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KEY PO INT S

l CDK9 exhibits
differential binding
to distinct cellular
elements of mTOR
complexes and forms
CDK9-mTOR-like
complexes (CTORC1
and CTORC2).

l CTORC1 controls
transcription of genes
important for
leukemogenesis,
whereas CTORC2
controls mRNA
translation.

Aberrant activation of mTOR signaling in acute myeloid leukemia (AML) results in a survival
advantage that promotes the malignant phenotype. To improve our understanding of
factors that contribute to mammalian target of rapamycin (mTOR) signaling activation and
identify novel therapeutic targets, we searched for unique interactors of mTOR complexes
through proteomics analyses. We identify cyclin dependent kinase 9 (CDK9) as a novel
binding partner of the mTOR complex scaffold protein, mLST8. Our studies demonstrate
that CDK9 is present in distinct mTOR-like (CTOR) complexes in the cytoplasm and nucleus.
In the nucleus, CDK9 binds to RAPTOR and mLST8, forming CTORC1, to promote tran-
scription of genes important for leukemogenesis. In the cytoplasm, CDK9 binds to RICTOR,
SIN1, and mLST8, forming CTORC2, and controls messenger RNA (mRNA) translation
through phosphorylation of LARP1 and rpS6. Pharmacological targeting of CTORC com-
plexes results in suppression of growth of primitive human AML progenitors in vitro and
elicits strong antileukemic responses in AML xenografts in vivo. (Blood. 2019;133(11):
1171-1185)

Introduction
The clinical management of acute myeloid leukemia (AML)
remains a challenge because there are limited treatment
options, after the failure of initial therapy.1 Therapeutic targeting
of themammalian target of rapamycin (mTOR) pathway has been
an area of significant interest, because mTOR signaling plays
a central role in aberrant leukemia cell proliferation and survival.2

Approximately 60% of AML patients possess mutations resulting
in the activation of the mTOR pathway.2 mTOR is a serine/
threonine kinase that plays a central role in the regulation of
cellular processes, including protein synthesis, metabolism, and
growth.2-4 mTOR coexists in 2 complexes, mTORC1 and
mTORC2. mTORC1 consists of mTOR, Raptor, mLST8, Deptor,
and PRAS40 and controls messenger RNA (mRNA) translation
and ribosome biogenesis through phosphorylation of 4E-BPs
and S6K.2-4 mTORC2 consists of mTOR, Rictor, mLST8, Protor,
Sin1, and Deptor and mediates antiapoptotic responses, pri-
marily via regulation of the kinase AKT.2-4

Despite the anticipated therapeutic potential of mTOR in-
hibition, investigation of small molecules that inhibit mTORC1
in AML has yielded limited clinical responses.5-7 Various factors

limiting the efficacy of mTORC1 inhibition in leukemia have
been identified, including the presence of negative regulatory
feedback loops and redundant pathways that confer a survival
advantage.2,3,8,9 This has led to the development of catalytic
mTOR inhibitors, which inhibit both mTORC1 and mTORC2,
and combinatorial strategies using inhibitors that target PI3K,
autophagy, and MAPK pathways.9-16 However, none of these
approaches have been approved for clinical use thus far, in part,
due to limited responses or dose limiting toxicity.2,17-20 There-
fore, it is crucial to discover new elements and effectors of the
mTOR pathway that could be therapeutically targeted.

Accordingly, we undertook a proteomic screen using liquid
chromatography tandem mass spectrometry (LC-MS/MS) to
identify novel interactors with components of mTOR complexes.
Herein, we report that cyclin dependent kinase 9 (CDK9) binds to
the common mTOR complex scaffold protein, mLST8, and is
a key element of unique CDK9 mTOR-like complexes (CTORC).
CDK9 is a well-characterized kinase, traditionally bound to cyclin
T, and plays a critical role in the regulation of transcriptional
elongation.21,22 As we outline below, we demonstrate a novel
role for mTORC1 components in CDK9’s role in transcriptional
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Figure 1. MS identifies CDK9 as a unique binding partner for mLST8, sharing common signaling pathways and associated proteins. (A) mLST8 was immunoprecipitated
from U937 cell lysates using magnetic beads preconjugated with an anti-mLST8 antibody. U937 cells were also fractionated into cytoplasmic (CYTO) and nuclear (NUC) extracts;
then CDK9 was immunoprecipitated with magnetic beads preconjugated with an anti-CDK9 antibody. Rabbit IgG (RIgG) preconjugated beads were used as negative controls
for nonspecific binding. Immunoprecipitated proteins were resolved by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE), and the gel was cut into
10 equivalent bands prior to standard in-gel digestion. Samples were prepared using standard techniques and then analyzed via nano LC-MS/MS. The results from MS
were annotated using Metascape. The heat map shows the most significant pathways and the overlap between the 3 groups mLST8 IP, CDK9 CYTO IP, and CDK9 NUC IP.
A full summary of the results is included in supplemental Table 1. (B) List of proteins from the MS results that overlap between the CDK9 IPs and mLST8 IPs. (C) The list of genes
in panel B was annotated and analyzed for the most significant pathways represented using Metascape. The heat map shows the most significant pathways represented
in the list of overlapping proteins. rRNA, ribosomal RNA.
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Figure 2. CDK9 binds to protein components of mTOR complexes. (A) U937 cells were lysed, and mLST8 was immunoprecipitated with magnetic beads preconjugated
with an anti-mLST8 antibody. Rabbit IgG preconjugated beadswere used as negative controls for nonspecific binding. Proteins were resolved by SDS-PAGE and immunoblotted
with the indicated antibodies. mTOR was used as a positive control for binding. (B) HA-mLST8 was coexpressed with various FLAG-CDK9 acetylation mutants in 293T cells.
Cells were lysed in (3-((3-cholamidopropyl) dimethylammonio)-1-propanesulfonate) (CHAPS) buffer, and FLAG-CDK9 was immunoprecipitated with Sepharose beads pre-
conjugated with an anti-FLAG-M2 antibody. Proteins were resolved by SDS-PAGE and immunoblotted with the indicated antibodies. (C) HA-mLST8 or HA-RAPTOR was
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regulation by forming a novel nuclear complex, CTORC1. Our
findings also suggest the existence of a novel cytoplasmic
complex, CTORC2, that functions in an “mTORC1-like” role. We
demonstrate that CDK9 inhibition affects phosphorylation of
the downstream mTORC1 targets, rpS6 and LARP1, thereby
suppressing mRNA translation of mitogenic genes. Finally, we
demonstrate that CDK9 inhibition suppresses the growth of
primitive AML precursors and enhances the antileukemic effects
of cytarabine in vitro and in vivo.

