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KEY PO INT S

l Liver-associated tissue
factor drives rapid
intrahepatic
coagulation after PHx.

l Intrahepatic
fibrin(ogen)
deposition, but not
thrombin-mediated
platelet activation,
promotes liver
regeneration
after PHx.

Platelets play a pivotal role in stimulating liver regeneration after partial hepatectomy in
rodents and humans. Liver regeneration in rodents is delayed when platelets are inhibited.
However, the exact mechanisms whereby platelets accumulate and promote liver re-
generation remain uncertain. Thrombin-dependent intrahepatic fibrin(ogen) deposition
was recently reported after partial hepatectomy (PHx) in mice, but the role of fibrin(ogen)
deposits in liver regeneration has not been investigated. We tested the hypothesis that
fibrin(ogen) contributes to liver regeneration by promoting intrahepatic platelet accu-
mulation and identified the trigger of rapid intrahepatic coagulation after PHx. PHx in wild-
type mice triggered rapid intrahepatic coagulation, evidenced by intrahepatic fibrin(ogen)
deposition. Intrahepatic fibrin(ogen) deposition was abolished in mice with liver-specific
tissue factor deficiency, pinpointing the trigger of coagulation after PHx. Direct thrombin
activation of platelets through protease-activated receptor-4 did not contribute to he-
patocyte proliferation after PHx, indicating that thrombin contributes to liver regeneration

primarily by driving intrahepatic fibrin(ogen) deposition. Fibrinogen depletion with ancrod reduced both intrahepatic
platelet accumulation and hepatocyte proliferation after PHx, indicating that fibrin(ogen) contributes to liver re-
generation after PHx by promoting intrahepatic platelet accumulation. Consistent with the protective function of
fibrin(ogen) in mice, low postoperative plasma fibrinogen levels were associated with liver dysfunction andmortality
in patients undergoing liver resection. Moreover, increased intrahepatic fibrin(ogen) deposition was evident in livers
of patients after liver resection but was remarkably absent in patients displaying hepatic dysfunction postresection.
The results suggest a novel mechanism whereby coagulation-dependent intrahepatic fibrin(ogen) deposition drives
platelet accumulation and liver regeneration after PHx. (Blood. 2019;133(11):1245-1256)

Introduction
The liver has a unique regenerative capacity. Following a liver
resection, in which up to 70% of liver tissue can be safely re-
moved, the liver remnant rapidly regenerates to its original size.1

Successful regeneration is essential for the functioning of the
liver remnant. In some patients, however, liver regeneration is
insufficient or not initiated at all due to poorly understood
mechanisms. In fact, failure of regeneration is frequent in
patients with acute liver failure and in patients after extensive
liver resection.2,3 Postresection liver failure remains one of the
most serious complications of liver resection, and represents
a significant source of morbidity and mortality.3 Despite this, no
effective treatment options are available to improve liver re-
generation in patients undergoing liver resection. Patients who
suffer from failed regeneration may require a liver transplantation

or may die of liver insufficiency.4 A better understanding of the
mechanisms involved in liver regeneration could identify new
therapeutic targets to improve postoperative organ function,
which would benefit patients with liver failure caused by failed
regeneration.

Experimental and clinical evidence suggests a central role for
platelets and platelet-derived factors in the regeneration of the
liver remnant after partial hepatectomy. Platelets rapidly accu-
mulate in the liver remnant following a partial hepatectomy (PHx)
in mice5 and liver resection in humans,6 and liver regeneration is
significantly delayed when platelets are depleted or functionally
impaired.5,7 Conversely, an elevated platelet count, for exam-
ple, as induced by thrombopoietin, stimulates regeneration of
the liver after PHx.5,8,9 In humans, platelet transfusion seems to
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improve regeneration in living donor transplant recipients10 and
liver function in patients with cirrhosis.11 A low platelet count,
measured immediately after a liver resection, is associated with
liver dysfunction and postoperative mortality.12,13 Using a more
direct measurement of liver regeneration (by cross-sectional
imaging volumetry), Margonis et al13 found that the relative
increase in liver volume was significantly lower in patients with
a low platelet count. Collectively, these studies indicate that
platelets play a pivotal role in stimulating regeneration of the
liver. One proposed mechanism whereby platelets stimulate
liver regeneration relates to secretion of growth factors from
activated platelets in the liver microvasculature.6,14 However,
other mechanisms whereby platelets could stimulate re-
generation, including the transfer of RNA from the platelets to
hepatocytes, and platelet-mediated recruitment of inflamma-
tory cells, have been reported as well (reviewed elsewhere
by Lisman and Luyendyk15). The exact mechanism(s) whereby
platelets accumulate and promote liver regeneration thus remains
uncertain.

