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KEY PO INT S

l Malignant follicular
lymphoma B cells
segregate into
multiple coexisting
subclones,
characterized by
differential pathway
activities.

l In CD41 Tregs, known
immune checkpoint
genes are
coexpressed with
transcription factors
and immune
regulators, including
CEBPA and B2M.

Follicular lymphoma (FL) is a low-grade B-cell malignancy that transforms into a highly ag-
gressive and lethal disease at a rate of 2% per year. Perfect isolation of the malignant B-cell
population from a surgical biopsy is a significant challenge,masking important FL biology, such
as immune checkpoint coexpression patterns. To resolve the underlying transcriptional net-
works of follicular B-cell lymphomas, we analyzed the transcriptomes of 34188 cells derived
from 6 primary FL tumors. For each tumor, we identified normal immune subpopulations and
malignant B cells, based on gene expression. We used multicolor flow cytometry analysis of
the same tumors to confirm our assignments of cellular lineages and validate our predictions
of expressed proteins. Comparison of gene expression between matched malignant and nor-
mal B cells from the same patient revealed tumor-specific features.Malignant B cells exhibited
restricted immunoglobulin (Ig) light chain expression (either Igk or Igl), as well the expected
upregulation of the BCL2 gene, but also downregulation of the FCER2, CD52, and major
histocompatibility complex class II genes. By analyzing thousands of individual cells per patient
tumor, we identified the mosaic of malignant B-cell subclones that coexist within a FL and
examined the characteristics of tumor-infiltrating T cells. We identified genes coexpressed
with immune checkpoint molecules, such as CEBPA and B2M in regulatory T (Treg) cells,

providing a better understanding of the gene networks involved in immune regulation. In summary, parallel measurement
of single-cell expression in thousands of tumor cells and tumor-infiltrating lymphocytes canbe used toobtain a systems-level
viewof the tumormicroenvironment and identify newavenues for therapeutic development. (Blood. 2019;133(10):1119-1129)

Introduction
Follicular lymphoma (FL) initially presents as an indolent ma-
lignancy that frequently transforms to a more aggressive tumor.
Multiple relapses after treatment are common, and responses to
chemotherapy and immunotherapy are often transient. Muta-
tions in genes for histone-modifying enzymes such as CREBBP
and MLL2 are early founding events of the malignant clones in
this disease.1,2 Accumulating evidence suggests that a small
subpopulation within some FL tumors is responsible for the
aggressive subtype,3,4 and that extended survival is associated
with a transcriptional signature of increased cytotoxic T cells and
fewer myeloid cells in the surrounding tumor microenvironment.3,4

Thus, a more complete understanding of the diversity of the tumor
cellular population and the immune microenvironment in early
tumor evolution may reveal opportunities for intervention.

Recently, single-cell RNA sequencing (scRNA-Seq) technol-
ogies have matured such that one can sequence and analyze

thousands of cells per tumor. At this scale, one can derive signif-
icant insights into a tumor’s cellular heterogeneity, characteristics of
the cellular diversity in the local tumor microenvironment, and the
biological features that distinguish different cell populations.5-12

Moreover, given that bulk tumor transcriptomes can identify
therapeutic sensitivity,13 scRNA-Seq has the potential to improve
treatment efficacy predictions by revealing differences among the
transcriptomes of coexisting tumor subpopulations.

Our primary objective was the identification and characterization
of coexisting cell populations within a biopsy. To achieve this
goal, we conducted scRNA-Seq analysis of 6 de novo FL tumors
that were previously cryopreserved as viable single-cell sus-
pensions from surgical biopsies. Overall, we sequenced a total
of 34 188 single-cell transcriptomes from these 6 tumors. We
leveraged these transcriptome-wide features to distinguish in-
dividual normal B cells from malignant B cells, and malignant
B cell subclones from each other. The precise classification of
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these B-cell subsets allowed comparison of tumor-specific gene
expression while eliminating the uncertainty associated with
previous methods of enriching FL tumor B cells (ie, by light-chain
enrichment). Applying multicolor fluorescence-activated cell
sorting (FACS), we validated the frequencies of cell types found
in the tumor’s microenvironment. Finally, we measured immune
checkpoint coexpression patterns among infiltrating T cells.

Methods
Full descriptions of analytical methods and experimental pro-
cedures are found under supplemental Information, available on
the Blood Web site. The data sets generated and/or analyzed
during the current study are available in the National Institutes
of Health dbGAP repository, identifier phs001378.

