in all ribosomal-depleted erythroid cells
(Figure 2B; supplemental Figure 2). To confirm these increased
free heme levels in RP-deficient erythroid cells, we monitored
the expression level of proteins directly regulated by free heme:
BACH1 and FLVCR1. FLVCR1 protein expression in human
erythroid cells is increased following depletion of RPL5 or RPL11
(Figure 2C; supplemental Figure 3). In contrast, BACH1 ex-
pression is decreased, suggesting the degradation of BACH1
in RPL5- and RPL11-depleted cells compared with controls. In
marked contrast, we noted only a mild increase in FLVCR1 ex-
pression and a slight decrease in BACH1 expression following
depletion of RPS19, suggesting less excess free heme in RPS19-
depleted cells (Figure 2C; supplemental Figure 3). Accordingly,
production of ROS in cells at day 9 increased to a much greater
extent following depletion of RPL5 and RPL11 compared with
RPS19 (Figure 2D). These findings imply that there are larger
amounts of excess free heme in erythroid cells depleted of RPL5
and RPL11 compared with RPS19-depleted cells.

As a result of the observed discrepancies between the decreased
total heme and the increased free heme content following
depletion of RPL5, RPL11, and RPS19, we studied heme syn-
thesis and iron uptake in these cells in more detail. Both enzymes
involved in heme synthesis, FECH and ALAS2, as well as TfR1
expression at the mRNA and protein levels, decreased in ery-
throid cells at day 9 following depletion of RPL5 and RPL11 and,

Figure 2 (continued) RPL11 erythroid cells after CD341 cord blood infection with specific shRNAs. Pellets of 100 000 RP-depleted erythroid cells were analyzed, and OD scans
were measured from 200 to 800 nm with a spectrophotometer. The day-9 measurement is shown. Free heme was calculated as the ratio between 380 nm6 2 nm (heme band) and
560 nm 6 2 nm (hemoglobin band) (supplemental Figure 2A). The data are mean 6 standard deviation of 3 independent experiments, relative to free heme content of shcontrol
(value5 1). (C) Major excess free heme after depletion of RPL5 or RPL11 compared with RPS19 lentivirus–depleted erythroid cells. Immunoblots of 100 000 RPL5 or RPL11 depleted
erythroid cells revealed a significant decrease in ALAS2 expression levels, whereas ALAS1 was normal, reinforcing the decreased total heme content and the specificity of
the defect in erythroid cells. The iron uptake based on TfR1 expression level was decreased significantly under all conditions. Immunoblots also revealed indirect signs of
the large amount of excess free heme in depleted RPL5 and RPL11 erythroid cells on the decreased BACH1 and a large increase in FLVCR1 expression levels. Proteins
BACH1, FLVCR1, TfR1, ALAS2, and ALAS1 were compared with the b-actin expression level. A western blot representative of 3 experiments at day 9 of the primary erythroid
cell culture is shown (statistics are shown in supplemental Figure 3B). (D) Quantification of ROS production in RPS19-, RPL5-, or RPL11-depleted erythroid cells at day 9 of
erythroid culture. We show the second method used for ROS production based on flow cytometry with a CellROX Deep Red Reagent kit (Invitrogen). RPL5- and RPL11-
depleted erythroid cells at day 9 produced a higher ROS compared with the control, whereas RPS19 ones exhibited a slight increase in ROS production. Data are
representative of 3 experiments. (E) Brief reminder of the HRI/EIF2a pathway (adapted from Chen17). (F) HRI/EIF2a protein pathway analysis in DBA erythroid cells after
CD341 cord blood infection with specific shRNA-RPS19, -RPL5, -RPL11. Immunoblots of 100 000 RPS19-, RPL5-, or RPL11-depleted primary erythroid cells compared with
b-actin expression and shcontrol. A western blot representative of 3 experiments at day 9 of the primary erythroid cell culture is shown (statistics are shown in supplemental
Figure 3B). (G) HRI (left panel) and EIF2a (right panel) mRNA expression in DBA erythroid cells after CD341 cord blood infection with specific shRNA-RPS19, -RPL5, -RPL11.
We observed a significant decrease in HRI and EIF2a mRNA compared with the reporter gene mRNAs at day 9 of terminal erythroid differentiation. The data are mean 6

standard deviation of 3 independent experiments relative to mRNA expression level of shcontrol compared with b-actin (value 5 1). *P , .05, **P , .01. NS, nonsignificant.
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even an unknown gene compared with their healthy controls (mean fluorescence intensity 5 1). *P , .05 in triplicate experiments.
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to a lesser extent, after depletion of RPS19, supporting a global
reduction in heme synthesis (Figure 2C; supplemental Figure 3).
Confirming the specificity of the defect in ALAS2 dependent
heme production in the erythroid lineage, housekeeping heme
synthesis enzyme, ALAS1 expression was normal (Figure 2C).