Platelets can become activated by several triggers, including
thrombin, which leads to activation of the platelet receptor
aIIbb3. Binding of fibrinogen and fibrin, the end product of the
coagulation cascade, to aIIbb3 mediates platelet–platelet inter-
actions, resulting in platelet aggregation.16 Activated platelets
can amplify coagulation through exposure of a procoagulant sur-
face, which facilitates thrombin generation, and by excretion of
coagulation proteins such as fibrinogen.17 Recently, Beier et al18

documented fibrin(ogen) deposits in the liver after PHx in mice
and reported that inhibition of thrombin reduced intrahepatic
fibrin(ogen) deposits and hepatocyte proliferation after PHx.
Although intrahepatic fibrin(ogen) deposition was reduced by
the thrombin inhibitor hirudin, fibrin(ogen) was not definitively
identified as the thrombin target driving the regeneration.
Moreover, the mechanisms responsible for increased thrombin
activity after PHx are unknown, and, at present, it is unclear
whether fibrin(ogen) has a direct role in liver regeneration after
PHx. We sought to define the mechanism driving fibrin(ogen)
deposition in the liver remnant after PHx and to determine
whether fibrin(ogen) and “platelet–coagulation cross talk”
contributes to liver regeneration after PHx.

Patients, materials, and methods
Animals
Male mice with selective deletion of liver tissue factor (TF) in
hepatocytes (TFflox/flox/albumin Cre mice, abbreviated to HPCDTF

mice here) backcrossed 8 generations onto the C57BL/6J
background were generated as previously described.19 Male
littermate TFflox/flox mice were used as controls. Protease-activated
receptor-4–deficient (PAR-42/2) male mice backcrossed 8 gen-
erations onto the C57BL/6J background were maintained by
homozygous breeding, and male wild-type (WT) mice on an
identical background bred in the same colony were used as
control mice.20 Polymerase chain reaction was routinely used to
confirm genotypes of the mice. Congenic C57BL/6 male WT
mice (Charles River Laboratories, Leiden, The Netherlands) were
used for fibrinogen and platelet depletion studies performed at
the University of Groningen. Mice were housed under a 12-hour
light/dark cycle. Standard rodent chow and drinking water
were provided ad libitum. Procedures were approved by the

Institutional Animal Care and Use Committees of the University
of Groningen (Groningen, The Netherlands) and Michigan State
University (East Lansing, MI).

PHx in mice
Age-matched cohorts of mice between the ages of 11 and
17 weeks underwent a two-thirds partial liver resection according
to published protocols with some modifications.21,22 Briefly, PHx
was performed in unfasted mice during the light cycle by re-
section of the left lateral lobe, the right portion of the median
lobe, and the left portion of the median lobe using 3 separate
ligatures. This method preserves the gallbladder to prevent ob-
struction of the extrahepatic biliary tree. Sham surgeries involved
gentle manipulation of the liver lobes without removal of liver
tissue. Surgical procedures were performed under deep surgical
anesthesia induced by isoflurane (Abbott, Chicago, IL). Mice were
subcutaneously injected before surgery with 5 mg/kg carprofen
(Rimadyl; Pfizer, New York, NY) for analgesia. For fibrinogen
depletion studies, 2.5 U ancrod per mouse (National Institute for
Biological Standards and Control, South Mimms, UK) or vehicle
(sterile saline) was administered by subcutaneous injection 2 hours
before or 2 hours after PHx. For platelet depletion studies, a rat
monoclonal antibody directed against mouse glycoprotein Iba
(GPIba; 4 mg/g body weight; R300, Emfret Analytics, Würzburg,
Germany) or vehicle (sterile saline) was administered by IV injection
24 hours before the surgery. Platelet depletion was confirmed by
measuring platelet count before and 24 hours after injection in
4mice. Blood and liver samples were collected either 30minutes
or 3 days after PHx or sham surgery. Blood was collected under
deep surgical anesthesia, by exsanguination from the inferior
vena cava immediately after injection of 150 mL 3.4% sodium
citrate (Merck, Darmstadt, Germany) diluted in saline in the
spleen. Blood samples were centrifuged at 1400g for 10minutes
(without brake) to obtain plasma and were stored at 280°C.
Plasma thrombin-antithrombin (TAT) levels were determined by
using a commercially available enzyme-linked immunosorbent
assay kit (Siemens Health Care Diagnostics, Deerfield, IL). Livers
were flushed with saline and fixed in either 4% formaldehyde
or snap-frozen in liquid nitrogen for immunohistochemical
analyses.

Patient population and quantification of plasma
fibrinogen levels
Plasma fibrinogen levels were assessed in patients undergo-
ing liver resection at the Medical University of Vienna (Vienna,
Austria). In total, 312 patients undergoing liver resection be-
tween 2001 and 2014 were included. Measurement was per-
formed in citrated blood taken before liver resection, as well as
on the first and fifth postoperative day (POD) according to the
Clauss method.23,24 In addition, liver biopsy specimens were
obtained from 11 patients, both at the beginning of surgery
(before) and from the regenerating liver lobe 2 hours after li-
gation of the portal vein (postresection). After surgery, patients
were followed up for 90 days, and postoperative outcome was
prospectively documented. In particular, liver dysfunction (LD)
was defined following the International Study Group of Liver
Surgery criteria. Briefly, patients with bilirubin levels.1.2 mg/dL
and a prothrombin time ,70% on POD 5 were classified as
having LD.25 In cases of abnormal bilirubin level or prothrombin
time before the operation, patients had to show an aggravation
in both parameters on 2 consecutive days after POD 5 to be
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considered positive for LD according to the International Study
Group of Liver Surgery criteria. In addition, patients with normal
serum bilirubin or prothrombin time values before POD 5 were
discharged early due to good clinical performance and hence
had no further blood collection and were therefore considered
as no LD. Postoperative mortality was defined as death within
90 days after surgery.26 The study was approved by the ethics
committee of the Medical University of Vienna, and all patients
gave written informed consent.