Sample collection and single-cell preparation
Six follicular lymphoma tumor specimens, 2 peripheral blood
mononuclear cell (PBMC) specimens, and 2 tonsil specimens were
obtained with informed consent per an approved Stanford Uni-
versity Institutional Review Board. All FL and tonsil samples were
obtained as surgical biopsies and mechanically dissociated into
single-cell suspensions. Samples were cryopreserved as single-cell
suspensions in RPMI with 20% fetal bovine serum plus 10% di-
methyl sulfoxide in liquid nitrogen. The single-cell suspension used
for scRNA-Seq was washed twice with phosphate-buffered saline
containing 0.04% bovine serum albumin, and the final cell con-
centration was adjusted to ;1000 cells/mL. Cells used for flow
cytometry were washed with phosphate-buffered saline containing
0.02% bovine serum albumin and then stained for surface markers.

Single-cell RNA-library construction
and sequencing
We used the Chromium instrument and the Single Cell 39 Re-
agent kit (V1) to prepare individually barcoded single-cell RNA-
Seq libraries following the manufacturer’s protocol (10X
Genomics). For quality control and to quantify the library con-
centration, we used both the BioAnalyzer (Agilent BioAnalyzer
High Sensitivity Kit) and quantitative polymerase chain reaction
(Kapa Quantification kit for Illumina Libraries). Sequencing with
dual indexing was conducted on an Illumina NextSeq machine,
using the 150-cycle High Output kit. Sample demultiplexing,
barcode processing, and single-cell 39 gene counting were
performed with the Cell Ranger Single Cell Software Suite
CR2.0.1. Each droplet partition’s contents were tagged with a
unique molecule identifier, a barcode encoded as the second
read of each sequenced read-pair.

Assigning sequenced single cells to
hematopoietic lineages
We used scRNA-Seq data obtained from 8 bead-enriched
immune lineages (BEILs)5 isolated from a healthy, previously
published PBMC specimen5 to build a reference profile for
lineage classification of tumor-derived cells. Within each BEIL,
we grouped cells into clusters to obtain between 7 and 8 rep-
resentatives of each lineage. For each patient with FL, we
calculated the Spearman correlation coefficient between
genes expressed in each BEIL and in each single cell. Each
single cell was assigned to the BEIL whose representative had
the highest correlation to the cell. In addition, we deployed
a second classification tier for cells assigned to a T-cell

population. Namely, we identified clusters of T cells in gene
expression space as described in supplemental Methods and
compared each cluster with T-cell BEILs.

Intrasample B-cell differential gene expression
We used Seurat14 version 2.3.4 to identify differentially expressed
genes between tumor and normal B cells detected within the
same FL sample. We compared each cluster of quiescent ma-
lignant B cells with sample-matched normal B cells. Only groups
of cells with identical sample origin were compared. For each
comparison, we used 2 different models: Model-based Analysis
of Single-cell Transcriptomics (MAST)15 and a standard area under
the curve (AUC) classifier implemented by Seurat, each time ac-
counting for variability in gene coverage across cells.

Flow cytometry gating and quantification of
hematopoietic cell types
Cells were obtained from the same cryopreserved aliquots of
the 6 FLs, 2 healthy tonsils, and 2 healthy PBMCs. The cells were
stained with 4 panels of 13 antibodies each for flow cytometry
and then analyzed on a 17-parameter LSR-II flow instrument (BD
Biosciences). The cells were manually assigned to 8 hematopoi-
etic lineages based on the specific expression of known markers
for these lineages (CD3, CD4, CD8, CD11b, CD11c, CD19, CD14,
CD25, CD33, CD45RO, FoxP3, CD56, Igl, and HLA-DR).

Characterization of B-cell intratumor heterogeneity
Bulk exome-sequencing of malignant B cells and sample-matched
T cells had been performed for all 6 FLs as part of a prior study.16 This
data revealed between 178 and 1549 somatic mutations in coding
regions, overlapping with between 104 and 763 expressed genes
per each FL’s B-cell population. We used the scRNA-Seq data of
each FL’s quiescent, malignant B cells to project the expression of
each corresponding set of mutated genes onto 4 to 5 principal
components (PCs). These PCswere used as input for the subsequent
t-distributed stochastic neighbor embedding (tSNE) projection17,18

and clustering, whereby cells were clustered in PC space to identify
coexisting subclones (supplemental Methods). We used gene set
variationanalysis (GSVA)19 to identify differentially activatedpathways
among coexistent tumor B-cell subclones (supplemental Methods).

