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Hwei-Fang Tien,3 Rosemary E. Gale,9 Seishi Ogawa,2,† and Frederik Damm1,10,†
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KEY PO INT S

l RAS/RTK mutations
occur in 63% of
patients with t(8;21)
AML and confer poor
prognosis.

l One third of patients
with t(8;21) AML who
relapse are genetically
distinct from
diagnostic findings.

Acute myeloid leukemia with t(8;21)(q22;q22) is characterized by considerable clinical and
biological heterogeneity leading to relapse in up to 40% of patients. We sequenced coding
regions or hotspot areas of 66 recurrently mutated genes in a cohort of 331 t(8;21)
patients. At least 1 mutation, in addition to t(8;21), was identified in 95%, with a mean of
2.2 driver mutations per patient. Recurrent mutations occurred in genes related to RAS/
RTK signaling (63.4%), epigenetic regulators (45%), cohesin complex (13.6%), MYC sig-
naling (10.3%), and the spliceosome (7.9%). Our study identified mutations in previously
unappreciated genes: GIGYF2, DHX15, and G2E3. Based on high mutant levels, pairwise
precedence, and stability at relapse, epigenetic regulator mutations were likely to occur
before signaling mutations. In 34% of RAS/RTKmutated patients, we identified multiple
mutations in the same pathway. Deep sequencing (∼420003) of 126 mutations in 62
complete remission samples from 56 patients identified 16 persisting mutations in 12

patients, of whom 5 lacked RUNX1-RUNX1T1 in quantitative polymerase chain reaction analysis. KIThigh mutations
defined by a mutant level ‡25% were associated with inferior relapse-free survival (hazard ratio, 1.96; 95% confidence
interval, 1.22-3.15; P 5 .005). Together with age and white blood cell counts, JAK2, FLT3-internal tandem duplica-
tionhigh, and KIThigh mutations were identified as significant prognostic factors for overall survival in multivariate
analysis. Whole-exome sequencing was performed on 19 paired diagnosis, remission, and relapse trios. Exome-wide
analysis showed an average of 16 mutations with signs of substantial clonal evolution. Based on the resemblance of
diagnosis and relapse pairs, genetically stable (n 5 13) and unstable (n 5 6) subgroups could be identified. (Blood.
2019;133(10):1140-1151)

Introduction
Core binding factor acute myeloid leukemia (AML), the most
common cytogenetic subtype of AML, is defined by the presence
of t(8;21)(q22;q22) or inv(16)(p13q22)/t(16;16)(p13;q22). AML
with t(8;21)(q22;q22) is recognized by the World Health Orga-
nization as a unique entity within the category of “AML with re-
current genetic abnormalities.”1 Compared with other cytogenetic
subsets of AML, patients with t(8;21) are considered a favorable
risk group because of their high remission and survival rates.2

t(8;21)(q22;q22) fuses the RUNX1 gene located on chromosome
21 to the RUNX1T1 gene located on chromosome 8, leading to
the RUNX1–RUNX1T1 fusion gene (also known as AML1–ETO
fusion).3 The functional consequences of this fusion have been
well studied over the last decade.4,5 Unequivocally, RUNX1–
RUNX1T1 inhibits wild-type RUNX1 function in a dominant-
negative manner by competing for heterodimerization and
DNA binding at Runx binding sites.5 Although recognized as
a leukemia-initiating event, the fusion is not sufficient to induce
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leukemia in murine or human hematopoietic cells,6-8 suggesting
that additional genetic aberrations are required for overt full-
blown leukemia. Recently, massively parallel-sequencing studies
have unraveled a long list of somatic gene mutations underly-
ing the leukemogenesis of t(8;21) AML. In addition to known
mutations in the RAS (K/NRAS) and tyrosine kinase signaling
pathways (RAS/RTK; CBL, FLT3, JAK2, KIT, PTPN11), chromatin
modifiers/epigenetic regulators of transcription (ASXL1/2,
BCOR/L1, TET2), MYC signaling (MGA, MYC, CCND1/2), and
components of the cohesin complex are recurrently altered.9-19