Immunohistochemical staining and
intravital microscopy
Mouse liver sections were stained for Ki-67 by the Investigative
Histopathology Laboratory at Michigan State University. In brief,
sections were incubated for 10 minutes with ready-to-use
Background Punisher (BioCare Medical, Pacheco, CA) to reduce
nonspecific background staining. Slides were then incubated
with a polyclonal rabbit anti-mouse Ki-67 antibody (1.5 mg/mL
final concentration; MilliporeSigma, Burlington, MA) for 30 minutes
at room temperature. Sections were subsequently incubated
with ready-to-use Rabbit-on-Rodent HRP-Polymer (BioCare Medi-
cal) for 1 hour, followed by Romulin AEC Chromogen (BioCare
Medical) incubation for 5 minutes. In selective studies, sections
were stained for Ki-67 as previously described.27 The extent of
fibrin(ogen) deposition was assessed in paraffin sections of mouse
and human livers as described elsewhere.28 In brief, acetone-fixed
sections were incubated with Avidin/Biotin Blocking Kit (Dako,
Glostrup, Denmark). Sections were then incubated with a poly-
clonal rabbit anti-human fibrinogen (1:750, A0080; Dako) for
1 hour at room temperature. After washing, sections were in-
cubated with a biotinylated goat anti-rabbit immunoglobulin G
(1:100, BA-1000; Vector Labs, Brunschwig, Burlingame, CA) for
45 minutes. After washing, sections were incubated with the
Vectastain ABC-AP reagent (SK-5100 Vector Red, Vector Labs)
for 30 minutes, washed, and incubated for 20 minutes with the
Vector Red Alkaline Phosphatase reagent (AK-5000; Vector
Labs). All sections were counterstained with hematoxylin,
mounted with Kaiser’s glycerol gelatin, and scanned by using
the Nano-Zoomer digital slide scanner (Hamamatsu Photonics
K.K., Hamamatsu, Japan). Ki-67–positive hepatocytes were
counted in at least 5 high-power fields per mouse by using
ImageJ software (version 1.51w; National Institutes of Health,
Bethesda, MD) and expressed as percentage of all hepatocytes.

Quantification of fibrin deposits was performed by using ImageJ
software. Five high-power fields per tissue were randomly se-
lected for analysis. The area of positive fibrin(ogen) staining in
each image was determined in an unbiased fashion by using
a batch macro and the color deconvolution tool in ImageJ. The
positive signal was expressed as positive pixel count. In addition,
for human livers, the percentage of positive fibrin staining was
also expressed as a fold change relative to values from the liver
biopsy specimen taken before the surgery. Platelet accumulation
was assessed in living mice shortly after PHx by intravital mi-
croscopy as previously described.27,29 In brief, platelets were
labeled in vivo just before imaging by IV injection of 1.6 mg
phycoerythrin-conjugated hamster anti-mouse CD49b (clone
HMa2; BioLegend, SanDiego, CA). Image acquisition was started
within 5 minutes after PHx and performed for 1 hour by using an
inverted Zeiss LSM 780 NLO microscope (Axio Observer.Z1; Carl
Zeiss, Oberkochen, Germany). Images were captured by using

a 488 nm argon laser and a gallium arsenide phosphide spectral
detector at 508 to 561 nm for autofluorescence detection of the
liver and at 569 to 655 nm for phycoerythrin detection. Platelet
aggregate analysis was performed as previously described.27

Statistical analyses
Statistical analyses were performed with Prism version 5 (GraphPad
Software, La Jolla, CA) software package or SPSS software (IBM
SPSS Statistics, IBM Corporation, Armonk, NY). Continuous varia-
bles are presented as mean 1 SEM or median and range, as ap-
propriate. Comparison of 2 groups for studies in experimental mice
was performed by using the Student t test. Comparison of 3 or
more groups was performed by using one-way analysis of variance
with the Bonferroni post hoc test. Similarly, differences in circulating
levels of fibrinogen between patients with and without post-
operative LD or mortality were assessed by using the Student t test.
Receiver-operating characteristic analysis was applied to assess
the discriminatory potential of plasma fibrinogen levels between
patients with and without postoperative LD. Youden’s J statistic
(J5 sensitivity1 specificity2 1) was used to compute the optimal
cutoff value. P values,.05 were considered statistically significant.