Methods
Cell lines
U937 and HEL leukemia cell lines were grown in RPMI 1640
medium with 10% fetal bovine serum (FBS). The MV4-11 leu-
kemia cell line was grown in Iscove modified Dulbecco me-
dium with 10% FBS. The Kasumi-1 leukemia cell line was
grown in RPMI 1640 medium with 20% FBS. The KG-1 leukemia
cell line was grown in Iscove modified Dulbecco medium with
20% FBS. All leukemia cell lines were tested by short tandem
repeat analysis. The 293T cell line was obtained from Clontech
and grown in Dulbecco’s modified Eagle medium with
10% FBS.

Animal xenograft studies
All animal studies were approved by theNorthwestern University
Institutional Animal Care and Use Committee. More detailed
information can be found in the supplemental material, available
on the Blood Web site.

Primary AML patient samples
Peripheral blood or bone marrow samples were collected from
patients with AML after obtaining informed consent as approved
by the institutional review board of Northwestern University.
Mononuclear cells were isolated by Ficoll-Hypaque (Sigma-
Aldrich) gradient sedimentation.

Chemicals
Atuveciclib (BAY1143572)23 was purchased fromActive Biochem
and used at a dose of 3 mM for U937 and 1 mM for MV4-11 cells,
unless otherwise indicated. Vistusertib (AZD-2014) was pur-
chased from Chemietek and used at a dose of 500 nM. Rapa-
mycin was purchased from Sigma-Aldrich and used at a dose of
25 nM. Cytarabine was purchased from Sigma-Aldrich.

Cell viability assays
Cell viability assays were performed as previously described
using WST-1 Reagent (Roche).13,24,25 Cells were treated with
either dimethyl sulfoxide (DMSO) or escalating doses of
atuveciclib.

Clonogenic leukemic progenitor assays
in methylcellulose
These assays were performed essentially as described in pre-
vious studies.8-11,13 To assess the effect of atuveciclib on leu-
kemic progenitor colony formation (CFU-L), mononuclear cells
were plated in methylcellulose in the presence of DMSO or
escalating doses of atuveciclib.

Plasmids and transfections
pRK5-MYC- RICTOR,26 pRK5- HA-mLST8,26 pRK5-HA-RAPTOR,27

pMSCV -MYC-mSIN1.1,28 and pYPF-C1- mTOR29 were purchased
from Addgene. pCMV2- FLAG- CDK9 WT30 was kindly provided
by David Gius from Northwestern University. The mutant CDK9
plasmids were generated using site-directed mutagenesis by
BioInnovatise, Inc. 293T cells were transfected with plasmid using
lipofectamine 2000, according to the manufacturer’s protocol.

Cell lysis and immunoblotting
These assayswere performed as described in previous studies.13,24

More detailed information can be found in the supplemental
material.

Cytoplasmic and nuclear fractionation
Cell cytoplasmic and nuclear fractionations were prepared
according to the protocol detailed in the NE-PER Nuclear and
Cytoplasmic Extraction Reagent Kit (ThermoFisher).

Coimmunoprecipitation (IP) assays
These assays were performed essentially as described in pre-
vious studies.31,32 More detailed information can be found in the
supplemental material.

LC-MS/MS analysis
Detailed LC-MS/MS methods and data analysis can be found in
the supplemental material.

Quantitative reverse transcription polymerase
chain reaction (qRT-PCR)
RNA was isolated using the RNeasy kit (Qiagen). mRNA was
reverse transcribed into complementary DNA using the Su-
perScript IV VILOMaster Mix (ThermoFisher). Real-time PCR for
MYC, PIM1, 18S, ACTB, HPRT1, and GAPDH genes was carried
out by a CFX96 Real-Time PCR Detection System (Bio-Rad),
using commercially available fluorescein amidite–labeled probes
(Bio-Rad) and primers (Applied Biosystems). Relative quantitation
of mRNA levels was calculated using theDDCtmethod and plotted
as fold increase compared with untreated samples. GAPDH was
used for normalization.