To determine whether excess free heme also occurs at the BFUe
and CFUe progenitor stages, we analyzed FLVCR1 and BACH1
expression levels in flow-sorted BFUe (IL3R2/CD341/CD362)
and CFUe (IL3R2/CD342/CD361) cells following shRNA knock-
down. Strikingly, excess free heme was noted, even at the BFUe
stage, following depletion of RPL5 and RPL11, as documented
by increased FLVCR1 and decreased BACH1 expression levels
(supplemental Figure 4).

Ineffective HRI/EIF2a-dependent globin chain
synthesis in DBA
In association with decreased levels of GATA1, expression levels
of a- and b-globin chains are downregulated in RPL5-, RPL11-,
and RPS19-depleted erythroid cells, but these decreases are
more pronounced in RPL5- and RPL11-depleted cells (supple-
mental Figure 3). To assess the contribution of the defect in
translation of the globin chains to the observed decrease, we
studied the HRI–EIF2a/P-EIF2a pathway (Figure 2E). We found
that HRI was hypophosphorylated in the primary human ery-
throid cells at day 9 following depletion of RPS19, RPL5, or
RPL11 compared with control cells, consistent with the increased
concentration of free heme in these cells (Figure 2F). As expected,
due to the decreased amount of inactive HRI, P-EIF2a protein
expression decreased, suggesting that EIF2a–dependent globin
translation was increased in these cells to restore globin-heme
balance. However, we confirmed repeatedly at the transcriptional
and protein levels that a and b globin chains were decreased
(supplemental Figure 3). In addition, the levels of HRI and EIF2a
mRNA and protein expression are reduced in RP-depleted ery-
throid cells compared with the control, suggesting that, even
if translation is not downregulated in the RP-depleted cells by
the P-EIF2a pathway, the translation process is decreased (Figure
2F-G). Thus, the positive HRI-dependent upregulation of globin
translation, in conjunction with free heme excess, seemed in-
sufficient to adequately increase the globin chain to reduce ex-
cess heme. Thus, another mechanism is likely responsible for the
decreased globin chain translation in DBA. ALAS2, HRI, and
a- and b-globins are transcriptionally regulated by GATA1.
Therefore, we hypothesized that GATA1may be the root cause of
the globin chain/heme imbalance in DBA.

DBA-affected patients also exhibit excess free
heme, and its extent depends on the mutant
RP gene
To validate the relevance of the findings from our in vitro
knockdown studies of normal CD341 cells, we quantitated free
heme levels in primary erythroid cells from DBA-affected pa-
tients. Patients with a mutant RPS19 gene (RPS191/Mut) (UPN#35
and UPN#826) exhibited a gene-expression pattern similar to
that of age-matched controls for globin chains, GATA1, ALAS2,
FECH, TfR1, HRI, and EIF2a (Figure 3A; supplemental Figure 5).
Patients with a mutant RPL11 gene (RPL111/Mut), such as
UPN#1099, exhibited an important delay in erythroid differen-
tiation, as shown by decreased expression of a and b globin
chains, GATA1, TfR1, EIF2a, and HRI (Figure 3B-D). Interestingly,