Results
Hepatic tissue factor activates coagulation and
drives intrahepatic fibrin(ogen) deposition
after PHx
Previous studies showed that liver TF drives coagulation in mice
with acute liver injury.19,30 Plasma TAT levels increase after PHx in
mice, suggesting that PHx activates the coagulation cascade.18

To determine if rapid coagulation activation after PHx is driven
by hepatic TF, mice with liver-specific TF deficiency (HPCDTF

mice) and control mice (TFflox/flox) underwent a two-thirds PHx,
and TAT levels were examined 30 minutes later. HPCDTF mice
had significantly reduced TAT levels 30 minutes after PHx com-
paredwith controlmice, suggesting that hepatic TF is an important
sourceof TF required for the generation of thrombin following PHx
(Figure 1A). We next investigated whether this decrease in
coagulation activation affected intrahepatic fibrin(ogen) depo-
sition after PHx. There was no effect of genotype on intrahepatic
fibrin(ogen) deposition in the liver of sham-operated mice
(Figure 1B-C). Extensive intrahepatic fibrin(ogen) deposits were
observed in livers of TFflox/flox mice after PHx (8.46 4.6% positive
pixels). In contrast, deletion of liver TF led to significant atten-
uation of intrahepatic fibrin(ogen) staining in HPCDTF mice after PHx
(1.8 6 1.3% positive pixels). To determine whether this early reduc-
tion in intrahepatic fibrin(ogen) deposition was linked to impaired
regeneration, we assessed hepatocyte proliferation 3 days after PHx
in HPCDTF and TFflox/flox mice. There was no difference in the amount
of Ki-67–positive hepatocytes between TFflox/flox mice and HPCDTF

mice undergoing sham surgeries (Figure 1D-E). Abundant pro-
liferating hepatocytes were present in livers of TFflox/flox mice
after PHx, and this was significantly reduced in the HPCDTF mice
(40 6 12% vs 28 6 7% Ki-67–positive hepatocytes).

Intrahepatic fibrin(ogen), rather than
PAR-4–mediated platelet activation, drives
coagulation-mediated stimulation of
liver regeneration
A previous study showed that inhibition of thrombin activity
delays liver regeneration after PHx.18 To investigate whether
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intrahepatic fibrin(ogen) and/or platelet activation are the
thrombin targets driving regeneration after PHx, regeneration
was examined in fibrinogen-depleted mice and mice lacking the
major thrombin receptor on mouse platelets (PAR-42/2 mice).
The defibrinating agent ancrod was given 2 hours before or
2 hours after PHx to assess if early intrahepatic fibrin(ogen)
deposition (ie, within the first 2 hours after PHx) is required for
sufficient liver regeneration, as was previously observed for
platelets.27 As anticipated, intrahepatic fibrin(ogen) deposition
was dramatically attenuated 30 minutes after PHx in mice that

had received ancrod 2 hours before the surgery (Figure 2A-B).
Hepatocyte proliferation 3 days after PHx was significantly im-
paired in mice that received ancrod 2 hours before PHx com-
pared with vehicle-treated mice (30 6 11% vs 60 6 11%
Ki-67–positive hepatocytes) (Figure 2C-D). In contrast, depleting
fibrinogen 2 hours after PHx had no significant effect on he-
patocyte proliferation 3 days after PHx compared with vehicle-
treated mice (48 6 16% vs 60 6 11% Ki-67–positive hep-
atocytes). To determine whether platelet activation by thrombin
plays a role in coagulation-mediated stimulation of liver
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Figure 1. Effect of liver TF deficiency on coagulation activation, fibrin(ogen) deposition, and liver regeneration after PHx. TFflox/flox mice and TFflox/flox/albumin Cre
(HPCDTF) mice were euthanized 30minutes (n5 3 for sham, n5 6 for PHx) or 3 days (n5 6 for sham, n5 8 for PHx) after sham or PHx. (A) TAT plasma levels 30minutes after PHx for
TFflox/flox mice and HPCDTF mice. (B) Representative images of fibrin(ogen) immunohistochemical staining 30 minutes after sham (upper panels) or PHx (lower panels).
(C) Quantification of fibrin(ogen) deposition in TFflox/flox and HPCDTF mice, expressed as percent positive pixel count. (D) Quantification of Ki-67–positive hepatocytes, expressed
as the percentage of the total number of hepatocytes. (E) Representative images of Ki-67–stained livers for sham (upper panels) or PHx (lower panels) 3 days after surgery.
Bars represent mean 1 SEM. Horizontal lines represent the mean, closed circles are individual mice. *P , .05.
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regeneration, we performed PHx in PAR-42/2mice. There was no
effect of genotype on hepatocyte proliferation in the livers of
sham-operated mice (Figure 2E-F). In addition, there was also no
difference in hepatocyte proliferation between PAR-42/2 mice
and WT mice 3 days after PHx (47 6 12% vs 40 6 8% Ki-
67–positive hepatocytes).