Figure 2 (continued) coexpressed with FLAG-CDK9 in 293T cells. Cells were lysed in CHAPS buffer, and FLAG-CDK9 was immunoprecipitated with Sepharose beads
preconjugated with an anti-FLAG-M2 antibody. Proteins were resolved by SDS-PAGE and immunoblotted with the indicated antibodies. (D) MYC-RICTOR or MYC-mSIN1 was
coexpressed with FLAG-CDK9 in 293T cells. Cells were lysed in CHAPS buffer, and FLAG-CDK9 was immunoprecipitated with Sepharose beads preconjugated with an
anti-FLAG-M2 antibody. Empty vector coexpressed with MYC-RICTOR or MYC-SIN1 was used a negative control for nonspecific binding. Proteins were resolved by SDS-PAGE
and immunoblotted with the indicated antibodies. (E) YFP-mTOR was coexpressed with FLAG-CDK9 in 293T cells. Cells were lysed in CHAPS buffer, and FLAG CDK9 was
immunoprecipitated with Sepharose beads preconjugated with an anti–FLAG-M2 antibody. Empty vector coexpressed with YFP-mTOR was used as a negative control for
nonspecific binding. Proteins were resolved by SDS-PAGE and immunoblotted with the indicated antibodies. (F) U937 cells were fractionated into cytoplasmic and nuclear
lysates. Proteins were resolved by SDS-PAGE and transferred to polyvinylidene fluoride (PVDF) membranes. Membranes were then immunoblotted with antibodies for tubulin
(cytoplasmic marker) and lamin A/C (nuclear marker) to verify cellular fractionation. IP with magnetic beads preconjugated to an anti-CDK9 antibody was performed
on cytoplasmic and nuclear cell lysates from U937 cells. Rabbit IgG preconjugated beads were used as negative controls for nonspecific binding. Proteins were resolved
by SDS-PAGE and immunoblotted with the indicated antibodies.
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Chromatin immunoprecipitation (ChIP)
ChIP was performed using the SimpleChIP Enzymatic Chromatin IP
Kit with magnetic beads and antibodies from Cell Signaling, as
per the manufacturer’s instructions. Normal rabbit immunoglobulin

G (IgG) was used as a negative control. Quantitative polymerase
chain reaction (qPCR) was performed on purified immunoprecipitated
DNA for the MYC and PIM1 promoters using PowerUp SYBR Green
Master Mix (ThermoFisher) with previously published primers33,34:
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Figure 3. The CDK9/mLST8/RAPTOR nuclear complex regulates expression of genes important for leukemogenesis. (A) MV4-11 cells were crosslinked with 1%
formaldehyde. Chromatin-protein complexes were immunoprecipitated with anti-CDK9, anti-mLST8, and anti-RAPTOR antibodies. Rabbit IgG and anti-RICTOR antibodies
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over the IgG control. Shown are means 1 standard error (SE) of 4 independent experiments. (B) Cells were treated with atuveciclib for 0, 1, 2, and 4 hours. Cells were then
lysed, and proteins were resolved by SDS-PAGE, followed by transfer to PVDF membranes. Membranes were immunoblotted with the indicated antibodies. The
immunoblots with antibodies against the phosphorylated forms of the proteins or against the total proteins were from lysates from the same experiments analyzed in parallel
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NOVEL CDK9 COMPLEXES IN AML blood® 14 MARCH 2019 | VOLUME 133, NUMBER 11 1175

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/133/11/1171/1552716/blood870089.pdf by guest on 08 June 2024



MYCF-ACGTTTGCGGGTTACATACAGTGC; MYCR-GAGAGGA
GTATTACTTCCGTGCCT; PIM1F-AATGCAATCAACAGAAAAG
CTGTAAAT; PIM1R-ACATAACATTGACCTCCA GGTTAGAAT. All
qPCR signals were normalized to the input DNA.

Polysomal profiling and fractionation
Polysomal profiling studies were performed as described
previously.25,35 More detailed information can be found in the
supplemental material.
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the phosphorylated forms of the proteins or against the total proteins were from lysates from the same experiments analyzed in parallel by SDS-PAGE. (B) Lysates from
cytoplasmic fractions of U937 and MV4-11 cells were immunoprecipitated by CDK9- or Rabbit IgG preconjugated beads. Immunoprecipitated proteins were resolved by SDS-
PAGE and immunoblotted with the indicated antibodies. (C) Lysates from U937 and MV4-11 cells were immunoprecipitated using an anti-LARP1 antibody or Rabbit IgG.

NOVEL CDK9 COMPLEXES IN AML blood® 14 MARCH 2019 | VOLUME 133, NUMBER 11 1177

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/133/11/1171/1552716/blood870089.pdf by guest on 08 June 2024



Assessment of apoptosis by flow cytometry
U937 cells were treated for 48 hours with the indicated doses of
atuveciclib. Samples were processed and analyzed as previously
described.13,25

Statistical analysis
All statistical analyses were performed using GraphPad Prism 6.0.