Some of these genetic aberrations, such as KIT mutations and
FLT3–internal tandem duplication (ITD), have been reported to
confer poor prognosis in some, but not all, studies.20 It has been
suggested that this poor prognosis is restricted to patients with
a high allele burden of these mutant genes.21 Previous studies
have been limited by relatively small sample numbers, a focus
on limited gene sets, or they had pooled pediatric and adult
patients. Therefore, we embarked on a comprehensive molecular
study of 331 adult AML patients with t(8;21) using a 66-gene tar-
geted sequencing panel approach to more definitively review
these issues that are potentially relevant to the choice of therapy.

Current knowledge about genetic aberrations and patterns of
clonal evolution at relapse of t(8;21) AML is limited. Two studies
investigated paired diagnosis/relapse specimen (5 and 7 cases,
respectively).9,17 Whole-exome sequencing (WES) demonstrated
dynamic patterns of clonal evolution during disease progres-
sion, including loss, retention, or gain of mutations. However,
no relapse-specific genetic aberrations have been identified
to date. To provide further insight into disease progression,
we have carried out WES of 19 paired diagnosis, complete re-
mission (CR), and relapse trios, tracking the different genetic
clones during disease evolution.

Methods
Patients
Bone marrow or peripheral blood samples from 331 adolescent/
adult patients (aged 15-84 years) with t(8;21) AMLwere collected
from collaborating institutions in Germany (n 5 65), The Neth-
erlands (n 5 50), Taiwan (n 5 80), and the United Kingdom
(n5 136). More than 75% of patients were enrolled into multicenter
treatment trials of the German AML study group (AML SHG pro-
tocols 0295 and0199, AMLSG07-04), HOVON/SAKKprotocols -04,
-29, -42, -42A, and -102, and UKMRC AML10, AML12, and AML15
trials. Details of the treatment protocols have been reported
previously.22-33 All but 5 patients were treated with an intensive
cytarabine/anthracycline induction backbone and subsequent
cytarabine-based consolidation therapy. Cumulative dosages of
high-dose cytarabine varied among the different treatment
strategies: AMLSG (18-54 g/m2), HOVON/SAKK (13-25 g/m2),
MRC (1-45 g/m2), and Taiwan (48-64 g/m2). A total of 27 patients
received allogeneic hematopoietic stem cell transplantation in the
first remission. Written consent was obtained in accordance with
the Declaration of Helsinki, and ethical approval was obtained
from the local ethics committees.

Mutation analysis by targeted sequencing
A total of 305 patients was screened for 66 genes recurrently
mutated in AML using a customized version of the TruSight
Myeloid Sequencing panel (supplemental Table 1, available on

the Blood Web site), according to the manufacturer’s instruc-
tions. Libraries were paired-end sequenced with a mean sequencing
depth of ;40003 on a NextSeq sequencer and of ;10003 on a
MiSeq sequencer (supplemental Figure 1). Variants were detected
with a variant allele frequency (VAF) cutoff of 5%. Of all detected
variants, 38% were validated by amplicon-based targeted deep
sequencing (n 5 243), digital droplet polymerase chain reaction
(n 5 27), or Sanger sequencing (n 5 9), as previously
described.34-38 Variant calling and criteria used for candidate
selection are detailed in supplemental Material and methods.