Intrahepatic fibrin(ogen) deposition drives platelet
accumulation in the liver remnant
To assess whether intrahepatic fibrin(ogen) deposition
drives platelet accumulation after PHx, we measured platelet

accumulation within the liver remnant in vehicle-treated mice
and fibrinogen-depleted mice by using intravital microscopy.
Platelets rapidly accumulated in the liver remnant after PHx in the
vehicle-treated mice but not in the fibrinogen-depleted mice
(Figure 3A-B). Fibrin(ogen) depletion significantly attenuated
both the number and size of platelet aggregates in the liver
remnant after PHx (Figure 3C-D), suggesting that intrahepatic
fibrin(ogen) deposition indeed drives platelet accumulation. We
next evaluated the effect of platelet depletion, by injection of
a platelet-depleting antibody, on intrahepatic fibrin(ogen) de-
position after PHx. Injection of the platelet-depleting antibody
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Figure 2. Effect of fibrinogen depletion and PAR-4 de-
ficiency on liver regeneration after PHx. Mice were eutha-
nized 30 minutes or 3 days after sham or PHx. (A) Representative
images of fibrin(ogen) immunohistochemical staining 30 minutes
after PHx in vehicle-treated (control, upper panel) and ancrod-
treated (lower panel) mice. (B) Quantification of fibrin(ogen) de-
position after PHx, expressed as positive pixel count (n 5 8). (C)
Representative images of Ki-67–stained livers 3 days after PHx for
vehicle-treated mice (upper panel), mice receiving ancrod 2 hours
before PHx (middle panel), and mice receiving ancrod 2 hours
after PHx (lower panel). (D) Quantification of Ki-67–positive hepa-
tocytes, expressed as percentage of total number of hepatocytes
for control mice (n5 8), andmice treatedwith ancrod 2 hours prior
(n 5 8) or after (n 5 7) PHx. (E) Quantification of Ki-67–positive
hepatocytes, expressed as percentage of total number of hepa-
tocytes for WT and PAR-42/2 mice (n5 6 for sham, n5 7 for PHx).
(F) Representative images of Ki-67–stained livers for sham (upper
panels) or PHx (lower panels) 3 days after surgery for WT and PAR-
42/2 mice. Horizontal lines represent the mean; closed circles are
individual mice. *P , .05.
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24 hours before PHx decreased circulating platelets .98%
(from 640 6 81 3 109/L before injection to 4.5 6 2.6 3 109/L
24 hours after injection of the platelet-depleted antibody; n5 4).
In thrombocytopenic mice, intrahepatic fibrin(ogen) deposition
30 minutes after PHx was dramatically attenuated compared with
control mice (0.62 6 0.34% positive pixel count vs 2.7 6 1.3%
positive pixels) (Figure 3E-F). Thus, intrahepatic fibrin(ogen) de-
position and platelet accumulation after PHx seem to be con-
nected mechanisms.

Lack of increase in intrahepatic fibrin(ogen)
deposition is associated with postresection LD
in humans
We next investigated whether intrahepatic fibrin(ogen) de-
position also increases in patients undergoing liver resection.
A total of 312 patients undergoing liver resection were included
in this study. Patient characteristics of this cohort are shown in

Table 1. Liver biopsy specimens were obtained from 11 patients
before resection (before) and 2 hours after (post-resection) li-
gation of the portal vein and consequent initiation of liver re-
generation. Consistent with the experimental data obtained in
mice, intrahepatic fibrin(ogen) deposition increased significantly
in human livers after completion of resection compared with
livers before resection (4.6 6 3.22% vs 1.8 6 0.75% positive
pixels) (Figure 4A). Interestingly, not all patients undergoing liver
resection exhibited an increase in intrahepatic fibrin(ogen) de-
position in their liver remnant (Figure 4B). In particular, patients
with normal postoperative development collectively showed an
increase in intrahepatic fibrin(ogen) deposition (Figure 4B-C).
Remarkably, minimal to no increase in intrahepatic fibrin(ogen)
deposition was observed in livers of patients who developed
postresection LD. Indeed, the magnitude of increase in intra-
hepatic fibrin(ogen) deposition was significantly higher in
patients without LD (4.7 6 2.6-fold vs 1.5 6 0.9-fold)
(Figure 4D).
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Figure 3. Coagulation–platelet cross talk during liver regeneration after PHx. Platelets were visualized in the liver remnant using intravital microscopy. Platelets were labeled
by IV injection of phycoerythrin-conjugated anti-mouse CD49b (red) immediately after PHx. Imaging was performed for 1 hour. Autofluorescent signal of the liver is shown in
green to visualize liver anatomy. Representative images at 30 minutes after PHx in (A) vehicle-treated mice (n 5 4) and (B) ancrod-treated mice (n 5 4); images are from
4 individual mice per treatment group. Original magnification, 1003. Quantification of: (C) the number of platelet aggregates per field of view (FOV) and (D) the size equal
to or larger than the indicated sizes. (E) Representative images of fibrin(ogen)-stained livers 30 minutes after sham (upper left panel) or PHx (upper right panel) for control
mice, and 30 minutes after PHx for mice receiving R300 to deplete platelets (lower left panel). (F) Quantification of fibrin(ogen) deposition, expressed as percentage
of positive pixel count, in livers of vehicle-treated mice (n 5 7) or mice receiving R300 (n 5 8) to deplete platelets. (F) Data are expressed as mean 1 SEM. *P , .05.
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Low postoperative plasma fibrinogen levels are
associated with LD and poor outcome after liver
resection in humans
Because we observed no increase in intrahepatic fibrin(ogen)
deposition in patients who suffered from postoperative LD, we
evaluated whether plasma fibrinogen levels are associated
with poor recovery of liver function after liver resection. Blood
samples were obtained from 312 patients, 1 day before surgery
and on POD1 and POD5.Of the 312 patients included, 32 (10%)
developed postresection LD. Preoperative plasma fibrinogen
levels did not differ between patients regardless of whether they
suffered from LD after the resection (4216 102 mg/dL vs 4296
91 mg/dL) (Figure 5A). However, patients who suffered from
postoperative LD had significantly lower plasma fibrinogen
levels on POD 1 compared with patients who did not (349 6
82 mg/dL vs 272 6 73 mg/dL). This difference in plasma fi-
brinogen levels was also observed on POD 5 (565 6 147 mg/dL
vs 376 6 182 mg/dL). We further assessed whether plasma fi-
brinogen levels were associated with postoperative mortality,