Results
Proteomic screening identifies CDK9 as a unique
binding partner for mLST8
In the first series of experiments, mLST8 was immunoprecipi-
tated from U937 leukemia cells; then LC-MS/MS analysis was
conducted to identify novel protein interactions. mLST8 was
selected because it is a constituent of both mTOR complexes.2-4

CDK9 and its known partner, Cyclin T1, were identified as po-
tential novel binding partners for mLST8 (supplemental Table 1).
Next, U937 cells were fractionated into cytoplasmic and nuclear
extracts, and CDK9 was immunoprecipitated from both frac-
tions, followed once again by LC-MS/MS analysis (supplemental
Table 1). Pathway and process enrichment analysis was per-
formed on the proteins identified by LC-MS/MS that are putative
binders to mLST8, nuclear CDK9 (CDK9-nuc), and/or cytoplas-
mic CDK9 (CDK9-cyto) in order to identify potentially novel
functions of mLST8 and CDK9 (Figure 1A; supplemental
Table 2). We also sought to determine the pathways mLST8 and
CDK9 may have in common. mRNA and ribosomal RNA pro-
cessing were identified as the most significantly represented
processes among all the proteins associated with mLST8 and/or
CDK9 in LC-MS/MS (Figure 1A). Ribosomal biogenesis or regula-
tion of gene expression/chromatin was also significantly repre-
sented (Figure 1A), suggesting potentially novel roles for mLST8 in
processes related to chromatin reorganization and gene tran-
scription. In addition, these data suggested a novel role for CDK9
in regulation of RNA processing and ribosomal biogenesis.
Next, we narrowed the LC-MS/MS results (supplemental Table 1) to
proteins that bind both mLST8 and CDK9 (nuclear and/or cyto-
plasmic) (Figure 1B). Pathway and process enrichment analysis
of these proteins was performed (Figure 1C; supplemental
Table 3). Our analysis identified that the most significantly repre-
sented pathways are related to RNA processing and translation,
suggesting a novel role for CDK9 in these processes.

Given the significant overlap in proteins that potentially bind to
mLST8 and CDK9, we sought to determine the potential for
mLST8 and CDK9 to form novel complexes. Initially, we vali-
dated the interaction of mLST8 and CDK9 by IP of whole cell
lysates with an anti-mLST8 antibody, followed by immuno-
blotting with an anti-CDK9 antibody (Figure 2A). As CDK9
acetylation has been shown to modify its function,30,36,37 we
examined whether the acetylation status of CDK9 affects the
binding of CDK9 to mLST8. In co-IP studies involving expression

of various CDK9 acetylation mutants, we found that binding of
CDK9 to mLST8 occurs irrespective of CDK9’s acetylation status
(Figure 2B). We then assessed if CDK9 binds to other mTOR
complex components. We co-overexpressed FLAG-CDK9 with
HA-mLST8, HA-RAPTOR, MYC-RICTOR, MYC-mSIN1.1, or YFP-
mTOR in 293T cells and assessed the ability of CDK9 to bind
different mTOR complex components by co-IP. CDK9 interacted
with all the main mTORC1 and mTORC2 pathway components
(Figure 2C-E), suggesting an involvement of CDK9 in both
mTORC1 and mTORC2 signaling.

As mTOR signaling events occur primarily in the cytoplasm,
whereas CDK9 is primarily thought to function in the nucleus, we
next sought to define the cellular compartments where CDK9
and mTOR complex components interact. Cytoplasmic and
nuclear fractions were isolated from U937 cells, immunopreci-
pitated with an anti-CDK9 antibody, and then immunoblotted
using antibodies against different protein components of mTOR
complexes (Figure 2F). We performed western blots for the
cytoplasmic marker b-tubulin and the nuclear marker Lamin A/C
as fractionation controls (Figure 2F). We found that CDK9 binds
to RICTOR and SIN1 in the cytoplasm, whereas it was bound to
RAPTOR in the nucleus (Figure 2F). mLST8 appeared to have
a stronger affinity for CDK9 in the nucleus because significantly
more mLST8 was found bound to CDK9 in the nuclear extracts.
Notably, mTOR and CDK9 did not coimmunoprecipitate in the
fractionated IPs, but did when ectopically overexpressed to-
gether (Figure 2E-F), suggesting that the binding affinity of the
mTOR-CDK9 interaction is weak and/or that CDK9 is present in
distinct complexes that do not include mTOR.

CDK9-, RAPTOR-, and mLST8-containing
complexes bind promoter sites and control
transcription of genes important
for leukemogenesis
In the subsequent set of experiments, we sought to evaluate the
role of CDK9 andmTORC components in the nucleus. To further
confirm the interaction between mLST8, RAPTOR, and CDK9,
we examined whether these components colocalize with CDK9
to promoter sites of MYC and PIM1 genes using ChIP analysis.
The MYC promoter was chosen because it has been previously
shown to be a specific target of CDK9-regulated transcription,34,38,39

while the PIM promoter was evaluated because PIM proteins
are short half-life proteins overexpressed in AML40 primarily
through regulation of gene transcription.41,42 ChIP analysis
revealed that CDK9, RAPTOR, and mLST8 localized at the
promoter regions of both MYC and PIM1 (Figure 3A), further
indicating that these 3 proteins form a complex, CTORC1, that
binds to chromatin. To examine whether promoter-bound
CTORC1 complexes control gene transcription, we examined
the effects of CDK9 inhibition21 onMYC and PIM1gene expression.
As expected,21,22 the CDK9 inhibitor atuveciclib potently inhibited
phosphorylation of RNA polymerase II carboxy terminal domain
at serine 2 but not serine 5 in leukemia cell lines (Figure 3B).