Other cytogenetic and molecular analyses
The t(8;21) rearrangement was determined by karyotyping (as
well as additional cytogenetic abnormalities) and/or fluores-
cence in situ hybridization and/or evidence of RUNX1–RUNX1T1
fusion transcripts, as previously described.39,40 The screening for
FLT3-ITD was performed by Genescan-based fragment analysis
enabling quantification of the allelic ratio (AR).41-43

WES and clonal evolution
WES, with an average reading depth of 1383, was performed for
26 paired diagnosis/CR samples (supplemental Table 2). For 19
of these patients, samples were additionally sequenced at first
relapse (Rel1), and for 4 patients, samples were additionally
sequenced at first and at second relapse (Rel2). WES was per-
formed using SureSelect Human All Exon V5 and V6 (Agilent
Technologies, Santa Clara, CA) enrichment, followed by se-
quencing on a HiSeq 2500 platform (Illumina, San Diego, CA).44-46

For patients suffering from 2 relapses, clonal evolution was
evaluated by amplicon-based targeted deep sequencing of
all single nucleotide variations (SNVs) detected at diagnosis,
CR1, Rel1, CR2, and Rel2 (n 5 650 SNVs).

Statistical analysis
To determine the sequential order of acquired mutations, we
applied Bradley-Terry maximum likelihoodmodel fitting to cases
with $2 mutations (n 5 212). The gene MGA was used as ref-
erence. We used the Pearson Goodness-of-Fit Test to determine
whether mutations in RAS/RTK signaling genes showed statis-
tical evidence for clonal heterogeneity. We assumed that
mutations occurred in different clones at P , .05.

The definition of CR, overall survival (OS), and relapse-free
survival (RFS) followed recommended criteria.47 Primary analy-
sis was performed onOS. Sensitivity analyses were performed on
CR and RFS. Pairwise comparisons of variables for exploratory
purposes were performed using the Mann-Whitney U test or x2

test. Kaplan-Meier analysis was performed to construct sur-
vival curves, and the log-rank test was applied to evaluate dif-
ferences between subgroups. Logistic regression models,
including treatment strategies of contributing study groups trial
as a covariable, were used to study associations between in-
dividual variables and CR rate. Coxmodels stratified for treatment
strategies of contributing study groups were used for time-to-
event variables (OS and RFS), and P values were calculated using
the Wald test. Multivariate logistic regression models were con-
structed for factors associated with achievement of CR, and
multivariate Cox proportional hazards models were used to study
factors associated with survival end points. Cytogenetic aberra-
tions and gene mutations were included in multivariate models if
they were detected in $10 patients with an unadjusted univariate
P # .1. Because mutation burden has been shown to carry
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important prognostic value in t(8;21) AML,21 we investigated the
impact of mutant levels of FLT3-ITD and KIT mutations. Using
maximally selected log-rank statistics, ARs $0.35 and mutant
levels $25% were defined as FLT3-ITDhigh and KIThigh, re-
spectively. To provide quantitative information on the relevance
of results, 95% confidence intervals (CIs) of hazard ratios (HR) were
computed. Two-sided P values# .05 were considered significant
in the primary analysis and as indicators for a trend in all additional
analyses. All analyses were carried out using SPSS version 23.0
(IBM, Armonk, NY).

Results
Mutation and variant allele spectrum in t(8;21) AML
Sequencing of 331 diagnostic t(8;21) AML samples revealed
a total of 729 mutations (supplemental Tables 3 and 4). Muta-
tions were found in 49 genes, of which 42 were recurrently

mutated (Figure 1A). In 316 patients (95%), we found $1 mu-
tation, with 2.2 6 1.4 (mean 6 SD) mutations per patient
(supplemental Figure 2). A total of 210 patients (63.4%) harbored
mutations in RAS/RTK signaling pathways, with KIT (27%), NRAS
(14.8%), FLT3 (16.9%; 10% of all patients harbored a FLT3-ITD),
KRAS (5.7%), andCBL (5%) representing the most common RAS/
RTK aberrations. Mutations in the RTK signaling regulator
GIGYF2 were found in 5 patients (1.5%) and occurred in
a hotspot affecting arginine codons at positions 791 and 792.48