Results
ScRNA-Seq identifies multiple hematopoietic cell
lineages within samples
We used the 10X Chromium platform to obtain single-cell tran-
scriptomes of 6 FL biopsies (supplemental Table 1) and 4 con-
trol specimens from healthy individuals (2 tonsil and 2 PBMC
specimens). ScRNA-Seq data were available from a third published
PBMC specimen, as well as from 8 BEILs5 initially isolated from this
PBMC.5 This PBMC sample was included as additional control,
yielding a total of 5 control specimens for analysis (supplemental
Table 3).We analyzed 34188 cells from the 6 FL primary tumors and
22077 from the 5 control specimens (Figure 1). Overall, this analysis
generated an average of 86580 reads per cell.

We used a curated set of 7 biological and technical features
(“Methods”) to detect and remove low-quality cells.20 Specifi-
cally, we removed cells that had lost transcripts before cell lysis
or multiplets. This resulted in the overall exclusion of 4519
(8.03%) cells, representing 5% to 21% per sample (supplemental

1120 blood® 7 MARCH 2019 | VOLUME 133, NUMBER 10 ANDOR et al

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/133/10/1119/1556892/blood862292.pdf by guest on 18 M

ay 2024



Table 2). For the remaining cells of a given sample, we inte-
grated the data with 2962 high-quality cells detected across the
8 BEILs.5 We employed the method of Macosko et al11 to rank
genes according to their normalized dispersion, and used tSNE to
visualize the expression of shared highly variable genes as a
2-dimensional map (Figure 2A; “Methods”).17,18 This procedure
was repeated for each FL and control sample separately, each
time controlling for potential batch effects (supplemental Figures
1 and 2). Derived from a healthy control, the BEIL populations
serve as landmarks21 for the cell phenotype landscape displayed
on the tSNE map (Figure 2A-B; supplemental Figure 3).

To assign each cell to 1 of 8 lineages (B cell, monocyte, natural
killer cell, CD4 memory, regulatory T [Treg], CD4 naive, CD8
memory, CD8 naive), we leveraged the 8 BEIL datasets to
construct reference profiles (“Methods”), comparing every FL
cell with each reference profile5 (supplemental Table 3). In
general, correlation to BEIL profiles distinguished well among
B cells, T cells, natural killer cells, and monocytes (supplemental

Figure 5). Distinct cycling subpopulations were visible for B cells
and Tregs within the FL specimens (Figure 2C). Distinction within
the T-cell population, however, and in particular between Tregs
and CD4 memory cells, was often ambiguous (supplemental
Figure 5). We therefore used a second classification tier for cells
assigned to a T-cell population. Namely, we clustered T cells and
assigned each cluster to that BEIL whose representative had the
highest correlation to the cluster (“Methods”).

We evaluated our lineage assignments with an independent
data set. We gated each of the FL and control samples into
8 immune subsets, using a 13-parameter FACS analysis
(“Methods”; supplemental Figure 4; supplemental Tables 4 and
5). We compared the cell population frequencies determined
by scRNA-Seq and FACS for each sample. The 2 analysis methods
were concordant on the proportions of B cells, T cells, and
natural killer cells in each sample (Figure 2D-E). Monocyte
estimates by scRNA-Seq were higher than by FACS in 4 of 6
samples (Figure 2D-E). We conclude that scRNA-Seq enables
lineage classification at single-cell resolution, with cell type
assignments that are largely concordant with flow cytometry.

Light-chain restriction confirms scRNA-Seq-based
tumor B-cell classification
To distinguish normal from malignant B cells, we leveraged the
interpatient heterogeneity in FL development. For FLs in different
individuals, premalignant B cells take divergent evolutionary
paths, as defined by different somatic mutations. These pat-
terns of genetic heterogeneity are unique to each FL tumor.16

As a consequence, we hypothesized that these differences
would lead to distinct transcriptional patterns observed in
the scRNA-Seq data. Visually, one sees this as distinct, non-
overlapping tumor B-cell clusters in tSNE maps. In contrast,
we anticipated that normal B cells from different samples would
cluster together. Such information would enable us to distin-
guish malignant B cells among the different FLs.