Figure 5 (continued) Immunoprecipitated proteins were resolved by SDS-PAGE and immunoblotted with the indicated antibodies. U937 (D) and MV4-11 (E) cells were treated
with control (DMSO) or atuveciclib for 2 hours, and cell lysates were separated on 10% to 50% sucrose gradients. Gradients were subjected to ultracentrifugation, and
fractions were collected by continuous monitoring of optical density (OD) at 254 nm. The OD 254 nm is shown as a function of gradient depth. A representative profile of
1 of 3 independent experiments is shown. Monosomal and polysomal fractions were resolved by SDS-PAGE and immunoblotted with the indicated antibodies (lower panels).
(F) The areas under the polysomal and monosomal peaks were quantified using ImageJ software. The ratio of area under the polysomal over the monosomal peaks was
calculated for atuveciclib and is represented as percent control (DMSO). Shown are means 1 SE of 3 independent experiments. **P , .01 using a paired Student t test.
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Importantly, treatment with atuveciclib resulted in a dramatic
decrease in c-MYC expression, both the protein and mRNA levels
(Figure 3C-E). Similarly, both PIM1 mRNA and protein expression
were downregulated (Figure 3C-E). Consistent with this, treatment
of primary AML leukemic cells with atuveciclib resulted in significant
downregulation of MYC and PIM1 gene transcription (Figure 3F).
In total, these results strongly suggest a key role for the CTORC1
complex in the control of expression of genes that are important
for leukemogenesis.

To determine whether regulation of CTORC1 is independent
of mTOR, we next examined whether mTOR inhibition blocks
CDK9 activity. Leukemic cells were treated with the mTORC1
inhibitor, rapamycin, or the dual catalytic inhibitor, vistusertib, that
blocks both mTORC1 and mTORC2, and their effects on CDK9
phosphorylation/activation were assessed. Treatment of cells with
either mTOR inhibitor did not affect phosphorylation of RNA
polymerase II at serine 2 or T-loop phosphorylation of CDK9 at
threonine 186, indicating that mTOR does not play a role in the
regulation of CDK9 activity (supplemental Figure 1). In addition,
we did not observe a significant downregulation of MYC or PIM1
mRNA expression with mTOR inhibition (supplemental Figure 1).

CDK9 regulates mRNA translation by controlling
known mTORC1 targets
Few substrates ofCDK9are knownbeyond those associatedwith its
role in transcriptional regulation. In order to identify phosphoryla-
tion events and uncover potential novel targets of CDK9, leukemic
cells were treated with the CDK9 inhibitor, atuveciclib, followed by
phosphoproteomic LC-MS/MS analysis (supplemental Table 4).
Pathway and process enrichment analysis of all proteins whose
phosphorylation was up- or downregulated by CDK9 inhibition was
conducted to determine novel pathways regulated by CDK9
(Figure 4; supplemental Tables 5 and 6). Among the proteinswhose
phosphorylation was downregulated, the top 3 processes were all
related to mRNA processing and splicing (Figure 4A). Some ele-
ments involved in mRNA processing were also upregulated in
response toCDK9 inhibition, likely a consequence of compensatory
mechanisms (Figure 4B). To uncover novel substrates of CDK9, we
searched for proteins downregulated by atuveciclib in the phos-
phoproteomic analysis that also correspond to potential mLST8
and/or CDK9 putative protein binding partners. There were 13
proteins whose phosphorylation was suppressed upon CDK9 in-
hibition and also were found bound to mLST8 and/or CDK9, in-
cluding the mTORC1 targets rpS6 and LARP1 (Figure 4C). CDK9
inhibition resulted in suppression of phosphorylation of rpS6 at
serine 235/236 and serine 240/244 in the phosphoproteomic LC-
MS/MS results (supplemental Table 4). This finding was confirmed
by immunoblotting analyses of U937 and MV4-11 cell lysates after
treatment with atuveciclib (Figure 5A). Notably, we did not observe
effects on phosphorylation of themTORC1 substrate and upstream
regulator of rpS6, S6K, indicating that this effect of CDK9 inhibi-
tion of rpS6 phosphorylation is mTORC1 independent. Phospho-
proteomic analysis revealed that CDK9 inhibition also results in

inhibition of LARP1 phosphorylation at serine 526 (supplemental
Table 4). LARP1 has been previously shown to be an mTORC1
effector and has been implicated as an important regulator of
mRNA translation.43-46 It is important to note that the serine 526 site
found altered in our phosphoproteomics results is a different
phosphorylation site than those previously proposed to be regu-
lated by mTORC1.47-49 We demonstrated an interaction between
CDK9 and LARP1 through co-IP (Figure 5B-C). In addition, because
we previously demonstrated an interaction between CDK9, SIN1,
mLST8, andRICTOR in cytoplasmic fractions, weexaminedwhether
LARP1 is also bound to the cytoplasmic CTORC2 complex. In co-IP
studies, we confirmed that LARP1 binds to SIN1, RICTOR, andmLST8
(Figure 5C), suggesting that LARP1 is directly regulated by CDK9
and mediates downstream mRNA translation of target genes.

In further studies, we examined the effects of CDK9 inhibition on
mRNA translation, using polysomal profiling analysis of leukemia
cell lysates. CDK9 inhibition resulted in the accumulation of mono-
somal fractions and suppression of polysomal fractions in both
U937 andMV4-11 cells (Figure 5D-F). Consistent with a suppression
of polysome formation, we also found that the sedimentation of
several ribosomal proteins, such as rpS3, rpS6, and rpL26 (Figure
5D), was also dependent on CDK9 activity. We also observed
decreased levels of the RNA binding protein PABP1 in monosomal
and polysomal fractions (Figure 5D). Because previous studies have
demonstrated that LARP1 binds to PABP1 and controls recruitment
of PABP1 to the ribosomal machinery,45 these studies suggest that
CDK9 phosphorylation of LARP1 is required for the recruitment of
PABP1 to ribosomes. We investigated whether the translation of
MYC, and PIM1, as well the housekeeping genes 18S, ACTB, and
HPRT1, is being affected by CDK9 inhibition (supplemental
Figure 2). We do not observe significant changes in the mRNA
found in the polysomal fractions compared with total mRNA
expression of any of the genes we examined. This indicates that
global translation is not being inhibited. In addition, this sug-
gests that the major mechanism of CDK9 inhibition on MYC and
PIM1 expression is at the transcriptional level.