Approximately half of all patients (149/331 5 45%) harbored
amutation in genes involved in epigenetic regulation (chromatin
remodeling and DNA methylation): ASXL2 (15.7%), ASXL1
(12.4%), TET2 (7.9%), EZH2 (5.7%), and KDM6A (4.2%). Genes
encoding for components of the cohesin complex or the splicing
machinery were identified in 13.6% and 7.9% of patients and
rarely co-occurred (supplemental Figure 3). Hotspot mutations
in DHX15, an RNA helicase implicated in pre–messenger RNA
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Figure 1. Overview of mutations identified by targeted sequencing. (A) Bar graph showing the frequency of mutated patients per gene for all genes with detected variants.
Bars are colored according to the functional category of the gene (supplemental Table 16). Mutation frequencies are shown above the bars (%). FLT3 variants include FLT3-ITD
and FLT3-TKD. (B) Box plots showing the median, 25% quantile, and 75% quantile of the VAF for all genes mutated in .4 patients. The dashed line indicates 50% VAF that
was expected for heterozygous mutations. VAFs were corrected for patient-specific chromosomal aberrations and sex bias. Genes were color coded according to their
assigned category. FLT3-ITDs were not included in this analysis. (C) Pie chart showing the distribution of 113 KIT mutations in 89 patients for the most frequent codons and
exons, with mutation frequencies shown as percentage.
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splicing, mainly affected codon R222 and occurred in 6% of
patients. MYC signaling was altered in 10.3% of patients, pri-
marily due to alterations in CCND2 (4.3%) and MGA (3.6%).
Additionally, a high rate of loss-of-function mutations in ZBTB7A
(13%), one of the transcription factors that regulates hemato-
poietic differentiation, was found.16

In our cohort, we observed a median VAF of 0.28. We detected
the highest median VAF in genes involved in DNA methylation,
including DNMT3A (0.43), TET2 (0.40), and IDH2 (0.39), sug-
gesting that these mutations are present in the majority of the
cells and, therefore, play a role in early stages of leukemogenesis
(Figure 1B). We observed lower median VAFs for mutations of

transcription factors (0.19), RAS/RTK signaling (0.22), and
cohesin complex (0.20), especially for those in FLT3 (0.11), KIT
(0.21), and the RAS GTPases NRAS (0.16) and KRAS (0.20), in-
dicating that alterations in these genes are later events. Further,
we modeled the sequential order of mutation acquisition in
pairwise precedences.49 Applying this approach in 212 patients
with $2 mutations, we confirmed genes involved in RAS/RTK
pathways and chromatin remodeling to be later events, whereas
TET2, ZBTB7A, and CCND2 aberrations were acquired earlier
(supplemental Figure 4). We noted that 34% of patients with
a RAS/RTK mutation harbored additional alterations of the same
pathway. A total of 71 patients harbored $2 signaling mutations,
with patients having mutations in different RAS/RTK genes (n 5 35),
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different variants in the same gene (n 5 22), or both (n 5 14)
(Figure 2A; supplemental Figure 5). Of 89 KITmutated patients,
21 (23.6%) showed additionalKITmutation(s), resulting in the highest
double mutation rate in 1 gene. We found 113 KIT mutations in
89 patients, of which 86 mutations were located in exon 17,
mainly SNVs at D816 or N822. In exon 8, we found 17mutations,
mainly in-frame insertions/deletions at positions 416 to 419
(Figure 1C). Most of the patients (95%) with multiple KITmutations
harbored $1 exon 17 mutation. To test for clonal heterogeneity,
we used the Pearson Goodness-of-Fit Test.49 Although the
sum of VAFs was ,50% and, thus, too low for prediction tests
in 54 cases, statistical evidence for clonal heterogeneity was
found in 11 patients, indicating that respective mutations oc-
curred in different clones (Figure 2B-C; supplemental Figure 5).
In 6 patients, no evidence for clonal heterogeneity could be
shown (P . .05).