To test this hypothesis, we merged the individual B cells from
all 6 FL and 5 control samples into a single scRNA-Seq data set
consisting of 25 106 cells. We performed principle component
analysis of the top 1418 shared highly variable genes, followed
by density clustering of the first 38 PCs with a graph-based
clustering approach22-24 (“Methods”). This strategy identified
10 clusters (Figure 3A-B; supplemental Figure 6). We identified
4 classes of B-cell clusters, composed of the following: cells
common to both, all FLs and PBMCs (universally shared class);
cells associated with all FL samples but none of the control
samples (tumor-shared class); cells that were nearly exclusive
(.95%) to a given FL sample (tumor-private class); and cells common
to the 2 tonsil samples. Greater than 99% of the B cells from the 3
PBMC control samples, as well as 0.7% to 19.5% of the cells from the
FL samples, were found in the universally shared cluster (Figure 3B;
supplemental Figure 7). This result suggested that the universally
shared cluster contained the normal B cells within the different tumor
samples, whereas all malignant B cells were distributed among the
tumor-shared and tumor-private clusters.

Expression of cell cycle geneswas observed in cluster 9 (Figure 3C).
This cluster consisted of actively proliferating cells from all 6 FL
samples, representing between 0.6% and 11.2% of cells per FL
sample (Figure 3D). Five of 6 FL samples had their own single

Validation dataset

Droplet-based
single-cell RNA-Seq

Doublets,
low quality

Immune signatures

Lineage assignment
of 56,265 cells by
gene expression

Tumor-resident T cells

Tumor-resident B cells

Cryopreserved
tumor & immune cells

Healthy
tonsils
(n = 2)

Healthy
PBMCs
(n = 3)

Follicular
lymphoma
biopsies
(n = 6)

Subset frequencies
measured by FACS

Single-cell RNA-Seq of 8
reference immune subsets

Discrimination of
tumor vs. healthy B cells

Tumor-specific genes
confirmed by FACS

Co-expression patterns of
immune checkpoint genesMono

B

NK

T

A

B

E F

G

D

C

Figure 1. Single-cell RNA-Seq analysis and validation strategy. (A-B) Cryo-
preserved cells from dissociated FL tumor biopsies from 6 patients, 3 PBMC donors,
and 2 healthy tonsil donors (A), were measured by droplet-based scRNA-Seq,
capturing an average of 1951 to 8560 cells per sample (B). Low-quality cells and tech-
nical artifacts were identified algorithmically and discarded. (C) A portion of the same
aliquots of each sample was measured by multicolor flow cytometry (FACS) to validate
immune and tumor subset frequencies observedby scRNA-Seq. (D-E) Published immune
signatures for 8 purified immune subsets (D) were used to assign lineages (E) to each cell
based on gene expression. (F) Tumor-infiltrating normal and tumor-derived B cells had
distinct gene expression profiles. Tumor-specific candidate genes were characterized
by FACS on additional cryopreserved aliquots of the tumor biopsies, yielding tumor-
specific expression at the protein level. (G) The scRNA-Seq data of tumor-infiltrating
T cells revealed the landscape of immune checkpoint gene coexpression.
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tumor-private cluster. Quiescent, malignant LPJ119 cells, however,
segregated into 2 tumor-private clusters (Figure 3 A-B).

As another test confirming that the universally shared cluster
represented normal B cells, we took advantage of the B-cell
differentiation process involving immunoglobulin light chain
restriction. Using our scRNA-Seq data, we determined the light
chain assignment of each individual B cell among all 6 FL
samples (“Methods”). In the universally shared B-cell cluster, the
frequency of immunoglobulin Lambda1 (Igl1) B cells was be-
tween 28% and 42% per sample. This ratio approximates the
40% Igl expression typically seen in normal B cells, and therefore
supports our interpretation that the universal cluster represents
normal B cells. In contrast, the tumor-shared and tumor-private

clusters had an exclusive light chain assignment that consisted
of either ,1% or .91% Igl1 cells. The FACS results were also
concordant with scRNA-Seq cluster assignments for the distinc-
tion between Igl1 and Igk1 B cells, and showed the same trend
for the percentage of cycling cells (Figure 3D). The dominance of
cells restricted to a single light chain supported our conclusion
that the tumor-shared and tumor-private clusters represented
clonal tumor B-cell populations (Figure 3E).