defined as death within 90 days after surgery. Preoperative
plasma fibrinogen levels did not differ between patients who
died and patients who survived (421 6 97 mg/dL vs 419 6
158 mg/dL) (Figure 5B). However, patients who suffered from
postoperative mortality had significantly lower plasma fibrino-
gen levels on both POD 1 (3436 83 mg/dL vs 2676 73 mg/dL)
and POD 5 (548 6 160 mg/dL vs 363 6 192 mg/dL) compared
with patients who did not suffer from postoperative mortality.

We further aimed to characterize the potential of postoperative
plasma fibrinogen levels to predict postoperative clinical out-
come. Receiver-operating characteristic curve analysis revealed
a significant association between postoperative plasma fibrin-
ogen levels and LD at both POD 1 (area under the curve, 0.757)
(Figure 5C) and POD 5 (area under the curve, 0.808) (Figure 5D).
Because early prediction of postoperative LD is critical for clinical
decision-making, a cutoff level for plasma fibrinogen level on
POD 1 was identified by using Youden’s J statistic. Indeed,
patients with plasma fibrinogen levels below the cutoff of
300 mg/dL on POD 1 (Figure 5E) exhibited a higher incidence of
morbidity (48.3% vs 32.7%), postoperative LD (24.7% vs 4.8%),
and mortality within 90 days after surgery (5.6% vs 1.4%).

Discussion
It has been previously observed that a low platelet count is an
independent predictor of delayed postoperative liver function
recovery and is associated with an increased risk of post-
operativemortality after liver resection in humans.12 In mice, liver
regeneration is also significantly delayed when platelets are
depleted or functionally impaired.5,7 Within the present study,
we conclusively identified intrahepatic fibrin(ogen) deposition as
a central molecule for early intrahepatic platelet accumulation
driving liver regeneration after PHx. Previous studies also in-
dicated that other hemostatic factors, including von Willebrand
factor (VWF), contributed to intrahepatic platelet accumulation
and regeneration after PHx.27,31 Indeed, we found that early and
selective removal of individual components of hemostasis
(ie, platelets, TF, VWF,27 fibrin(ogen)) similarly delays liver re-
generation after liver resection. Of note, the reciprocal inter-
actions between these various factors (eg, platelets promote
coagulation and vice versa) complicate identification of a strictly
linear mechanism whereby these mediators contribute to re-
generation. Still, this complex interplay highlights the impor-
tance of the hemostatic system in liver regeneration, which is
reflected by the fact that deficiency in any one of these he-
mostatic components can have a profound negative impact on
liver regeneration after PHx.

Fibrin(ogen) deposits were recently observed in livers of mice
after PHx,18 but the mechanism triggering intrahepatic fibrin(ogen)
deposition was unknown. We discovered that liver-associated
TF triggers the rapid intrahepatic procoagulant response
(ie, within 30 min) after PHx. As a consequence of typical
vascular injury, subendothelial TF is exposed to its ligand fac-
tor VIIa (FVIIa), triggering coagulation.32 However, in the liver,
hepatocytes express a TF:FVIIa complex in an encrypted form that
has minimal to no procoagulant activity and requires activation via
decryption to activate coagulation.19 The triggers for hepatocyte
TF activation after PHx are not known. Among the primary stimuli
for the activation of TF is the loss of phospholipid asymmetry on
the outer cell membrane and interaction of the TF:FVIIa complex

Table 1. Patient demographic characteristics

Parameter
Entire cohort
(n 5 312)