Clinicobiological associations and prognostic
impact of gene mutations in t(8;21) AML
The study population included 331 t(8;21) AML patients with
a median age of 41.7 years (Table 1). Most patients were
cytomorphologically classified as AML with maturation. Al-
though 94% of patients presented with de novo AML, secondary
and therapy-related AML were each diagnosed in 3% of
patients. JAK2 mutations were found significantly less often in
de novo AML (4.8% vs 26.7%, P , .001; supplemental Table 5).
Median white blood cell (WBC) count was 17.9 3 109/L and was
highest in cases with an FLT3, KIT, or NRAS mutation. An
extramedullary manifestation was present at diagnosis in 13 of
124 patients (10.5%) and correlated with the presence ofDHX15
and KIThigh mutations, especially when a KIT mutation was lo-
cated in exon 17 (25.9% vs 6.2%, P 5 .008; supplemental
Table 6). For 316 patients, cytogenetic data from karyotyping
were available. Loss of a sex chromosome was the most frequent
additional aberration (loss of Y, n5 108; loss of X, n5 43). Taking
molecular and cytogenetic data together, 99% showed a genetic
aberration in addition to the RUNX1–RUNX1T1 fusion (Figure 3;
supplemental Table 7).

Clinical follow-up data were available for 322 of 331 patients.
Median follow-up time for patients who remained alive was
6.74 years (range, 0.25-21.1). Overall, 296 (92.2%) patients
reached CR after induction therapy, 17 patients died during induc-
tion (5.3%), and 8 experienced primary induction failure (2.5%).

Multivariate logistic regression analysis revealed a reduced CR
rate in patients with a cytogenetic aberration of chromosome 7
(27/del7q; P5 .026), FLT3-ITDhigh (P5 .05), or a JAK2mutation
(P 5 .04). Patients with a higher platelet count obtained a CR
more often (P 5 .04; supplemental Table 8). We next evaluated
the prognostic impact of clinicobiological variables on RFS. Six
variables were selected for multivariate analysis stratified for
treatment strategies of the contributing study groups. Restricted
to male patients, loss of Y was the only independent factor for
longer RFS. Together with high WBC counts and FLT3-ITDhigh,
KITmutated patients with a high mutant level$25% were at higher
risk for relapse (HR, 1.96; 95% CI, 1.22-3.15; P 5 .005; sup-
plemental Table 9). With respect to OS, 9 variables were in-
cluded in multivariate analysis. KIThigh and JAK2 mutations were
the strongest factors for poor prognosis in our cohort (Figure 4).
Additionally, age, high WBC counts, trisomy 8, and FLT3-ITDhigh

were also independently associated with inferior OS. In male
patients, loss of Y was associated with longer survival (HR, 0.49;
95% CI, 0.3-0.8; P 5 .004). Censoring our analysis for patients
receiving allogeneic hematopoietic stem cell transplantation in
CR1 resulted in similar results for RFS and OS. No difference was

Table 1. Pretreatment characteristics of 331 t(8;21) AML
patients (N 5 331)

Characteristics Data

Age, median (range), y 41.7 (15-84)

Sex, n (%)
Male 188 (57)
Female 143 (43)

Diagnostic timeframe, n (%)
1990-1999 75 (23)
2000-2004 76 (23)
2005-2010 93 (28)
2010-2016 87 (26)

Morphology, n (%)
AML with minimal differentiation 9 (3)
AML without maturation 28 (9)
AML with maturation 260 (84)
Acute myelomonocytic leukemia 11 (3)
Acute monoblastic/monocytic leukemia 3 (1)
Missing data 20

Type of AML, n (%)
De novo 305 (94)
Secondary 10 (3)
Therapy related 9 (3)
Missing data 7

Additional cytogenetic aberration, n
Loss of X chromosome 43
Loss of Y chromosome 108
Trisomy 8 10
27/del7q 11
del9q 37
Others 64

Bone marrow blasts
Mean, % 56.8
Missing data, n 50

WBC count
Median, 3109/L 17.9
Range, 3109/L 0.9-153
Missing data, n 10

Hemoglobin
Median, g/L 8.1
Range, g/L 2.5-15.4
Missing data, n 60

Platelet count
Median, 3109/L 51.5
Range, 3109/L 3-647
Missing data, n 40

WBC, white blood cell.
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observed for any survival end point with respect to the number of
signaling mutations or clonal heterogeneity status (supplemen-
tal Figure 6). Collectively, we observed that mutations predicted to
occur later in leukemogenesis appear to act as predictors for
clinical outcome.