in RPS191/Mut DBA patients and in RPL111/Mut DBA patients, but
more prominently in RPL11 cases, there is increased expression
of FLVCR1 protein during the entire course of erythroid differ-
entiation compared with controls (Figure 3A-D; supplemental
Figure 5). Furthermore, in patients with a mutant RPL5 gene
(RPL51/Mut), such as UPN#845, there is also decreased expression
of b globin at day 9 (Figure 3E) and large decreases in GATA1, a
and b globin chains, ALAS2, EIF2a, and TfR1mRNAs (Figure 3F).
FLVCR1 protein expression was also increased compared with
controls, suggesting a large excess of free heme in these cells
(Figure 3E). Although we were unable to directly measure free
heme in cells from DBA patients due to the low numbers of
available erythroid cells, the increased expression of FLVCR1
and the decreased expression of BACH1 in RPL5 and RPL11
haploinsufficient cells lend strong support for the increased
excess free heme in these cells. In addition, we found a signifi-
cantly increased production of ROS in erythroid cells from
RPL51/Mut patients (UPN#845 and UPN#412) compared with con-
trols (Figure 3G). Interestingly, we measured increased ROS pro-
duction in RPS191/Mut erythroid cells from both DBA patients
(UPN#35 and UPN#591), but this increase was far less than that
seen in cells with mutant RPL5 and RPL11 (Figure 3G).

HSP70 overexpression rescues GATA1 expression,
decreases excess free heme, and rescues the
heme/globin imbalance
We have previously shown15 that, in haploinsufficient RPL5 or
RPL11 erythroid cells, HSP70 is subjected to proteasomal
degradation leading to decreased levels of GATA1. Because
ALAS2 and HRI are GATA1 targets, we hypothesized that de-
creased HSP70 may contribute to the imbalance in heme/globin
synthesis resulting in an excess of free heme. Overexpression
of wild-type HSP70 complementary DNA (cDNA) in RPL11-
depleted human erythroid primary cells increased mRNA and
protein levels of HSP70 with a resultant increase in GATA1
expression levels, which, in turn, restored the expression of
globin levels and improved cell hemoglobinization (Figure 4A-B
[lower panel]). As expected, increased mRNA expression of
GATA1 targets, such as ALAS2 and HRI, was noted along with
increased expression of other proteins, such as FECH, TfR1, and
EIF2a, following HSP70 overexpression (Figure 4A-B). The effect
of HSP70 in RPS19-depleted cells was much less pronounced
and was not significant. FLVCR1 expression, as monitored by
flow cytometry, decreased following HSP70 overexpression in
RPS19- and RPL11-depleted cells (Figure 4C). Because excess
free heme induces ROS production, we analyzed ROS levels in
RPL11-depleted erythroid cells transduced with wild-type HSP70
cDNA and observed a reduction in ROS compared with con-
trols (data not shown), with a resultant decrease in cell death
(Figure 4D). Taken together, the findings from HSP70 rescue
experiments imply that restoring the globin/heme balance will
improve erythropoiesis by reducing the toxic free heme content
of erythroid cells.

Heme induces decreased HSP70 expression
Because we documented a link between the defect in HSP70 in
the RPL5 and RPL11 DBA in vitro phenotype and excess of free
heme, we wondered whether an increase in cell heme content
will affect HSP70 expression. UT-7–EPO cells (Figure 5A, left
panel) and healthy human erythroid primary cells (Figure 5A
[right panel]-B) were treated with varying concentrations of

HSP70 RESCUES IMBALANCE IN GLOBIN/HEME SYNTHESIS IN DBA blood® 21 MARCH 2019 | VOLUME 133, NUMBER 12 1365

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/133/12/1358/1552851/blood875674.pdf by guest on 07 M

ay 2024



A

sh
co

nt
ro

l

sh
co

nt
ro

l +
 cD

NA H
SP

70

sh
RPS1

9

sh
RPS1

9 
+ cD

NA H
SP

70

sh
RPL1

1

sh
RPL1

1 
+ cD

NA H
SP

70
0

5

10

15

%
 o

f p
os

iti
ve

 fl
uo

re
sc

en
t c

el
ls 

FL
VC

R1
(m

ea
n 
flu

or
es

ce
nc

e 
in

te
ns

ity
) (

M
FI

)  

C D

sh
co

nt
ro

l

sh
co

nt
ro

l+
cD

NA H
SP

70

sh
RPS1

9

sh
RPS1

9+
cD

NA H
SP

70

sh
RPL1

1

sh
RPL1

1+
cD

NA H
SP

70

0

5

10

15

20
Cell death

%
 o

f d
ea

d 
ce

lls
 (b

lu
e 

try
pa

n)