Differential expression between normal and
malignant B cells reveals tumor-specific markers
Whether patient-to-patient variability between FL biopsies de-
rives from the averaging of many different cell types in each
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Figure 2. Integrating scRNA-Seq data derived from heterogeneous biopsies and purified immune populations enables assignment of hematopoietic lineage to each
cell. (A) tSNE mapping of 8129 cells from a follicular lymphoma sample (LPJ128, gray dots) and of 2962 purified cells from 8 BEIL populations (colored dots). (B) RNA-Seq based
assignment of all 11 091 cells to a hematopoietic lineage. Every single cell was compared with every BEIL representative. (C) Among the gray LPJ128 cells from panel (A),
expression of an 18-gene signature of cell cycle progression is shown (colorbar legend) and was highest among B cells and Tregs. The scale shows the GSVA enrichment
score19 per cell. (D-E) Overall cell type frequencies are quantified for the sample above, along with 5 additional follicular lymphoma samples. Sequencing-based (left)
and FACS-based (right) cell type frequencies are shown in pairs for each specimen (D) and cell type (E). **Spearman r $ 0.95: *r $ 0.9.
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patient’s tumor or from fundamental differences in the ex-
pression program of the pure malignant B-cell population
is not known. To address this question, we compared the
gene expression profiles of normal and tumor B cells within
each patient. Leveraging this matched cell population ap-
proach avoids perturbations from physical isolation (ie, FACS
sorting) and is inherently controlled for each patient’s genetic
background.

After accounting for variation in the number of genes detected
per cell, we employed 2 methods (a standard AUC classifier and
MAST15) to assess whether a gene is differentially expressed
between 2 groups of cells (“Methods”). For this analysis, we
excluded cycling B cells to avoid detecting differentially
expressed genes dependent on cell cycle status. Malignant
B cells from the different FL samples had highly divergent
transcriptomes (Figure 3A). BCL2 overexpression, a hallmark of
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FL caused by IGH:BCL2 translocation, was detected in 5 of 6
patients with FL (MAST: unadjusted P # 4.3E-4). Overall, MAST
identified 378 genes that were differentially expressed in at least
1 sample (FDR# 0.05; |log2(fold-change)| $0.6). Of these 378
genes identified by MAST, 74 (20%) were confirmed by the AUC
classifier at 60% or more power (Figure 4A). Thirteen genes were
prioritized for validation by FACS, based on the availability
of antibodies and the significance of the fold-change in ex-
pression. The FACS data confirmed the differential expression
predicted from scRNA-Seq the majority of the time. The rate of

concordance between FACS and scRNA-Seq was, on average,
69.23% for MAST (supplemental Table 6A) and 87.50% for the
AUC classifier (supplemental Table 6B).

We observed downregulation of major histocompatibility complex
(MHC) class I genes in all FLs. Class IIMHCswere downregulated in a
subset of samples while being upregulated in others (Figure 4A). In
an exome-sequencing study, Green et al16 found that down-
regulation of MHC class II gene HLA-DR is attributable to the
presence of somaticCREBBPmutations that represented early driver