Profiling of somatic mutations in AML with t(8;21)
at diagnosis, CR, and relapse
WES was performed on paired diagnosis, CR, and relapse trios
of 19 t(8;21) AML patients. A total of 425 SNVs and small indels
with translational consequence was detected in 385 genes
(supplemental Table 10), of which 19weremutated in.1 patient
(supplemental Figure 7). Only 8 SNVs were located in areas af-
fected by 1 of the 30 copy number alterations that we detected
(supplemental Table 11). The total number of somatic mutations
did not change at relapse, with a mean of 16.6 mutations per
patient at diagnosis and 15.5 mutations at relapse. In total, 131
mutations (31%) present at diagnosis were lost at relapse, and
110 mutations (26%) were selected/acquired during disease
progression, whereas 184mutations (43%) were found in diagnosis
and relapse samples of patients (Figure 5A). Of note, the t(8;21)
fusion was detected in all patients at diagnosis and relapse,
suggesting common ancestral clones. All but 2 AML trio samples
shared $1 additional genomic alteration at diagnosis and re-
lapse. An increase of C.A and A.T transversions was observed
in relapse-specific mutations compared with diagnostic muta-
tions (P 5 .06; supplemental Figure 8).

In 3 patients for whomWES was performed, we found persisting
mutations in morphologically defined CR samples (VAF range,

5-14%). Although flow cytometry–based minimal residual dis-
ease monitoring was negative in 1 patient, the RUNX1–RUNX1T1
fusion was detectable at low messenger RNA levels in all cases
(supplemental Table 12). This prompted us to investigate mu-
tation persistence using amplicon-based ultradeep sequencing
for 126 mutations in 62 CR samples from 56 patients (mean
coverage, 41 430 reads per amplicon). A total of 16 mutations
was identified in 12 samples (VAF range, 0.1-12%; supplemental
Table 13), whereas the RUNX1–RUNX1T1 fusion was detectable
by quantitative polymerase chain reaction during CR in 26
patients. Of note, 5 patients showed mutational residual disease
while the fusion was not detectable (supplemental Figure 9).

To identify types of clonal evolution, we defined each mutation
as stable, if present at diagnosis and relapse, or as lost or gained,
if it was detected only at diagnosis or relapse, respectively. With
the exception of AML59, in all patients parts of the individual
diagnostic mutation spectrum were lost and replaced with $1
new mutation at relapse. These data suggest that some clones
were successfully eradicated during induction chemotherapy,
whereas others escaped and/or were selected and subsequently
expanded at relapse by acquiring $1 new mutation. When
calculating the ratio of the number of stable/gained or lost
mutations, we found 2 evolutionary groups. Patients with $40%
stable mutations defined group A, and cases with $60% of
gained/lost variants were pooled in group B (Figure 5B; sup-
plemental Figures 10-11). Group B patients (n 5 6) had a dy-
namic tumor development, with relapse samples showing little
or no resemblance to the cancer found at diagnosis. In the
course of their disease, 1 major clone replaced another. For
patients from group A, diagnosis and relapse showed a more
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similar genetic composition (Figure 5C). Although clonal evo-
lution seemed to be patient specific, we noted some gene-
related patterns. Mutations in epigenetic regulators and genes
involved in cell cycle control were stable or got lost (ie, they were
always found at diagnosis and never acquired just at relapse),
further supporting their important role in leukemic initiation. In
contrast, mutations in transcription factors, RAS/RTK signaling
pathway genes, members of the cohesin complex, and splicing
machinery were equally found to be stable, gained, or lost
(supplemental Figure 12). When comparing baseline charac-
teristics of relapsing t(8;21) AML patients according to their
evolutionary patterns (group A or group B), no major differences
were observed (supplemental Table 14). Group B patients had
a significantly longer OS compared with patients with a more
analogous mutation profile (group A) at diagnosis and relapse
(P 5 .006; supplemental Figure 13). These data warrant further
investigations in larger paired diagnosis/relapse cohorts for
threshold fine-tuning, because an “intermediate” subgroup
might also be extracted from our study.