To further address the interplay of mTOR and CDK9 complexes
and their role in the regulation of translation, we combined CDK9
and mTOR inhibition and performed polysomal profiling analysis.
Atuveciclib in combination with the mTORC1 inhibitor, rapamycin,
resulted in significant further suppression of translation compared
with either inhibitor alone (supplemental Figure 3). In addition,
combining atuveciclib with the dual catalytic inhibitor vistusertib
also demonstrated significant enhanced suppression of translation
compared with either inhibitor alone (supplemental Figure 3).

CDK9 inhibition results in potent antileukemic
responses in vitro and in vivo
In subsequent studies, we examined the effects of CDK9 inhibition
on leukemic cell proliferation and survival. We first investigated
the effects of atuveciclib on the viability of several leukemia cell
lines. CDK9 inhibition resulted in potent suppressive effects, with

Figure 6 (continued) assessed using flow cytometry, for Annexin V and PI staining. The left panel shows a representative flow cytometry plot. The right panel shows quantitation
of the Annexin V–positive and PI-negative and double-positive Annexin V and PI-stained cells. Shown are themeans1 SE of 4 independent experiments. *P, .05 using a paired
Student t test. (C) U937 cells were incubated with vehicle or atuveciclib at the indicated doses for 48 hours. Proteins from whole cell lysates were resolved by SDS-PAGE and
immunoblotted with the indicated antibodies. (D) The effects of atuveciclib (0.5 mM and 1 mM) on U937-derived leukemic progenitors were assessed in clonogenic assays in
methylcellulose. Effects on CFU-L CFU-L are shown. Data shown are the means 1 SE of 4 different experiments. ***P , .001 using a paired Student t test. (E) The effects of
atuveciclib (0.5 mM and 1 mM) on CFU-L from different patients with AML were assessed in clonogenic assays in methylcellulose. Shown are the mean 1 SE of 5 independent
experiments using cells from 5 different AML patients. **P , .01, ****P , .0001 using a paired Student t test.
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half maximal inhibitory concentration (IC50) values of cell viability
at sub-mmolar doses in all of the cell lines tested (Figure 6A). Using
flow cytometry, we observed a significant increase in annexin V/
propidium iodide (PI) staining after atuveciclib treatment of leu-
kemia cells, indicative of apoptosis (Figure 6B). The induction of
apoptosis by atuveciclib was also demonstrated by immunoblotting
with antibodies to detect cleaved caspase 3 and cleaved PARP
(Figure 6C). Furthermore, atuveciclib exerted suppressive effects
on U937-, MV4-11-, Kasumi-1-, and KG-1-derived CFU-L (Figure
6D; supplemental Figure 4). Importantly, treatment with atuveciclib
elicited potent suppressive effects on primitive leukemic pre-
cursors from patients with AML (Figure 6E). Specific small in-
terfering RNA–mediated knockdown of CDK9 resulted in
suppression of KG-1- and HEL-derived colony formation, consis-
tent with the effects of atuveciclib (supplemental Figure 5). In
addition, atuveciclib in combination with rapamycin resulted in
synergistic suppression of cell viability in U937, KG-1, andMV4-11
cells (supplemental Figure 6A). Synergistic suppression of cell
viability was also observed when atuveciclib was combined with
the catalytic inhibitor vistusertib in U937 and KG-1 cells (supple-
mental Figure 6B), whereas only additive effects were observed in
MV4-11 cells (supplemental Figure 6B).

Next, we examined whether CDK9 inhibition enhances the an-
tileukemic properties of cytarabine, a key component of the
standard chemotherapy regimen used for the treatment of AML
patients. The combination of atuveciclib and cytarabine led to
more potent inhibitory effects on CFU-L growth than with either
agent alone (Figure 7A-B). Employing a mouse AML xenograft
model, we undertook studies to determine whether CDK9 in-
hibition might similarly enhance the effects of cytarabine in vivo.
MV4-11 cells were injected subcutaneously into nude mice. Once
tumors reached a measurable size, mice were randomized, based
on tumor volume, to the following treatment groups: vehicle,
atuveciclib alone, cytarabine alone, or atuveciclib plus cytarabine.
Mice treated with the combination of cytarabine and atuveciclib
exhibited the greatest degree of tumor suppression and en-
hanced survival (Figure 7C-D). Treatment with atuveciclib or the
combination significantly suppressed xenograft growth when
compared with the vehicle control (P, .0001 for both atuveciclib
alone and the combination, using a 2-way analysis of variance
[ANOVA]). The combination of atuveciclib plus cytarabine was
significantly more effective than either agent alone (P 5 .0338 vs
atuveciclib; P , .0001 vs cytarabine, using a 2-way ANOVA). In
addition, the survival of mice treated with atuveciclib (P 5 .0089)
or the combination treatment was significantly prolonged

compared with that for mice that received vehicle control treat-
ment (P 5 .0021), using a Log-rank Mantel-Cox test. Only the
combination treatment group’s survival was significantly pro-
longed compared with the cytarabine alone group (P 5 .0198,
using a Log-rank Mantel-Cox test) (Figure 7D). The survival dif-
ference between the combination and atuveciclib groups was not
statistically significant but showed a trend toward significance. At
study completion, 1 of the mice in the atuveciclib group and 2 of
the mice in the combination group had no evidence of tumors.