LTB

DBI

IGKC
IGLC2
PLAC8
IGHD

FCER2

FTH1
TXNIP
JUNB

BANK1

HLA-C
HLA-A

B2M

EEF1B2

KLF2

TNFRSF13B
GLTSCR2

EEF1A1
H3F3B

KLF6
CD52

TMSB10
BTG1

HLA-DRA
HLA-DPA1
HLA-DPB1

HLA-DRB1
HLA-DMB

TMSB4X
SMIM14
LAPTM5

CD74
HLA-DMA

SYNGR2
HMGN1
STK17A

RASGRP3
SEL1L3

SH3KBP1
TMEM123

BASP1
LRMP

RFTN1
BRWD1

MAP4K4
SPINK2
TCTN1
DGKD

REL
PTPRC
ARPC2

UQCRH
SERF2
CUX1

SORL1
CD79B

TSC22D3
SNX29P2

RNGTT
SYNE2

IGHE
IL4R

RP11-693J15.5
MARCKSL1

RGS1
RGS13
STAG3
TCL1A
IGHM

IGHG1
IGLC3

HLA-DQA1
HLA-DQB1

1.0 0.5 0.0 - 1.0- 0.5

Log2 Fold Change in tumor B-cells 

LP
J1

19
_s

m
all

LP
J1

19
_la

rg
e

LP
M

02
1

LP
M

01
8

LP
J1

28

LP
M

01
1

LP
M

02
0

C

B A HLA-DRA
expression

-20

-20

0

20

0 20

0 2 4 6 8

TSNE 1 

TS
NE

 2
 

LPM018 

Trp1434Gly 

LPM011 

wild-type 

LPJ128 

Trp1434Gly

 LPM020 

wild-type 

 LPM021 

Tyr1444Cys 

Sample

 CREBBP
mutation

HLA-DR V450 staining 

Flow
cytometry

normal
tumor

HLA-DR transcripts 

Single cell
RNA-Seq

normal
tumor

LPM020

LPM021

Normal B-cells

LMP011

LPJ128

LMP018

Cycling

LPJ119_large
LPJ119_small

Figure 4. Differential expression analysis reveals gene transcripts recurrently enriched in eithermalignant or normal B cells from the same biopsy. (A) Genes with strong
and recurrent patterns of enrichment are at the top and bottom of the heat map. The heat map is restricted to genes differentially expressed at$ 60%AUC power. (B) Overlay of
class II MHC gene expression (HLA-DR) on the tSNEmap shows strong differences between normal andmalignant B cells for all samples, albeit in variable directions. (C) Tumor-
specific expression of HLA-DR predicted from scRNA-Seq data (top) was confirmed by flow cytometry (bottom).

1124 blood® 7 MARCH 2019 | VOLUME 133, NUMBER 10 ANDOR et al

D
ow

nloaded from
 http://ashpublications.net/blood/article-pdf/133/10/1119/1556892/blood862292.pdf by guest on 18 M

ay 2024



events during FL development. The 6 primary FL samples in this
study had previously undergone exome sequencing with identified
somatic mutations.16 We observed that those samples with a coding
CREBBP mutation (LPM021, LPJ128, LPM018) consisted of tumor
B cells of decreasedHLA-DR expression, as shown in Figure 4B. The
remaining 3 samples (LPM011, LPM020, LPJ119) had CREBBP wild-
type status. The direction of MHC II differential expression relative
to normal B cells was concordant between transcript and surface
protein expression in all 5 FL patient samples tested (Figure 4C).

The AUC classifier identified 16 differentially expressed genes
between the small and large quiescent malignant B-cell pop-
ulations in LPJ119 (AUC: power .50%; supplemental Table 7).
The intrinsic pathway for apoptosis and MHC class II antigen
presentation were among the most significantly differentially
expressed pathways between the 2 cell populations (GSVA,
t-test: P , 2.2E-16), both being upregulated in the small com-
pared with the large population (fold change $3/2).

Multiple subclones coexist within FL
tumor populations
We asked whether scRNA-Seq could inform heterogeneity within
the malignant B-cell populations identified. Allelic dropout, along

with the sparsity of the scRNA-Seq data, makes it precarious to
conclude from the absence of an expressedmutation the absence
of the genetic event in the underlying DNA of a given cell.
However, we hypothesized that the set of coding somatic mu-
tations will influence the expression network of the genes they
affect. If so, the expression profiles of genes affected by somatic
mutations should structure the cells into subclones, reflecting
genetic differences among them.

Principle component analysis on the set of mutated genes in
each sample followed by density clustering grouped malig-
nant B cells into anywhere from 4 to 5 subclones per sample
(Figure 5; supplemental Table 9). We refer to genes differ-
entially expressed in a given subclone relative to all other
subclones as subclone-specific genes. Each sample’s largest
subclone comprised at least 50% of the sample’s malignant
B cells, and its subclone specific genes contained somatic
mutations with higher allele frequencies compared with the
other subclones (Figure 5C). In general, there was a correlation
between scRNA-Seq-derived subclone size and exome-Seq
derived allele frequencies across subclone-specific genes
(r 5 0.74; P , 5E-4; supplemental Figure 8), suggesting that
the transcriptome-derived clonal structure does reflect genetic
divergence among cells.
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To find out what proportion of the total B-cell intratumor gene
expression heterogeneity is explained by genetic divergence,
we repeated the above analysis but used all detected genes to
search for subgroups among malignant B cells. Although no
subgroups were evident in 3 of the FLs, in the remaining
3 samples (LPM018, LPJ128, and LPM020) the previously de-
tected smaller subclones were indeed enriched in certain areas
of the corresponding tSNE map. However, the largest subclone
was always dispersed across several areas of the map (sup-
plemental Figure 9A-C), suggesting that stronger drivers of
transcriptomic divergence, such as different cell states, overshadow
genomic differences. Compared with the top genes contributing
most to the variance of the first 2 principal components (on
average 5.5%), genes with somatic mutations had only minimal
contributions (on average, 1%; supplemental Figure 9D-E).