Intraoperative
cohort (n 5 11)

Sex
Male 199 (63.8%) 6 (54.5%)
Female 113 (36.2%) 5 (45.5%)

Age, y 62 (28-84) 63 (35-76)

Hepatic resection
Minor (,3 segments) 187 (59.9%) 0 (0.0%)
Major ($3 segments) 125 (40.1%) 11 (100.0%)

Cofactors
Neoadjuvant CTx 274 (87.8%) 7 (63.6%)
Portal vein embolization 6 (1.9%) 0 (0.0%)
Intraoperative RBC count 44 (14.1%) 2 (18.2%)
Steatosis, % 10 (0-95) 3 (0-20)

Preoperative parameters
PDR, % 19.4 (3.5-36.0) 22.0 (17.0-32.0)
R15, % 5.8 (0.4-59.2) 4.0 (1.0-17.0)
Platelets, 3103/mL 157 (49-503) 252 (172-335)
Serum bilirubin, mg/dL 0.62 (0.19-2.87) 0.84 (0.31-1.18)
Prothrombin time, % 106 (45-150) 105 (68-124)
AP, U/L 103 (42-1111) 102 (65-707)
GGT, U/L 46 (9-968) 77 (36-968)
AST, U/L 28 (5-496) 29 (22-58)
ALT, U/L 23 (2-410) 39 (17-372)
Albumin, g/L 41.0 (21.0-50.0) 40.0 (35.5-44.5)

Postoperative outcome
Liver dysfunction (ISGLS) 32 (10.3%) 6 (54.5%)
Mortality (within POD 90) 8 (2.6%) 1 (9.1%)
Hepatic failure 5 (62.5%)
Infection 2 (25%)
Pulmonary embolism 1 (12.5%)

Data are presented as median (range) unless otherwise indicated. ALT, alanine
aminotransferase; AP, alkaline phosphatase; AST, aspartate aminotransferase; CTx,
chemotherapy; GGT, gamma-glutamyl transpeptidase; ISGLS, International Study Group of
Liver Surgery; PDR, plasma disappearance rate; R15 5 retention rate at 15 minutes; RBC,
red blood cell.
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with externalized phosphatidylserine. In models of acute and
chronic liver injury, apoptotic cell death is one potential trigger for
phosphatidylserine externalization and coagulation33-35; however,
cell death is minimal after PHx due to strong activation of the
antiapoptotic Akt pathway.36 Nonetheless, this finding does not

exclude nonapoptotic mechanisms of phosphatidylserine exter-
nalization as a driver for coagulation after PHx. Coagulation ac-
tivation may also occur as a consequence of hemodynamic
alterations within the liver remnant. Indeed, increased intrahepatic
shear stress has been proposed as a start signal for regeneration,
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and it has been shown to increase TF expression and activity in
other experimental settings.37,38 Although the mechanism
whereby hepatic TF becomes activated after PHx is not
known, our studies are the first to identify hepatic TF as an early
and critical trigger of coagulation-mediated liver regeneration.

A previous study showed that inhibition of thrombin activity
delayed liver regeneration in mice after PHx, suggesting
a potential role for fibrin(ogen) in liver regeneration.18 Moreover,
lack of plasminogen activator inhibitor-1, which increases intra-
hepatic fibrin(ogen) deposition, improved regeneration after PHx.
Although both of these studies indirectly implicated fibrin(ogen),
neither definitively identified fibrin(ogen) as a proregenerative
stimulus after PHx.Here,we show for the first time that fibrin(ogen)
contributes directly to liver regeneration after PHx in mice.
Notably, rapid intrahepatic fibrin(ogen) deposition is critical to
support later events in regeneration, which is depicted by the
reduced hepatocyte proliferation in mice where fibrinogen was
depleted before PHx. In contrast, depletion of fibrinogen 2 hours
after PHx had no effect on later hepatocyte proliferation. Strik-
ingly, this observation could also be translated into the clini-
cal setting of liver resection, where the lack of intrahepatic
fibrin(ogen) deposition in the regenerating liver was directly
linked to the development of postoperative LD. Furthermore,
we found that low postoperative plasma fibrinogen levels were
associated with LD and mortality after liver resection in humans
and that plasma fibrinogen levels on POD 1 have the potential to
predict poor postoperative outcome in patients undergoing re-
section. Taken together, the parallels between experimental data
and human validation with respect to fibrin(ogen) deposition
underline its relevance during regenerative processes after liver
resection. The basis for failed hepatic fibrin(ogen) deposition in
some patients is not known but could be a consequence of de-
creased potential to generate thrombin during liver regenera-
tion or a failure of TF decryption in the liver. Future investigations
should consider the calibrated automated thrombin generation
test or markers of coagulation activation such as prothrombin
fragment 112 to determine a relative hypocoagulable state and
to measure thrombin generation in patients undergoing resection.
However, the amount of thrombin generated in the liver might
be too small to produce detectable increases in prothrombin
fragment 112 in the systemic circulation, and there are clear
challenges in measuring hepatic TF decryption in patients.