***  p=0.001

NS

***  p<0.001

Re
la

tiv
e 

pr
ot

ei
n 

ex
pr

es
sio

n 
le

ve
ls/
-

ac
tin

0
GATA1 HSP70 globin TfR1 RPL11

0,2

0,4

0,6

0,8

1

1,2

1,4

shcontrol
shcontrol+ cDNA HSP70
shRPS19

shRPL11
shRPL11 + cDNA HSP70 

shRPS19 + cDNA HSP70 

HSP
70

GATA
1


glo

bin

 g
lo

bin

ALA
S2

FE
CH

Tf
R1

EIF2


HRI

RPS1
9

RPL1
1

0.0

0.5

1.0

1.5

Re
la

tiv
e 

m
RN

A 
fo

ld
/ 

-a
cti

n
(Q

-R
T-P

CR
) 

* NS
B

HSP
70

GATA
1


glo

bin

 g
lo

bin

ALA
S2

FE
CH

Tf
R1

EIF2


HRI

RPS1
9

RPL1
1

0.0

0.5

1.0

1.5

Re
la

tiv
e 

m
RN

A 
fo

ld
/ 

-a
cti

n
(Q

-R
T-P

CR
) 

NS

shcontrol shRPS19

shRPS19+cDNA HSP70

shcontrol shRPL11

shRPL11+cDNA HSP70

Figure 4. HSP70 overexpression rescuedGATA1 expression, decreased ROS production, limited free heme content, and rescued the heme/globin balance. (A) Relative
protein expression of GATA1, HSP70, b-globin chain, TfR1, and RPL11 after depletion of RPS19 or RPL11 in primary erythroid cells and rescue with overexpression of wild-type
HSP70 cDNA. Data at day 9 of terminal erythroid culture, obtained from immunoblots of 100 000 human erythroid primary cells derived from CD341 cells from cord blood and
depleted in RPS19 or RPL11 by specific shRNAs. Proteins are compared with b-actin. The data are relative to the protein expression levels in the shcontrol for each protein
studied (value 5 1). (B) Relative mRNA expression compared with b-actin and shcontrol gene expression (value 5 1) after depletion of erythroid cells in RPS19 (left panel)
or RPL11 (right panel) mRNA after cord blood CD341 cell lentiviral infection by specific shRNAs and rescue with overexpression of wild-type HSP70 cDNA. The data are
mean 6 standard deviation of 3 independent experiments and correspond to the relative mRNA expression of each gene (HSP70, GATA1, a and b globin, ALAS2, FECH,
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heme arginate. Strikingly, a significant decrease in HSP70 ex-
pression could be documented starting at 0.2 mg/mL heme
arginate (Figure 5). This finding suggests that excess free heme
after HSP70 depletion is self-sustaining: a depletion in HSP70
increases excess free heme in erythroid cells, and this secondary
excess further exacerbates the decrease in HSP70.

Discussion
Our findings implicate an important role for imbalances in heme/
globin synthesis and excess free heme in erythroid progenitors
and precursors in the disordered erythropoiesis of DBA. We
identified an important role for HSP70 in this imbalance and
documented that HSP70 overexpression decreased excess free
heme and restored globin synthesis.

A role for free heme accumulation resulting in the erythroid phe-
notype of DBA had been previously reported in murine systems
and in human cell models29,34,35; however, to our knowledge, our
findings are the first to document its role in RPL5- or RPL11-
depleted early progenitors (BFUe and CFUe) and in primary
human precursor erythroid cells derived from various DBA-
affected patients with free heme accumulation depending on
the mutated RP gene. Furthermore, in normal erythroid progenitor
and precursor cells, we were able to characterize heme excess
when the globin chain synthesis starts at the CFUe stage, and
heme can be incorporated into the globin chains. Indeed, we
observed from day 0 to day 4, prior to globin chain production,
that heme biosynthesis enzymes, ALAS1, and, to a lesser extent,
ALAS2 and FECH, are already expressed.

Interestingly, in spite of the previous studies in mice29 or in cell
lines36 that suggested the lower expression of FLVCR1 in the
erythroid phenotype mimicking DBA, we found increased ex-
pression of FLCVR1 in erythroid cells of DBA patients and in
erythroid cells following knockdown of RPL5, RPL11, and RPS19.
These findings imply that FLVCR1 indeed plays a regulatory role
in controlling excess heme content of human erythroid cells.