To investigate what phenotypes distinguish tumor subclones
from each other, we looked at pathways that are differentially
activated across the coexisting tumor subclones of a sample
(Figure 5D). We observed several significant changes in the
pathway activity of smaller subclones relative to the largest
subclone, affecting a variety of pathways (Figure 5D; supple-
mental Figure 10). For example, deubiquitinating enzymes were
upregulated in a smaller subclone of LPJ128, whereas DNA
double-strand break repair was upregulated in a small subclone
of LPM020 (supplemental Table 10).

Infiltrating T cells show recurrent patterns of
immune checkpoint coexpression
The immune checkpoint molecules CTLA-4 and PD-1 are targets
of current immunotherapies in clinical use. However, most patients
do not respond to these therapies, motivating the investigation of
other co-inhibitory and costimulatory receptors, including LAG3,
HAVCR2 (TIM3), TIGIT,25 CD27, CD40LG, ICOS, TNFRSF9 (4-1BB),
TNFRSF18 (GITR), and TNFRSF4 (OX40R).26 We evaluated these
11 aforementioned candidate markers based on published ev-
idence of their putative role in T-cell regulation and immune
response.25,27-29

Expression of immune checkpoint genes in the T cells present in
the PBMCs was scarce. In striking contrast, the T cells in the FL
and tonsil specimens expressed high levels of immune check-
point genes (supplemental Figure 11A). We used the FL and
tonsil scRNA-Seq data to determine what other genes were
transcriptionally coexpressed with multiple of these known 11
immune checkpoint genes. Our goal was to extend the network
of 11 immune checkpoint genes among the infiltrative T-cell
lineages in each tumor by new actors with candidate regulatory
or effector roles in immune response.

Among the CD4 memory, Tregs and CD8 memory cell lineages
present for each FL and tonsil specimen, we quantified im-
mune checkpoint coexpression at single-cell resolution, and

looked for consistently coexpressed genes. Using hundreds of
cells per specimen (average, 426; 90% CI, 67-854), this analysis
determined the Spearman correlation coefficient between the
expression profiles of any 2 expressed genes, whereby exactly
1 of the 2 genes was a known immune checkpoint gene (sup-
plemental Methods). To extend the network of 11 immune
checkpoint genes, we prioritized candidates that were signifi-
cantly coexpressed with at least 2 known immune checkpoint
genes with an average Spearman correlation coefficient across
all FLs: r $ 0.2; FDR-adjusted P # .05 (supplemental Methods).

This analysis extended the regulatory network of CD41 Tregs
by 31 additional candidates (Figure 6A). In total, 4 of the
coexpressed genes (CEBPA, EOMES, ZNF140, and NCOR2)
were transcriptional activators/repressors and another 6 (CST7,
CRTAM, SRGN, B2M, HLA-A, and HLA-B) had been previously
ascertained with a role in immune regulation. Of the significantly
coexpressed gene-pairs, some were significantly coexpressed
exclusively in controls, but not in FLs, such as ITM2A/PDCD1
(Figure 6B-C). The majority (63%), however, were coexpressed in
FL as well as control samples, such as CD7 with both TNFRSF18
(Figure 6D) and TNFRSF4. Interestingly, CD7 is 1 of 42 genes
previously shown to predict favorable outcome as part of a T-cell
immune response signature.30 Expression of this immune re-
sponse signature was particularly high in Tregs (supplemental
Figure 12), and was generally higher in T cells as compared with
other immune cell types, as has been previously described.30

The same approach extended the network in CD41 Memory
cells by 6 candidates (supplemental Figure 11B). No single new
candidate satisfied the above criteria to extend the CD81

memory network, probably because CD81 cells express low
levels of immune checkpoint genes (supplemental Figure 11A).
These conclusions were concordant when using alternative
metrics, such as the percentage cells expressing a given com-
bination (supplemental Figure 11C-D).