Next, we investigated dynamic evolution of multiclonal RAS/RTK
mutations to address the biological relevance of clonal het-
erogeneity at relapse. KIT itself, the most frequently mutated
gene of the RAS/RTK signaling pathways, showed a very di-
verse clonal evolution, with gained or lost mutations in 7 of
10 KITmutated patients (supplemental Figure 14). In all 5 cases with

multiple RAS/RTK mutations, the mutations were present in
different clones at diagnosis and showed opposing clonal dy-
namics over time (supplemental Figure 15).

To obtain more detailed insights into the clonal architecture of
t(8;21) AML and its dynamic evolution, we investigated 4 patients
who suffered from a Rel2. To increase the accuracy of VAF quan-
tification, variants were resequenced, with a mean coverage of
39 400 reads per amplicon per sample (supplemental Table 15).
All patients harbored a dominant mutation cluster representing
the founding clone, as well as $1 subclone at diagnosis. A
second subclone, not the founding clone or the major diagnosis
subclone, drove Rel1 and was only detectable with low VAFs at
diagnosis. In group B patients (AML47 and AML57) (Figure 6A-B;
supplemental Figure 16), this second clone outcompeted the
other clones after induction chemotherapy, whereas the original
clones were eradicated. In contrast, the other 2 patients (AML05
and AML07) kept the AML-initiating clone and/or the first major
subclone as a considerable part of the tumor composition
at Rel1 (Figure 6C-D; supplemental Figure 17). Therefore, it
seems likely that these primary clones harbored therapy-
resistance properties themselves. The high similarity between
Rel1 and Rel2 indicates that both relapses were driven by the
same clone; however, in Rel2, new subclones appeared, or the
first major subclone came back up, suggesting ongoing DNA
damage due to prolonged effects from cytotoxic therapy and/or
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WBC:
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Platelets:
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Loss of chr. Y:
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yes vs. no
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Figure 4. Multivariate analysis with clinical and biological variables. Gene mutations were included in the Cox regression analysis if they were detected in $10 patients
and had a univariate P value # .10 for OS, not adjusted for multiple comparisons. The model was stratified for center treatment strategy. KIT-mutated patients with a VAF
$25% and FLT3-ITD patients with AR $0.35 were defined as KIThigh or FLT3-ITDhigh.
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clonal selection of very minor subclones that existed below the
limit of detection.

Discussion
In this study, we embarked on a comprehensive molecular in-
vestigation to unravel the molecular genetics underlying the
diagnosis and relapse of t(8;21) AML in the largest cohort ever
investigated (331 patients). In all but 4 patients, we detected
additional genetic aberration(s) cooperating with the RUNX1–
RUNX1T1 fusion to overt full-blown leukemia. In line with pre-
vious reports, the most common additional aberrations were
mutations in the RAS/RTK pathways in 63% of subjects, alter-
ations in epigenetic regulators in 45% of subjects, and loss of
a sex chromosome in 48% of subjects.9,10,39 Of note, and in
contrast to other AML subtypes, such as cytogenetically normal
AML,50,51 we failed to identify genetic patterns of co-occurrence
or exclusivity, suggesting no major mutation-based clusters/
subgroups subdividing t(8;21) AML (supplemental Figure 18).
Approximately one fifth of t(8;21) patients had persisting mutations
during CR. Surprisingly, some of these patients tested negative for
the RUNX1–RUNX1T1 fusion. Although recent reports provided

evidence that persisting molecular minimal residual disease is
associated with relapse and poor prognosis in AML,52-54 it will be
of major interest to couple mutation and fusion quantification to
improve patient monitoring in this entity in the future.