A previous study suggested that thrombin contributes to re-
generation after PHx.18 Our studies uncovered that the mech-
anism whereby thrombin drives liver regeneration is not
mediated by platelet activation, as hepatocyte proliferation was
unaffected in PAR-42/2 mice after PHx. Although platelet acti-
vation by thrombin is not required for regeneration, additional
platelet activation pathways may explain the stimulatory effects
of platelets on liver regeneration. Indeed, mice given the P2Y12
inhibitor clopidogrel have impaired liver regeneration after
PHx.7 Here, we document for the first time that thrombin-driven
intrahepatic fibrin(ogen) deposition drives liver regeneration.
Our results indicate that fibrin(ogen) supports the localization
and aggregation of platelets in the liver after PHx, as elimination
of fibrinogen in mice reduced intrahepatic platelet accumula-
tion. Indeed, fibrin(ogen) is known to drive platelet aggregation
directly by binding to aIIbb3 integrin on platelets.16 Intrahepatic
fibrin(ogen) deposition may thus directly stimulate regeneration
by functioning as a matrix to localize and promote aggregation

of platelets in the liver after PHx. Indeed, in a small study, we
found that platelet accumulation after PHx was dramatically
reduced in mice lacking integrin aIIb (CD41) on their platelets
(supplemental Figure 1A-C, available on the Blood Web site).
However, it is possible that intrahepatic fibrin(ogen) also pro-
motes the recruitment and activation of other cell types essen-
tial for liver regeneration in addition to platelet recruitment. For
example, fibrin(ogen) engagement of the integrin aMb2 is a
catalyst for leukocyte-driven repair of the liver after acetamin-
ophen overdose.39 Leukocytes are recruited to the liver remnant
in mice undergoing PHx, and liver regeneration is delayed in
leukocytopenic mice.40 Thus, it is conceivable that fibrin(ogen)–
leukocyte interactions promote regeneration after PHx, as in toxic
liver injury.39 Alternatively, fibrin(ogen) may be required to pro-
mote leukocyte-directed platelet recruitment, or vice versa, after
PHx. Although the interaction between platelets and leukocytes in
the setting of PHx has not been studied extensively, in other
models, platelets form a surface for leukocytes adhesion, and
the interaction between these 2 cell types can facilitate liver
repair.41

Major liver resections have become increasingly safe due to
refinement of operative techniques. Nevertheless, impairment
of liver regeneration occurs in a meaningful number of patients.4

This outcome is of specific interest, as there are currently no
strategies available to stimulate liver regeneration. Importantly,
the hemostatic system may offer biomarkers capable of pre-
dicting successful regeneration in patients and could provide
novel putative therapeutic targets to recover regeneration after
liver resection in humans. For example, some clinical evidence
suggests that administration of platelet concentrates improves
outcome after liver surgery in humans.10,11 However, increased risk
for (portal vein) thrombosis,42 mortality,43 and cancer recurrence44

create a high risk/benefit ratio. In this context, an initial burst
in VWF plasma levels was shown to be relevant for adequate
platelet accumulation and liver regeneration in patients under-
going liver resection.31 Hence, infusion of 1-deamino-8-D-arginine
vasopressin (DDAVP), a drug that stimulates VWF secretion, or
VWF supplementation seem attractive alternatives to platelet
concentrates. However, DDAVP will most likely only be effective
in patients with relatively low baseline VWF levels,31,45 and VWF
supplementation might increase the risk for thrombosis.46-48

Our experimental and clinical data show that intrahepatic
fibrin(ogen) deposition directly after liver regeneration needs
to be achieved to support liver regeneration. Supplementation
with fibrinogen concentrate before or during the resection pro-
cedure might therefore be a novel clinical approach to target
failing regenerative responses with a much better risk/benefit
ratio than platelet or VWF supplementation. The thrombogenic
potential of fibrinogen concentrates seems to be low,49 and fi-
brinogen supplementation has been shown to be safe in the
context of liver transplantation.50 Based on both our exper-
imental and clinical data, additional studies exploring the pro-
regenerative effects of fibrinogen in experimental settings are
warranted, as these studies could lead to novel strategies to im-
prove liver regeneration.

In conclusion, we identified rapid intrahepatic fibrin(ogen) de-
position as a hepatic TF-driven process in the liver remnant after
PHx in mice. This study is the first to definitively identify fibrin(ogen)
deposition as a direct stimulus for liver regeneration after PHx.
In addition, our data underline the relevance of this process for
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human postoperative liver regeneration. The results suggest
that coagulation- and platelet-stimulated liver regeneration
pathways are closely connected, and a failure of either of these
pathways in the early phase after liver resection might reduce
the capacity of the remnant liver to regenerate. Hence, ther-
apies assuring normal hemostatic function during the earliest
phase of regeneration after liver resection might offer a new
opportunity to improve liver regeneration. More research on this
topic, as well as clinical examination, needs to be performed to
validate this hypothesis.
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