A smaller cohort of mice was treated for molecular analysis; their
flank tumors were harvested, and qRT-PCR was performed to
assess c-MYCandPIM1expression levels (Figure 7E).Weobserved
significant downregulation of expression of MYC in tumors from
mice treated with atuveciclib (P 5 .0003) and the combination
(P 5 .0003) compared with tumors from vehicle-treated mice, and
significant downregulation among tumors from mice treated with
atuveciclib (P5 .0038) and combination (P5 .0040) comparedwith
tumors from mice treated with cytarabine alone, using a 1-way
ANOVA (Figure 7E). We also observed significant downregulation
of expression of PIM1 in tumors frommice treated with atuveciclib
(P5 .0057) and the combination (P5 .0020) comparedwith tumors
harvested from vehicle-treated mice (P 5 .0003), using a 1-way
ANOVA (Figure 7E). In a final series of experiments, total cell
protein lysates were prepared and immunoblotted for rpS6
phosphorylation. Consistent decreases in rpS6 phosphorylation at
serine 235/236 and serine 240/244 were noted in tumors har-
vested from mice treated with the combination of atuveciclib and
cytarabine therapy compared with tumors harvested from mice
treated with either drug alone or the vehicle control (Figure 7F).

Discussion
Our study provides the first evidence that CDK9 forms novel
CTORC complexes (CTORC1 and CTORC2) by associating with
elements of mTOR pathways. Our findings expand the roles of
both mLST8 and CDK9 in cellular signaling. In the case of mLST8,
a protein previously identified only as a scaffold for mTOR
complexes, we now show that it binds another kinase, CDK9,
thereby enhancing both transcription and translation. Future
studies that interrogate the role of other interactors identified by
proteomics analysis in the current study may expand further the
role of mLST8 in cellular processes independent of mTOR. No-
tably, themLST8 knockout mice exhibit a phenotype distinct from
the mTOR knockout mice,50 suggesting that mLST8’s major cel-
lular functions may be mTOR independent.

Figure 7. CDK9 inhibition enhances the suppressive effects of cytarabine in vitro and in vivo. (A) U937 cells were plated in methylcellulose in the presence of control
(DMSO), atuveciclib (Atuv; 0.5 mM), or cytarabine (Ara-C; 5 ng/mL), or a combination of atuveciclib and cytarabine for 7 days. CFU-L was assessed in clonogenic assays in
methylcellulose. Data are expressed as a percentage of DMSO control-treated cells. Shown are the means 1 SE of 4 independent experiments. **P , .01 using a 1-way
ANOVA with Tukey’s multiple comparisons test. (B) MV4-11 cells were seeded in methylcellulose in the presence of control (DMSO), atuveciclib (0.3 mM), or cytarabine
(10 ng/mL) or a combination of atuveciclib and cytarabine, for 7 days. CFU-L was assessed in clonogenic assays in methylcellulose. Data are expressed as a percentage of
DMSO control-treated cells. Shown are the means1 SE of 4 independent experiments. *P, .5, ***P , .001 using a 1-way ANOVA with Tukey’s multiple comparisons test.
(C) Tumor volumes from an AML xenograft model are shown. MV4-11 cells were subcutaneously injected into the left flank of athymic nudemice. Oncemice hadmeasurable
tumors, mice were randomized into 5 animals per group treated with control, cytarabine, atuveciclib, and the combination of atuveciclib and cytarabine. Mice were treated
for a total of 12 days (days 21-33 postinjection). Start and end of treatment are indicated by arrows on the graph. (D) Survival analysis of mice that are described in panel C.
Survival was determined as time to euthanasia. (E) For analysis of CDK9 target gene expression after treatment, a separate cohort of mice was treated as described in panel
C for 3 days. Tumors were harvested and frozen, and then RNA was extracted. Gene expression for MYC, and PIM1 was measured by qRT-PCR, using GAPDH for
normalization. Data are expressed as fold increase over the average of the expression levels in tumors from control mice, and shown are means 1 SE of 4 separate mice
per group. (F) Immunoblotting analyses for p-rpS6 detection were conducted on frozen tumor lysates from a separate cohort of mice treated as per panel C for 3 days. Cell
lysates from tumors for the indicated treatment conditions were analyzed by SDS-PAGE and immunoblotted with the indicated antibodies. The immunoblots with
antibodies against the phosphorylated forms of rpS6 or against total rpS6 were analyzed in parallel by SDS-PAGE. Densitometry was performed and calculated using
the total rpS6 for each respective mouse for normalization. Each lane represents an individual tumor.
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Our studies have confirmed previous findings that CDK9
regulates the transcription of the critical oncogene, c-MYC. In
addition, we report that CDK9 controls the transcription of the PIM1
kinase gene, which is an important therapeutic target in leukemia.
Other PIM- andMYC-driven cancers, such as prostate cancer, breast
cancer, and certain lymphoma subtypes,51-53 may therefore be good
candidates for clinical trials involving CDK9 inhibition, and other
future approaches that may be developed to disrupt CTORC
complexes. Our findings also establish for the first time that the
mTORC1 components mLST8 and RAPTOR are present in CDK9
complexes at gene promoter sites. This suggests that the CTORC
complex comprising mLST8/RAPTOR/CDK9 may play an important
role in the transcription of certain oncogenes. Our findings suggest
that CTORC1 functions independently of mTOR. This is consistent
with previous studies that had shown that although RAPTOR is found
in the nucleus, there is no significant mTORC1 formation, consis-
tent with amTORC1-independent role for RAPTOR in the nucleus.54