Our data show that signaling mutations are rather late events
and impact patient outcome: JAK2 and FLT3-ITDhigh were as-
sociated with reduced CR rates, KIThigh was associated with
shorter RFS, and JAK2, FLT3-ITDhigh, and KIThigh were associated
with shorter OS. A comparable evolutionary mutation pattern
has recently been described in transformed myelodysplastic
syndrome patients, with secondary AML–associated mutations
(type I mutations) almost always having lower VAFs than mutations
in age-related clonal hematopoiesis and other mutations (type II
mutations).45 In contrast to their high frequency and early na-
ture in age-related clonal hematopoiesis,55-57 ASXL1 mutations
are rather late events in t(8;21) AML, which also holds true for
its homolog ASXL2. We confirm that ASXL1 mutations do
not harbor prognostic impact in t(8;21) and, in line with the
current European Leukemia Net risk classification,2 they should
not be used as an adverse marker if co-occurring with t(8;21).
RUNX1 mutations, the other mutation marker of the European
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Leukemia Net classification, also did not influence patient out-
come in this cohort; however, because of the small patient
number (n 5 8), an even larger patient cohort is necessary for
a final verdict.

Observations pointing to the importance of subclonal tumoral
heterogeneity have been highlighted in various hematologic
malignancies.45,58-61 Recently, Itzykson et al reported that clonal
interference in RAS/RTK pathways, a phenomenon defined by
the coexistence of clones sharing a common ancestor and
harboring independent lesions targeting the same pathway,
occurs in up to 36% of cases of t(8;21) AML and is associated with
shorter event-free survival.62 In that study, clonal interference
was defined by the presence of $2 signaling mutations, as-
suming mutations occur in different clones. We observed mul-
tiple RAS/RTKmutations in 22% of patients without an impact on
CR rate, RFS, or OS. Using prediction tools, evidence for clonal
heterogeneity could be identified in some of these cases;
however, clonal heterogeneity and interference are not the
same, because evolutionary independent genetic lesions are
required for the latter. Only single-cell experiments will be able
to address clonal independency of multiple RAS/RTK mutations.
Nevertheless, we observedmany expanding RAS/RTKmutations
at relapse, pointing to the importance of clonal heterogeneity for
our understanding of relapse mechanisms. With respect to
relapse-specific mutations, few previously unknown genes were
identified. In 11% of patients, we discovered a frameshift mu-
tation affecting the E3 ubiquitin ligase G2E3 that has previously
been implicated as a regulator of DNA damage response and
cell death.63 Whether G2E3 and/or other novel mutations, such
as GIGYF2 or DHX15, might be useful as target-specific treat-
ment approaches should be addressed in future studies. Al-
though KIT mutations have been associated with unfavorable
outcome in several, but not all, studies,20,21,64 the prognostic
importance of FLT3-ITD is not well established in t(8;21) AML.20

In our large cohort, high mutant levels of both genes were as-
sociated with poor prognosis. Thus, therapeutic targeting with
midostaurin, a multitargeted kinase inhibitor approved for
FLT3mutated AML65; the multikinase inhibitor dasatinib, which
showed encouraging results in a phase Ib/IIa trial when added to
intensive chemotherapy in core binding factor AML patients66; or
other RTK inhibitors are promising treatment approaches to
improve patient outcome.

In summary, we provide a comprehensive overview on the mu-
tational landscape, the importance of driver genes, andmodels
of genetic relapse. We hope that our data will serve as a basis
for guided and risk-adapted treatment strategies.
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