Discussion
We analyzed the transcriptomes of individual cells from 6 FL bi-
opsies, sampling on average more than 5000 cells per biopsy and
classifying them into 8 hematopoietic lineages. In parallel, we
leveraged flow cytometry as orthogonal validation of scRNA-Seq
derived findings. Because FL arises in a lymphoid organ, perfect
isolation of the malignant B cell population from a surgical biopsy is
a significant challenge. Conventional isolation of FL tumor B cells
has limitations as the isolated cell population always included some
normal B cells with the same Ig light chain as the tumor. ScRNA-Seq
enabled us to directly compare the transcriptomes of entirely pure
normal and malignant B cells from the same FL biopsy.

Analysis of coexpression patterns within T cell subsets identified
novel candidate genes of T cell regulation that are consistently

Figure 6. Immune checkpoint regulation network in tumor-resident and healthy CD4 Tregs. (A) Network of 10 known immune checkpoint genes (orange) and 31 coexpressed
candidategenes (dark green). Edgewidth reflects average correlation coefficient of a givengenepair across 6 FL and 2 tonsil control specimens. (B)Heatmap representationof the network
shown in (A). Entries represent the averagecorrelation coefficient across the 2 tonsil specimens subtracted from the average correlationmeasuredacross the 6FL specimens. Entries close to
zero indicate that the magnitude of coexpression is similar between FL and control specimens, whereas negative and positive entries indicate overrepresentation of the corresponding
coexpressed pair in tonsil and FL specimens respectively. (C-D) Two examples are shown in this context: CEBPA is coexpressed with PDCD1 in tonsils but not in FL (C), whereas CD7 is
coexpressedwithTNFRSF18 in both FL and tonsils (D). (Network in panel Awas visualizedwithCytoscape.34 For panels C-D, least squares regression [line] is fitted onnormalized and scaled
unique molecule identifier counts for each gene pair [dots] and shown along with the standard error bounds.)
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coexpressed with known immune checkpoint molecules. This
included coexpression of CD59, a potent inhibitor of signal
transduction for T-cell activation, with both TNFRSF18 and
TNFRSF4 in CD41 memory cells. We evaluated known im-
mune response signatures and confirmed previous hypotheses
about the cell types responsible for their expression. While the
transcriptome-wide fingerprint of scRNA-Seq enabled many
new observations, it came at a cost of losing information on the
localization of immune cells. This information has been shown
to be essential; for example, architectural patterns of CD4/
CD8/FOXP3 expression, have been shown to predict survival
of FL patients.31 In addition, dropout events likely accentu-
ate synchronous variability in expression among gene-pairs,
confounding coexpression patterns. Preserving the cells’
localization information, along with finding technological and
analytical32 solutions to the high dropout rates are important
next steps in the advancement of transcriptome-wide interrogation
techniques.

Integration of the FL’s transcriptomes with their somatic muta-
tion landscape revealed coexistence of multiple subclones of
malignant B cells within the same tumor, suggesting that gene-
expression heterogeneity in FL B cells is, in part, attributable to
subclonal genomic diversity. This contrasts to a recent study by
Milpied et al who performed single-cell gene expression analysis
of a panel of 91 pre-selected genes and found no link between
intra-tumor gene-expression heterogeneity and immunoglob-
ulin heavy-chain sequence mutation heterogeneity among FL
B cells.33 Instead, the authors found coexistence of distinct
germinal center B-cell transitional states to account for a sig-
nificant proportion of intratumor expression heterogeneity.33

Indeed, among all detectable genes, genes with somatic mu-
tations had only moderate contributions to the B cells’ ex-
pression heterogeneity (supplemental Figure 9), suggesting
other drivers of phenotypic diversity are stronger than genetic
drivers at the time of sample collection. Whether the magnitude
of expression heterogeneity caused by a given driver predicts
the relevance of that driver for therapeutic sensitivity is an im-
portant question that can only be addressed by analyzing
patient-matched biopsies before and after therapy.

Despite measuring a small number of patients, the large numbers
of cells sequenced per patient in this study revealed novel bi-
ological insights that will, however, require a larger validation
cohort. Droplet-based scRNA-Seq, on the order of tens of
thousands of cells, provides a broad, systems-scale perspective
on coexisting cell types, revealing immunogenic and malignant
phenotypes that would have remained concealed when looking
at a limited set of gene markers. The transcriptome-wide in-
formation provided by scRNA-Seq at single-cell resolution

makes the technique an important tool if we are to understand the
complex, intricate machinery responsible for immune evasion by
tumors and develop new approaches for immunotherapy.
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