The functional consequences of disruption of the CTORC1
(mLST8/RAPTOR/CDK9) complex are currently unknown. In
future studies, mutation analysis will be critical to determine the
residues required for complex formation. This should also help
guide the design of protein-protein interaction inhibitors that
specifically disrupt CDK9/mLST8/RAPTOR complexes, pro-
viding alternative means to affect specific functions of CDK9-
driven transcription without kinase inhibition. This may lead to
less toxicity, because potentially only the oncogenic functions of
CDK9 would be inhibited without effects on CDK9’s function in
nonmalignant cells.

In the cytoplasm, we show a novel role for CDK9 in the regulation
of translation. CDK9 forms a complex with mTORC2 compo-
nents and regulates phosphorylation of LARP1 and rpS6. Pre-
vious studies have focused solely on CDK9’s role in transcription;
however, CDK9 protein is present in both cytoplasmic and
nuclear fractions. Based on our studies, CDK9 appears to play
a key role in oncogenic cellular processes as it has regulatory
effects on both gene transcription and mRNA translation in
leukemic cells. Our data demonstrate that CDK9 inhibition leads
to an accumulation of monosomal fractions and a decrease in
polysome formation, indicating a stalling of the translation
machinery leading to lower translation efficiency. High trans-
lation efficiency is critical for many oncogenic processes.55 We
did not see effects on global translation because MYC, PIM1,
and the housekeeping genes 18S, ACTB, and HPRT1 were not
affected by CDK9 inhibition. Future studies are required to
determine what pools of RNAs are regulated by CDK9. Recent
work by Shi et al proposed that distinct pools of ribosomes have
differential selectivity for translating RNAs based on their subunit
composition.56 In future studies, it will be important to determine
if CTORC and mTORC complexes associate with the same or
different subsets of ribosomes and whether this correlates with
control of translation of distinct mRNAs.

Results from the LC-MS/MS studies indicate that CDK9 may
regulate many other proteins involved in RNA processing and
splicing. Recent evidence has shown that aberrant splicing due
to multiple mutations in the splicing pathway genes in myelo-
dysplastic syndromes and AML constitutes an important patho-
physiologic mechanism.57-60 In the current study, the role of
CDK9 in splicing was not fully evaluated, but future studies
should address this. This would be particularly relevant, because

CDK9 inhibition in both MDS and AML could potentially provide
a unique therapeutic strategy to target aberrant splicing.

Unexpectedly, although the cytoplasmic CTORC2 complex
seems to function similarly to mTORC1, it is comprised of CDK9
in complexes with known mTORC2 components. Therefore,
targeting of both CDK9 and mTOR complexes may be critical to
prevent complex compensating for the other and could lead to
the development of more effective therapeutic approaches for
the treatment of malignancies.

In summary, our findings provide evidence that CDK9 forms 2
distinct cellular complexes that play key roles in mRNA tran-
scription and translation of mitogenic genes and leukemogen-
esis. Efforts to therapeutically target these 2 complexes may
ultimately lead to advances in the treatment of AML and possibly
other malignancies.
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and nuclear distribution of the protein
complexes mTORC1 and mTORC2: rapamy-
cin triggers dephosphorylation and delocal-
ization of the mTORC2 components rictor
and sin1. Hum Mol Genet. 2008;17(19):
2934-2948.

55. Ruggero D. Translational control in cancer
etiology [published correction appears in
Cold Spring Harb Perspect Biol. 2012;4(11):
a012336]. Cold Spring Harb Perspect Biol.
2013;5(2):a012336.

56. Shi Z, Fujii K, Kovary KM, et al. Heterogeneous
ribosomes preferentially translate distinct
subpools of mRNAs genome-wide. Mol Cell.
2017;67(1):71-83.e7.

57. Crews LA, Balaian L, Delos Santos NP, et al.
RNA splicing modulation selectively impairs
leukemia stem cell maintenance in secondary
human AML. Cell Stem Cell. 2016;19(5):
599-612.

58. Lee SC, Dvinge H, Kim E, et al. Modulation of
splicing catalysis for therapeutic targeting of
leukemia with mutations in genes encoding
spliceosomal proteins [published correction
appears in Nat Med. 2016;22(6):692]. Nat
Med. 2016;22(6):672-678.

59. Taskesen E, Havermans M, van Lom K, et al.
Two splice-factor mutant leukemia subgroups
uncovered at the boundaries of MDS and AML
using combined gene expression and DNA-
methylation profiling. Blood. 2014;123(21):
3327-3335.

60. Zhou J, Chng WJ. Aberrant RNA splicing and
mutations in spliceosome complex in acute
myeloid leukemia. StemCell Investig. 2017;4:6.

NOVEL CDK9 COMPLEXES IN AML blood® 14 MARCH 2019 | VOLUME 133, NUMBER 11 1185

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/133/11/1171/1552716/blood870089.pdf by guest on 08 June 2024