Recently, in TF-1 and K562 cells, knockdown of RPS19 resulted in
decreased transcription of FLVCR1a compared with controls, but
FLVCR1 protein levels were not assessed in the study. Never-
theless, the knockdown cells showed increased ROS production
and apoptosis.37 In contrast to the findings from cell lines and in
accordance with our findings, a recent study showed an increase
in FLVCR1a transcriptional expression in 3 RPS19-mutated DBA
patients at the end of erythroid differentiation.38

We confirmed, at the transcriptional and translational levels,
decreased expression of a and b globin chain expression in
DBA, but we showed for the first time that the globin defect
was present as early as the CFUe erythroid progenitor stage.
This defect is more extensive in progenitor cells depleted of
RPL5 and RPL11 than in cells depleted of RPS19. Although the
hemoglobinization defect with reduced a and b mRNA and pro-
tein expression levels is to be expected in DBA, it was indeed
surprising that it is found as early as the erythroid progenitor
stage. In morpholino zebrafish models of depletion of rpl539 or
rps19, rpl11,40 as in our studies, the expression levels of the
globin chain varied, with a major decrease in globin expression
in rpl5 gene– and rpl11 gene–depleted cells and a more modest
decrease in the rps19 gene–depleted ones, confirming our data
regarding 2 distinct phenotypes in vitro.

We15 and other investigators41,42 have previously shown that
the level of GATA1 protein expression is decreased in DBA and
that this is responsible for the delay in erythroid differentiation
and the increased apoptosis of erythroid cells, which are more
extensive in patients with a genotype different from mutated
RPS19 gene. Importantly, in the present study, we documented
excess free heme in erythroid cells, in particular in the DBA-
affected patients who carry a mutation in the RPL5 or RPL11
gene or in CD341 primary erythroid cells depleted in RPL5
or RPL11, by showing increased expression of the adap-
tive intracellular pathways that limit the toxicity of the free
heme (apoptosis and ROS production). However, the increased
expression of these adaptive and heme scavengers was
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insufficient to prevent toxicity in haploinsufficient RPL5 or
RPL11 DBA patients. In contrast, in the less severe in vitro
phenotype15 (ie, DBA-affected patients who carry a mutation in
RPS19 gene), the increased expression of these adaptive and
heme scavengers was sufficient to reduce the excess heme to
limit its toxicity.

In our previous studies, we reported in the RPL5 or RPL11 in vitro
phenotype that, as a consequence of proteasomal degradation,
HSP70 is not able to translocate into the nucleus and protect
GATA1 cleavage by caspase 3 during terminal erythropoiesis
uponEPO stimulation.15 Caspase 3–dependentGATA1 cleavage43,44

leads to decreased GATA1 expression, p53 activation, and,
consequently, increased apoptosis.15Overexpression ofwild-type
HPS70 cDNA increased GATA1 expression in the nucleus, re-
storing erythroid proliferation and differentiation, and decreased
p53 activation and apoptosis.15 In the present study, we explored
the hypothesis that the HSP70/GATA1 axis, by controlling heme-
regulated globin synthesis, also regulates excess free heme in
erythroid cells. Indeed, we confirmed that HSP70 is a major factor
involved in the imbalance between heme/globin synthesis by
documenting that HSP70 overexpression was able to increase
a and b globin expression in RPL11-depleted erythroid cells, as
well as increased iron uptake (increased TfR1) and heme synthesis
(increased ALAS2 and FECH) to restore the heme/globin equi-
librium. Thus, the importance of HSP70 in DBA is related to its
effect on GATA1 expression, as well as to its role as a key protein
chaperone of HRI promoting HRI inactivation and enhancing
translation.45

In summary, as illustrated in Figure 6, we critically validated
amajor and central role for the HSP70/GATA1 axis in the intrinsic
erythroid defect in DBA. A model integrating all of our findings
summarizes how HSP70 accounts for the intrinsic defect in DBA
by controlling not only erythroid differentiation and survival in
DBA via GATA1 but also excess free heme, resulting from the
imbalanced heme/globin equilibrium, either via a GATA1 defect,
as well as its role as an HRI chaperone.
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